
Mathematical Biology 5120-S14: Problem Set 2

Due March 27, 2014 at the beginning of class.

In this homework, you are to write a MATLAB program to solve the Hodgkin-Huxley
equations and to use it to explore their dynamics under a variety of conditions. I have
attached a sample MATLAB code for solving a different set of ODEs which should pro-
vide a template for much of what I ask you to do.

The Hodgkin-Huxley equations, related quantities, and parameter values are also at-
tached.

A) Write a MATLAB function, say gateshh, that takes a value V of (transmembrane)
voltage as input, and returns values for m∞(V ), τm(V ), n∞(V ), τn(V ), h∞(V ), and
τh(V ), for this voltage.

1. Plot the functions m∞(V ), n∞(V ), and h∞(V ) vs V for −90 ≤ V ≤ 50. Plot the
three curves on the same axes but in different colors.

2. Plot the functions τm(V ), τn(V ), and τh(V ) vs V for −90 ≤ V ≤ 50. Plot the
three curves on the same axes but in different colors.

B) Write a MATLAB function, say odehh, that takes t, V , m, n, h, as input and evalu-
ates the right-hand-sides of the ODEs Eqs.(1)-(4) below. This function needs to be able
to evaluate m∞(V ), τm(V ), n∞(V ), τn(V ), h∞(V ), and τh(V ), for the input voltage V .
It could do this, for example, by using the function you wrote for part A). The function
also needs to be able to evaluate the applied current Iapp, for which it needs to know
tdelay, tduration, I0, and t.

C) Write a MATLAB function, say drivehh, in which you specify an initial voltage
V (0), the parameters tdelay, tduration, and I0 needed for the applied current, a final time
tend and a time interval dt between the times for which solution values are reported by
ode23s. The times at which the solution should be saved are tspan = [0:dt:tend], using
MATLAB notation. Your MATLAB function should then solve the HH equations for
this time interval, and it should plot the solutions and other variables as follows: Plot
V (t) vs t in one figure; plot Iapp(t) vs t is another figure; plot all of m(t), n(t), and h(t)
vs t in a third figure; plot gNa(t) and gK(t) vs t in a fourth figure. (You should look
up how to use the ’subplot’ command in MATLAB.) To test your program, compare its
results to those shown in Figure 1 below.

D) With Iapp = 0, determine (to within 1 mV) the threshold voltage needed to generate
an action potential, that is, determine the minimum value of V (0) that leads to an action
potential? You should use m(0), n(0), h(0) set to m∞(Veq), n∞(Veq), and h∞(Veq),
respectively, as explained below. What is different and what is the same about V (t) for
a simulation with V (0) 1 mV above the threshold compared to that for a simulation
with V (0) 5 mV above the threshold?



E) Here, you will experiment with different magnitudes and durations of applied current
Iapp. i) What happens if a current with I0 = 5 is applied for 5 msec? What happens
if that current is applied for 50 msec? ii) What happens if a current with I0 = 10 is
applied for 50 msec? iii) What happens if a current with I0 = 15 is applied for 50 msec?
iv) What happens if a current with I0 = 20 is applied for 50 msec? Run each of these
simulations for 100 msec. Use the slow-manifold plots in Figure 2 below to help you
explain the differences between these cases.



The Hodgkin-Huxley equations are:

dV

dt
=

1

C

(
− gNa(V − VNa)− gK(V − VK)− ḡL(V − VL) + Iapp

)
(1)

dm

dt
=

1

τm(V )

(
m∞(V )−m

)
(2)

dn
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=

1

τn(V )
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n∞(V )− n

)
(3)

dh

dt
=

1

τh(V )

(
h∞(V )− h

)
(4)

where gNa = ḡNam
3h and gK = ḡKn

4.

The normal values of the parameters are

C ḡNa ḡK ḡL VNa VK VL
1.0 µF/cm2 120 (µA/mV)/cm2 36 (µA/mV)/cm2 0.3 (µA/mV)/cm2 45 mV -82 mV -59 mV

Note that with these parameter values and the gating functions given below, the equi-
librium potential is Veq = −69.8977. This should be the initial voltage for most of your
simulations, and m(0), n(0), and h(0) should be set to the values of m∞(Veq), n∞(Veq),
and h∞(Veq), respectively.

The gating functions are given by

m∞(V ) =
αm(V )

αm(V ) + βm(V )
τm(V ) =

1

αm(V ) + βm(V )
(5)

n∞(V ) =
αn(V )

αn(V ) + βn(V )
τn(V ) =

1

αn(V ) + βn(V )
(6)

h∞(V ) =
αh(V )

αh(V ) + βh(V )
τh(V ) =

1

αh(V ) + βh(V )
(7)

where

αm(V ) =


0.1(V+45)

1−exp
(
−V +45

10

) if V 6= −45

1 if V = −45.

(8)

βm(V ) = 4 exp
(
− V + 70

18

)
(9)

αn(V ) =


0.01(V+60)

1−exp
(
−V +60

10

) if V 6= −60

0.1 if V = −60.

(10)

βn(V ) = 0.125 exp
(
− V + 70

80

)
(11)

αh(V ) = 0.07 exp
(
− V + 70

20

)
(12)

βh(V ) =
1

1 + exp
(
− V+40

10

) (13)



Consider applied stimuli of the form:

Iapp(t) =

{
0 if t < tdelay or t > tdelay + tduration

I0 if tdelay ≤ t ≤ tdelay + tduration.
(14)

Here is an example solution of the Hodgkin-Huxley equations for the conditions indi-
cated. Your code should produce results for those conditions that match the results
shown here.
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Figure 1: Solution to the Hodgkin-Huxley equations with an applied current of 5 for 5
msec.



Slow Manifold: For the reduced (V, n) ‘slow’ system obtained from the full Hodgkin-
Huxley equations by setting h(t) = 1 − n(t) and assuming that m = m∞(V ), the n-

nullcline is n = n∞(V ) and the V -nullcline is ḡNa

(
m∞(V )

)3
(1−n)(V −VNa)+ ḡKn

4(V −
VK)+ḡL(V −VL)−Iapp = 0. Recall that the V -nullcline is also called the ‘slow manifold’.
For each value of V , I solved this equation for n using the MATLAB function fzero.
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Figure 2: In each panel, the graph shows the n-nullcline n = n∞(V ) (red), the V -
nullcline for the indicated value of the applied current I0 (solid blue) and the V -nullcline
for an applied current I0 = 0 (dashed blue).


