
Available online at http://www.idealibrary.com on
doi:10.1006/bulm.2001.0275
Bulletin of Mathematical Biology(2002)64, 175–207

Oxygen Balance for Small Organisms: an Analytical
Model

J. L. W. GIELEN

Department of Mathematical and Statistical Methods,
Biometris, Wageningen University,
Dreijenlaan 4,
6703 AH Wageningen,
The Netherlands
E-mail: jo.gielen@mat.dpw.wag-ur.nl

S. KRANENBARG

Experimental Zoology Group, WIAS,
Wageningen University,
Marijkeweg 40,
6709 PG Wageningen,
The Netherlands
E-mail: sander.kranenbarg@morf.edc.wag-ur.nl

An analytical model is developed that describes oxygen transport and oxygen con-
sumption for small biological structures without a circulatory system. Oxygen
inside the organism is transported by diffusion alone. Oxygen transfer towards
the organism is retarded by a thin static fluid film at the surface of the organism.
The thickness of this film models the outward water conditions, which may range
from completely stagnant water conditions to so-called well-stirred water condi-
tions. Oxygen consumption is concentration-independent above a specified thresh-
old concentration (regulator behaviour) and is proportional to the oxygen concen-
tration below this threshold (conformer behaviour). The model takes into account
shape and size of the organism and predicts the transition from (pure) regulator
behaviour to (pure) conformer behaviour, as well as the mean oxygen consumption
rate. Thereby the model facilitates a proper analysis of the physical constraints set
on shape and size of organisms without an active internal oxygen transport mecha-
nism. This analysis is carried out in some detail for six characteristic shapes (infi-
nite sheet, cylinder and beam; finite cylinder, sphere and block). In a well-stirred
external medium, a flattened shape appears to be the most favourable for oxygen
supply, while a compact shape (cube) is more favourable if the external medium is
nearly stagnant. The theoretical framework is applied to oxygen consumption data
of eight teleost embryos. This reveals relative insensitivity to external flow condi-
tions in some species (e.g., winter flounder, herring), while others appear to rely on
external stirring for a proper oxygen supply (e.g., largemouth bass). Interestingly,
largemouth bass is the only species in our analysis that exhibits ‘fin-fanning’.
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1. INTRODUCTION

Molecular diffusion is an important mechanism by which oxygen is transported
to respiring biological structures. However, molecular diffusion is only efficient
over relatively short distances, or as formulated byKrogh (1941): ‘diffusion alone
can provide sufficient oxygen only to organisms of 1mm diameter or less’. Molec-
ular diffusion thus poses a physical constraint on the size and shape of an organism
that does not (yet) have an additional way of oxygen transport (Graham, 1988).
Mathematical models of oxygen transport may serve to gain quantitative insight in
these constraints and the parameters involved.

Models of oxygen flow to biological structures date back toWarburg(1923),
Fenn(1927) andHarvey(1928), who modelled steady state diffusion of oxygen
from a well-stirred solution to liver slices, frog nerves and bacteria, respectively.
Warburg(1923) andFenn(1927) calculated maximum diffusion distances, while
Harvey(1928) calculated a minimum surface oxygen tension for the bacterium to
maintain an adequate respiration.Gerard(1931) extended this model for a varying
diffusion constant and oxygen consumption pattern in the sphere. These authors
modelled steady state diffusion of oxygen from a well-stirred solution into a one-
dimensional (1D) structure (only the radius is a variable shape-factor) under the
assumption that volume-specific oxygen consumption is independent of oxygen
concentration (regulator behaviour).

Strathmann and Chaffee(1984) elaborated on these models to formulate size
constraints for invertebrate egg masses, whileLee and Strathmann(1998) included
the depletion of oxygen in a boundary layer around a spherical egg or egg-mass.
Seymour and Bradford(1987) modelled the effect of an impeding gelatinous cap-
sule on the oxygen delivery to a spherical egg and predicted maximum sizes of
amphibian eggs and egg capsules.

Daykin (1965) andWickett (1975) applied mass transfer theory to oxygen trans-
port in respiring fish eggs. They predicted the bulk flow velocity required for
proper egg development.Kranenbarget al. (2001) employed mass transfer theory
to predict maximum size and optimal shape of small organisms for any bulk flow
velocity.

The assumption of concentration-independent consumption was alleviated by
Byatt-Smithet al. (1991) in their nonsteady-state models of oxygen diffusion to
mouse and human preimplantation embryos in the absence of stirring. They mod-
elled the volume-specific oxygen consumption of the embryos both as being inde-
pendent of the oxygen concentration (regulator) and as being directly proportional
to the oxygen concentration (conformer), though both models were mutually
exclusive.

This short historical sketch shows three important aspects in models of oxygen
transport to small organisms: shape and size of the organism, oxygen consumption
pattern of the organism and flow condition of the medium around the organism.
In the present paper we incorporate all these aspects of the oxygen transport pro-
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blem in one analytical model. We represent the actual organism by a regionG in
space, which determines the size and shape of the organism. Analytical solutions
of the resulting formalism for some special 1D cases (infinite sheet, infinite cylin-
der, sphere) and some higher-dimensional cases (infinite beam, rectangular paral-
lelepiped and finite cylinder) are included. The oxygen consumption behaviour of
our model organism is, in essence, a mixed form of conformer behaviour (at low
oxygen concentrations) and regulator behaviour (at higher oxygen concentrations),
as is generally found by experiment [e.g.,Longmuir (1957)]. Pure regulator and
pure conformer behaviour are included as limiting cases in our model. Convective
oxygen transport to the organism is incorporated in our model by the introduction
of a thin static fluid film around the organism, through which oxygen is transported
(Carslaw and Jaeger, 1959; Rosen, 1952). The thickness of this layer will be trans-
lated in a transport coefficientkeff. A well-stirred external medium is represented
by a layer of (almost) zero thickness, while more or less stagnant water conditions
are represented by a positive thickness of the encapsulating layer, and hence by a
finite value forkeff.

With the inclusion of these aspects in our model we are able to make a proper
analysis of the constraint oxygen transport sets on the size and shape of organisms
that do not have an active internal oxygen transport mechanism.

2. THE M ODEL

2.1. Preliminaries. We wish to describe the stationary oxygen concentration
inside a small organism surrounded by water as a function of (1) the shape and size
of the organism, (2) the oxygen consumption pattern the organism exhibits, (3) the
outside conditions the organism experiences. The organism is modelled as a region
G in 3-dimensional (3D) space; the surface of the organism is denoted as∂G. The
oxygen concentration inside the organism at placeEx and timet is described by the
functionu(Ex, t), with Ex ∈ G andt > 0. Then the stationary (equilibrium) oxygen
concentration inside the organism is given byu(Ex) = u(Ex, ∞), with Ex ∈ G.

Oxygen inside the organism is transported by diffusion; the (constant) diffusion
coefficient is denoted asD. It is assumed that barriers to oxygen diffusion and pos-
sible movements of the protoplasm or interstitial fluid can be adequately accounted
for in the value of this diffusion coefficient [e.g.,Desaulnierset al. (1996), Dowse
et al. (2000) andKrogh (1919)]. These authors show that the diffusion coefficient
of oxygen in animal tissue is about three times smaller than its value in water.

Furthermore oxygen will be consumed inside the organism. We suppose that the
oxygen consumption rateF at placeEx and timet is in the following way a function
of the oxygen concentrationu = u(Ex, t):

F(u) =

{
m if u ≥ C0,
mu/C0 if u ≤ C0.

(2.1)



178 J. L. W. Gielen and S. Kranenbarg

0
0 u-axis

v-axisE

C

m

P
Φ(v)
F(u)

Figure 1. The oxygen consumption rateF(u) of the organism (dimensionless:8(v)). For
u < C0 (dimensionless:v < E) there is conformer behaviour; foru > C0 (dimensionless:
v > E) there is regulator behaviour. The maximum consumption rate equalsm (dimen-
sionless:P).

This assumption implies a uniform oxygen consumption throughout the embryo,
while in reality oxygen is consumed by a large number of point sinks, i.e., the mito-
chondria. To reduce mathematical complexity, however, we assume the effect of all
these point sinks on the final oxygen distribution to be the same as a uniform oxy-
gen consumption. Preliminary measurements of the oxygen concentration inside a
zebrafish (Danio rerio) embryoin vivo indeed supports this assumption.

The threshold concentrationC0 marks the transition between so-called regulator
behaviour and conformer behaviour. We say the organism exhibits at placeEx and
time t regulator behaviour ifu(Ex, t) ≥ C0. This means that the oxygen concen-
tration is locally sufficiently high for the organism to consume all the oxygen it
can use. The consumption rate at such a point will therefore be at its maximum
valuem. If u(Ex, t) < C0 we say the organism exhibits at placeEx and timet con-
former behaviour. This means that the oxygen concentration is locally too low to
fulfil all the needs of the organism. Accordingly it scales down its consumption to
a (constant) fraction of the available oxygen, see Fig.1. Of course the organism as
a whole can be in a mixed state: then there is only a lack of oxygen and thus con-
former behaviour in (typically) some small interior part ofG, while the outer parts
of G still exhibit regulator behaviour. We designate an organism as a pure regulator
(conformer) if it exhibits regulator (conformer) behaviour in all points ofG.

It can be expected that the transition from pure regulator behaviour to mixed case
behaviour triggers certain biological modifications in the organism, for instance,
the onset of the formation of bloodvessels in the oxygen deprived region. Also the
transition from mixed case behaviour to pure conformer behaviour is interesting
from a biological point of view: then the organism as a whole experiences oxygen
shortage, which may eventually lead to the complete shut-down of certain biolog-
ical functions inside the organism (Padilla and Roth, 2001). For these reasons we
will pay special attention to the parameter values for which these transitions occur.

In general the free water oxygen concentrationC∞ does not equal the oxygen
concentration at the surface of the organism. The first reason for this phenomenon
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stems from the solubility of oxygen in the organism’s tissue. WithK the (dimen-
sionless) Henry coefficient for oxygen with respect to water and tissue, the oxygen
concentration in water directly at the surface∂G equalsu(Ex, t)/K . For biological
tissueK will generally equal or be close to one. The second reason is found in the
formation of a thin static fluid film of water at the surface of the organism (Carslaw
and Jaeger, 1959; Rosen, 1952). The average thickness of this layer depends on the
water movement around the organism. In more or less stagnant water conditions
this film will be relatively thick, while in running water conditions this layer will
be practically nonexistent. We suppose that oxygen transport through this layer
obeys Fick’s first law. This leads to the equation:

D
∂

∂ En
u(Ex, t) = keff

[
C∞ −

u(Ex, t)

K

]
, for Ex ∈ ∂G and t > 0. (2.2)

The so-called mass transfer coefficientkeff = Dw/δ, whereδ represents the (aver-
aged) thickness of the static film andDw the diffusion coefficient of oxygen in
water. In this waykeff delivers a measure for the thickness of the static layer, and
thereby for the outward water conditions. Running water conditions can be char-
acterized by the equation:

u(Ex, t) = KC∞, for Ex ∈ ∂G and t > 0. (2.3)

Because forkeff → ∞ equation (2.2) transforms into (2.3), we may say that the
casekeff = ∞ represents running water conditions. The value ofkeff under (com-
pletely) stagnant water conditions will be discussed in Section 3.3.

2.2. The model equations.The foregoing considerations lead to the following
partial differential equation onG and matching boundary condition on∂G for the
oxygen concentrationu(Ex, t):

PDE:
∂

∂t
u(Ex, t) = D 1Ex u(Ex, t) − F(u(Ex, t)), for Ex ∈ G and t > 0; (2.4)

BC: D
∂

∂ En
u(Ex, t) +

keff

K
u(Ex, t) = keff C∞, for Ex ∈ ∂G and t > 0. (2.5)

Since the time scale for diffusion equilibrium is very much smaller than the time
scale for growth of the organism, we can safely assume diffusion equilibrium at any
stage during a growth process. That is why we are, in this paper, mainly interested
in the stationary (equilibrium) solution of equations (2.4) and (2.5), which means
that an initial condition is not needed.

At this point we introduce in the following way a characteristic lengthL for the
regionG:

L = V/A, with V =

∫
G

1 dω, and A =

∫
∂G

1 dσ . (2.6)
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SoL equals the volume to surface area ratio of the organism, which is in the present
context a meaningful notion indeed, as it represents the volume of respiring tissue
to be supplied with oxygen per unit surface area (Kranenbarget al., 2000).

Next we introduce, with the help of this characteristic lengthL, the following
dimensionless parameters:

Eξ = Ex/L , dimensionless place coordinates;

τ = D t/L2, dimensionless time;

v(Eξ, τ ) = u(Ex, t)/C∞, dimensionless concentration.

(2.7)

The coordinate transformationEx → Eξ is a simple contraction with its centre in
the origin, and transforms the regionG into a unique ‘standard’ regionG′ with the
same shape asG, but with a (dimensionless) volume to surface area ratio equal
to one. Note that the (dimensionless) time scaleτ obtained onG′ depends on the
size ofG.

With the help of equation (2.7) we deduce in a straightforward way the following
dimensionless forms for (2.4) and (2.5):

PDE:
∂

∂τ
v(Eξ, τ ) = 1Eξ v(Eξ, τ ) − 8(v(Eξ, τ )), for Eξ ∈ G′ andτ > 0; (2.8)

BC:
∂

∂ En′
v(Eξ, τ ) +

Q

K
v(Eξ, τ ) = Q, for Eξ ∈ ∂ G′ andτ > 0. (2.9)

Here the dimensionless consumption rate8 is defined as (see Fig.1):

8(v) =

{
P if v ≥ E,
Pv/E if v ≤ E,

(2.10)

and the dimensionless parametersP, Q andE are given by:

P = mL2/(DC∞), dimensionless maximum consumption rate;

Q = keff L/D, dimensionless mass transfer coefficient;

E = C0/C∞, dimensionless threshold concentration.

(2.11)

In this way we have reduced the parameter setD [m2 s−1], m [kg m−3 s−1],
C0 [kg m−3], C∞ [kg m−3], keff [m s−1], L [m] andK to the dimensionless param-
eter setP, Q, E andK ; also the regionG is transformed into a matching standard
regionG′.

As already said before in this paper we are mainly interested in the stationary
(equilibrium) state of the organism. From equations (2.8) and (2.9) we infer for the
dimensionless equilibrium concentrationv(Eξ) = v(Eξ, ∞) the following boundary
value problem:

PDE: 1Eξ v(Eξ) − 8(v(Eξ)) = 0, for Eξ ∈ G′
; (2.12)

BC:
∂

∂ En′
v(Eξ) +

Q

K
v(Eξ) = Q, for Eξ ∈ ∂ G′. (2.13)
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From this equilibrium concentrationv(Eξ) on G′ we retrieve, with the help of equa-
tion (2.7), the original equilibrium concentrationu(Ex) on G. Now we can divide
G into two parts: G = Greg ∪ Gconf, with Greg = {Ex ∈ G | u(Ex) ≥ C0} and
Gconf = {Ex ∈ G | u(Ex) ≤ C0}. OnGreg the organism exhibits regulator behaviour;
and onGconf there is conformer behaviour. Roughly speaking, we expect ‘unim-
peded growth’ onGreg and we expect ‘adaptive behaviour’ onGconf.

To exemplify the presented theory, we used the oxygen dynamics data fromKra-
nenbarget al. (2000) for eight teleost embryos to calculate the corresponding val-
ues of the dimensionless parameters used in this paper. These embryos do not
have a circulatory system yet and are therefore dependent on diffusion for their
internal oxygen supply. The value of the mass transfer coefficient was chosen to
represent a bulk flow velocity ranging from 10−4 – 10−3 m s−1, which is the mini-
mum convection velocity found in natural situations. For this purpose we used the
relation between mass transfer coefficient and bulk flow velocity for a spherical
particle given byClift et al. (1978). The value for the threshold concentration was
obtained fromLongmuir(1957). Both the mass transfer coefficient and the thresh-
old concentration were chosen to be equal for all eight embryos:keff = 3.00· 10−5

m s−1 andC0 = 6.40 · 10−5 kg m−3. This meansE ≈ 0.01; to be complete: for
the (dimensionless) Henry coefficientK the value 1 is chosen. Table1 shows the
result.

2.3. Critical points and mean consumption rate.The equilibrium concentration
profile v(Eξ) predicted by (2.12) and (2.13) for an organism of shapeG′ depends
of course on the actual parameter valuesP, Q, E, and K . Also the minimum
and maximum valuesvmin andvmax which v(Eξ) takes onG′ are functions of these
parameters. For a given typeG′ we define in the associated (four-dimensional)
parameter space two so-called critical (hyper-)surfacesSreg andSconf by their res-
pective equations:

Sreg : vmin(P, Q, E, K ) = E,

Sconf : vmax(P, Q, E, K ) = E.
(2.14)

The surfacesSreg and Sconf divide parameter space in three parts. Forvmin(P, Q,
E, K ) ≥ E the organism is a (pure) regulator:G = Greg. Forvmax(P, Q, E, K ) ≤

E the organism is a (pure) conformer:G = Gconf. For all other cases the organism
is in a mixed state.

If we vary (in some continuous way) the parameters of the model, the result will
be a trajectory in parameter space. A point of intersection of such a trajectory with
Sreg or Sconf we call a critical point: in passing one of these surfaces we expect an
essential change in the behaviour of the organism.

For instance, it is to be expected that most of the parameters of our model are a
function of the ambient temperatureT . Thus, for a (slowly) varying temperatureT
the organism follows a trajectory〈P(T), Q(T), E(T), K (T)〉 in parameter space.
A critical temperature arises whenever this trajectory crosses a critical surface.
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Table 1. Parameter values for eight teleost embryos. To the left:L, volume to sur-
face area ratio [m];m, maximum consumption rate [kg (m−3s−1)]; D, diffusion coeffi-
cient [m2 s−1]; C∞, free water oxygen concentration [kg m−3]. The mass transfer coef-
ficient keff = 3.00 · 10−5 m s−1 for all eight embryos. To the right:P, dimensionless
consumption rate;Q, dimensionless mass transfer coefficient. The dimensionless parame-
tersSandT are defined in Section5.

L

×10−5

m

×10−4

D

×10−10

C∞

×10−3
P Q S T

African catfish
Clarias gariepinus 8.50 3.80 7.41 8.19 0.45 3.44 5.12 0.67

Common carp
Cyprinus carpio 6.20 11.0 6.55 9.00 0.72 2.84 3.35 0.85

Herring
Clupea harengus 12.0 0.430 5.47 10.5 0.11 6.58 20.0 0.33

Largemouth bass
Micropterus salmoides 10.0 3.70 6.55 9.00 0.63 4.58 5.78 0.79

Plaice
Pleuronectes platessa 8.70 1.70 5.05 11.2 0.23 5.17 10.8 0.48

Rabbitfish
Siganus randalli 4.80 2.80 7.96 7.76 0.10 1.81 5.60 0.32

Winter flounder
Pseudopleuronectes
americanus 5.60 4.80 4.59 12.2 0.03 3.66 22.3 0.38

Zebrafish
Danio rerio 4.60 4.10 7.41 8.19 0.14 1.86 4.93 0.38

One more example: because we are particularly interested in how the size of an
organism affects its equilibrium state, it is worthwhile noting that if we multiply the
size ofG by κ, P changes intoPκ2, Q into Qκ (and, to be complete,τ into τ/κ).
Therefore, points in parameter space representing different sizes of the organism,
all other circumstances unchanged, are to be found on a simple parabola parallel
with the P Q-plane. A critical size for an organism corresponds with a point of
intersection of this parabola andSreg or Sconf.

Another measurable quantity predicted by our model is the mean (oxygen) con-
sumption rateγ , that is the consumption rate per unit of volume:

γ =
1

V

∫
G

F(u(Ex)) dω =
D

V

∫
∂G

∂

∂ En
u(Ex) dσ . (2.15)

With dimensionless volumeV ′
=
∫

G′ 1 dω′ and dimensionless surface areaA′
=∫

∂G′ 1 dσ ′ (remember:V ′/A′
= 1) the corresponding dimensionless mean con-

sumption rate0 is given by:

0 =
1

V ′

∫
G′

8(v(Eξ)) dω′
=

1

A′

∫
∂G′

∂

∂ En′
v(Eξ) dσ ′, (2.16)
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(a)

(b)

Figure 2. For (a) the sphere, and (b) the cube, and forK = 1: the critical surfacesSreg
andSconf divide the reduced parameter space〈P, Q, E, 1〉 into three parts: the regulator
domain (oxygen deficiency nowhere in the organism), the mixed domain (oxygen defi-
ciency somewhere in the organism), the conformer domain (oxygen deficiency everywhere
in the organism). For differently shaped organisms the picture is essentially the same.

which means that0 also equals the mean dimensionless surface flux. The relation
betweenγ and0 is given by the equality:γ t = 0τC∞.

Of course0 is a function of the model parametersP, Q, E, K , but 0 also
depends on the typeG′ of the organism under consideration. For a pure regulator
we have of course0 = P; for other cases we can use0 to determine what shape
of an organism is a more favourable one (that is, admits a higher value for0, or,
allows a better overall respiration), given all other circumstances are the same [see
Fig. 3(b)].
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(b)

(a)

Figure 3. For the sphere and forK = 1, E =
1
2 . (a) The radiusρ of the region with

conformer behaviour as a function of the dimensionless maximum consumption rateP
and the dimensionless mass transfer coefficientQ. For a pure regulatorρ = 0; for a
pure conformerρ = 3. (b) The dimensionless mean consumption rate0 as a function
of the dimensionless maximum consumption rateP and the dimensionless mass transfer
coefficientQ. The two extra curves on the surface separate pure regulator behaviour from
mixed case behaviour and mixed case behaviour from pure conformer behaviour.

3. ONE-DIMENSIONAL CASES

In this section we demonstrate the principles set out in the previous section for
three simple cases: the infinite sheet, the infinite cylinder and the sphere. At first
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glance an organism in the form of an infinite sheet or an infinite cylinder seems
strange. But firstly, we need only a perpendicular cross-section of such a sheet or
cylinder; the resulting extra surface we render ineffective by taking there a homo-
geneous boundary condition of the second kind (a no-flow boundary condition).
And secondly, later on we will see that the case of a (thin) finite sheet or a (long)
finite cylinder may be readily approximated by the corresponding infinite case.

The common feature of these three cases is their inherent symmetry, which
allows for the use of only one place variable: all three cases are effectively 1D.
Consequently, for all these cases (2.12) and (2.13) reduce to simple ordinary dif-
ferential equations with matching boundary conditions. The case of the infinite
sheet we will discuss in some detail. For the infinite cylinder and the sphere we
will only give the final results.

3.1. The infinite sheet. The volume to surface area ratio for (any perpendicular
cross-section of) a plane infinite sheet with diameter 2R equalsR. Therefore the
(dimensionless) diameter of the ‘standard’ infinite sheet equals 2. Hence we may
reduce (2.12) and (2.13) to the following boundary value problem on[0, 1]:

ODE:
∂2

∂ξ2
v(ξ) − 8(v(ξ)) = 0, for 0 < ξ < 1; (3.1)

BC1:
∂

∂ξ
v(0) = 0, BC2:

∂

∂ξ
v(1) +

Q

K
v(1) = Q. (3.2)

This boundary value problem is easily solved for the (pure) regulator or (pure) con-
former case. The regulator case occurs if (and only if)v(0) ≥ E. Now 8(v) = P
and it follows that

v(ξ) =
P

2
ξ2

+ K −
K P

Q
−

P

2
. (3.3)

The conformer case occurs if (and only if)v(1) ≤ E. Now 8(v) = Pv/E and it
follows that

v(ξ) =
K Q cosh(ξ

√
P/E)

K
√

P/E sinh(
√

P/E) + Q cosh(
√

P/E)
. (3.4)

Expressions for the critical surfaces follow already from equations (3.3) and (3.4):

Sreg : (K − E)Q = K P + P Q/2, (3.5)

Sconf : (K − E)Q = K E
√

P/E tanh(
√

P/E). (3.6)

For a mixed case there will be, for someρ between 0 and 1, conformer behaviour
on [0, ρ] and regulator behaviour on[ρ, 1]. By means of the (continuity) condi-
tions

lim
ξ↑ρ

v(ξ) = E, lim
ξ↓ρ

v(ξ) = E, and lim
ξ↑ρ

∂

∂ξ
v(ξ) = lim

ξ↓ρ

∂

∂ξ
v(ξ)

(3.7)
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we find for 0≤ ξ ≤ ρ:

v(ξ) = E
cosh(ξ

√
P/E)

cosh(ρ
√

P/E)
, (3.8)

and forρ ≤ ξ ≤ 1:

v(ξ) =
P

2
ξ2

+
2(K − E)Q − 2K P − P Q(1 − ρ2)

2K + 2Q(1 − ρ)
(ξ −1−

K

Q
)+K −

K P

Q
−

P

2
,

(3.9)
with ρ the (unique) root between 0 and 1 of the following transcendental equation:

E
√

P/E tanh
(
ρ
√

P/E
)

=
2(K − E)Q − 2K P(1 − ρ) − P Q(1 − ρ)2

2K + 2Q(1 − ρ)
. (3.10)

Obviously we should giveρ the value 0 for a (pure) regulator, while for a (pure)
conformerρ should get the value 1. Then, as expected, equation (3.10) reduces for
ρ = 0 to (3.5) and forρ = 1 to (3.6).

The dimensionless mean consumption rate0 follows from (2.16). For this simple
1D case it holds that

0 =
∂

∂ξ
v(1). (3.11)

Hence from equations (3.3), (3.4) and (3.9) we infer (respectively):

0 = P, for a regulator; (3.12)

0 =
K Q

K + Q
√

E/P coth(
√

P/E)
, for a conformer; (3.13)

0 =
2(K − E)Q + P Q(1 − ρ)2

2K + 2Q(1 − ρ)
, for a mixed case. (3.14)

The result for a regulator is, of course, not a surprise: it follows also from first
principles or, for that matter, from (2.16). Note that equation (3.14) on Sreg reduces
to (3.12) and onSconf to (3.13).

3.2. The infinite cylinder and the sphere.The case of the infinite cylinder and
the sphere can be treated in exactly the same way. For that reason we mention in
this subsection only the relevant model equations and their most important conse-
quences.

First we discuss the case of the infinite cylinder. The (dimensionless) radius of
the ‘standard’ infinite cylinder equals 2; therefore we have to solve the following
boundary value problem on[0, 2]:

ODE:
1

ξ

∂

∂ξ

[
ξ

∂

∂ξ
v(ξ)

]
− 8(v(ξ)) = 0, for 0 < ξ < 2; (3.15)

BC1: lim
ξ→0

ξ
∂

∂ξ
v(ξ) = 0, BC2:

∂

∂ξ
v(2) +

Q

K
v(2) = Q. (3.16)
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The expressions for the critical surfaces are:

Sreg : (K − E)Q = K P + P Q, (3.17)

Sconf : (K − E)Q = K E
√

P/E I1(2
√

P/E)/I0(2
√

P/E), (3.18)

where I0 and I1 are modified Bessel functions (Abramowitz and Stegun, 1965). The
transcendental equation for the radiusρ of the region with conformer behaviour
reads:

E
√

P/E
I1(ρ

√
P/E)

I0(ρ
√

P/E)

=
2(K − E)Q − 2(P Q + K P)(1 − ρ2/4) − P Qρ2 ln(ρ/2)

Kρ − 2Qρ ln(ρ/2)
. (3.19)

This timeρ should have the value 2 for a (pure) conformer. As expected, equa-
tion (3.19) reduces forρ = 0 to (3.17) and forρ = 2 to (3.18).

The (dimensionless) mean consumption rate0 for this case is given by:

0 = P, for a regulator; (3.20)

0 =
K Q

√
P/E I1(2

√
P/E)

K
√

P/E I1(2
√

P/E) + Q I0(2
√

P/E)
, for a conformer; (3.21)

0 =
(K − E)Q − P Q(1 − ρ2/4) − 2P Q ln(ρ/2)

K − 2Q ln(ρ/2)
, for a mixed case.(3.22)

Note again that equation (3.22) reduces onSreg to (3.20) and onSconf to (3.21).
Next we discuss the case of a spherical organism. The (dimensionless) radius of

the ‘standard’ sphere equals 3; therefore we have to solve the following boundary
value problem on[0, 3]:

ODE:
1

ξ2

∂

∂ξ

[
ξ2 ∂

∂ξ
v(ξ)

]
− 8(v(ξ)) = 0, for 0 < ξ < 3; (3.23)

BC1: lim
ξ→0

ξ2 ∂

∂ξ
v(ξ) = 0, BC2:

∂

∂ξ
v(3) +

Q

K
v(3) = Q. (3.24)

The expressions for the critical surfaces [see Fig.2(a)] are:

Sreg : (K − E)Q = K P + 3P Q/2, (3.25)

Sconf : (K − E)Q = K E(
√

P/E coth(3
√

P/E) − 1/3). (3.26)

Comparison of the values forP andQ in Table1 with Fig. 2 shows, as follows
from (3.25), that for the chosen values ofE (≈ 0.01) and K (= 1), zebrafish,
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rabbitfish, winter flounder, plaice and herring are clearly in the regulator area (in
both the sphere and the cube model). Common carp and largemouth bass are in the
mixed case area. African catfish enters the mixed case area when going from the
sphere to the cube model.

The transcendental equation for the radiusρ of the region with conformer beha-
viour is given by:

E(ρ
√

P/E coth(ρ
√

P/E) − 1)

=
9(K − E)Q − 9K P(1 − ρ3/27) − 9P Q(1 − ρ/3)2(ρ + 3/2)

Kρ + 3Q(3 − ρ)
. (3.27)

For this caseρ should have the value 3 for a (pure) conformer. Again, equa-
tion (3.27) reduces forρ = 0 to (3.25) and for ρ = 3 to (3.26). Finally, the
(dimensionless) mean consumption rate0 is given by:

0 = P, for a regulator; (3.28)

0 =
K Q(

√
P/E coth(3

√
P/E) − 1/3)

K (
√

P/E coth(3
√

P/E) − 1/3) + Q
, for a conformer; (3.29)

0 =
(K − E)Qρ + 9P Q(1 − ρ/3)2(1 + ρ/6)

Kρ + 9Q(1 − ρ/3)
, for a mixed case. (3.30)

See Fig.3. Again, equation (3.30) reduces to (3.28) on Sreg and reduces to (3.29)
on Sconf.

3.3. Limit cases and critical sizes.Several interesting special cases are neatly
incorporated in our formalism. We discuss these cases mainly for an infinite sheet.
It is easily verified that analogous results can be achieved for the infinite cylinder
and for the sphere, or even for arbitrarily shaped organisms.

(1) In the literature (Byatt-Smithet al., 1991), the term conformer is used if the
oxygen consumption rateF the organism exhibits is modelled by a linear function:
F(u) = au (in dimensionless form:8(v) = pv), while the term regulator is
used ifF is modelled by a constant function:F(u) = m (in dimensionless form:
8(v) = P).

The first of these two special cases is represented within our model by the condi-
tion E ≥ K . BecauseK obviously is an upper limit for the dimensionless oxygen
concentrationv inside the organism, the conditionE ≥ K compels conformer
behaviour everywhere in the organism, independent of all other parameter val-
ues. We could introduce for this case the new (dimensionless) variablep = P/E,
thereby removing one parameter from our model [note the occurrence of the term
P/E in (3.4) and (3.13)]. The model equations for this case are linear: now even
the time-dependent equations are easily solvable.
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The second special case is represented within our model by the conditionE = 0.
It should be noted that this case still leaves open the possibility of conformer
behaviour somewhere in the organism. Conformer behaviour in this case just
means that the oxygen concentrationv in part of the organism is equal to zero, see
equation (3.8). The transition from pure regulator behaviour to partial comformer
behaviour is still given by (3.5). Even pure conformer behaviour is possible for
this case: this also happens ifQ = 0, as follows from (3.6). BecauseQ = 0 stands
for a homogeneous boundary condition of the second kind (a no-flow boundary
condition), this is as expected. ForE = 0 the transcendental equation (3.10) for
the ‘radius’ρ of the region with conformer behaviour reduces to a simple quadratic
equation. So for this special case it follows from (3.10) and (3.14) that the dimen-
sionless consumption rate0 = P(1 − ρ), which for this simple case also follows
from first principles.

(2) That leaves the case 0< E < K . Now all three behavioural patterns are
possible: the organism may be a pure regulator, or may be in a mixed state, or
may be a pure conformer. The critical surfacesSreg andSconf separate these three
possibilities in parameter space, see Fig.2.

As already said before, the limiting caseQ = ∞ (keff = ∞) is tied in with
so-called running water conditions, or well-stirred water conditions (Carslaw and
Jaeger, 1959; Kranenbarget al., 2001). For this special case the second boundary
condition (3.2b) changes into a simple boundary condition of the first kind, BC2 :

v(1) = K . The expressions for the critical surfaces, given by (3.5) and (3.6),
simplify to Sreg: K − E = P/2 andSconf : K − E = 0; therefore pure conformer
behaviour is impossible for this limit case (unlessE ≥ K ).

(3) Special attention is often devoted to that size of an (slowly growing) organ-
ism, for which it first encounters, somewhere in its interior, oxygen deficiency.
Such a size is called a critical size. Because oxygen is needed to perform essential
biological processes, natural selection will favour organisms that prevent oxygen
deficiency in their interior. These organisms can either stay of subcritical size or
develop an additional oxygen transport system (e.g., a circulatory system) by the
time they reach their critical size. Within our model oxygen deficiency starts when
the representation〈P, Q, E, K 〉 of this organism in parameter space passes the
critical surfaceSreg. Therefore, as follows from equations (3.5), (3.17) and (3.25),
for such a critical point it holds that

(K − E)Q = K P + nP Q/2, (3.31)

where it is understood thatn takes the value 1 for an infinite sheet, 2 for an infinite
cylinder and 3 for a sphere. We divide equation (3.31) by Q, rewrite the result with
the help of (2.11) in terms of the original model parameters, to find, after some
rearrangements:

n

2
L2

+
K D

keff
L −

D

m
(KC∞ − C0) = 0. (3.32)



190 J. L. W. Gielen and S. Kranenbarg

Hence for the critical value of the volume to surface area ratio we obtain:

Lcrit = −
K D

nkeff
+

√
K 2D2

n2k2
eff

+
2D

nm
(KC∞ − C0). (3.33)

Note thatLcrit represents the maximum volume of respiring tissue that can be
fully supplied with oxygen per unit surface area. WithRcrit the critical radius
(half the diameter) of the object under consideration, it follows from the relation
L = V/A = R/n that

Rcrit = −
K D

keff
+

K D

keff

√
1 + 2n

k2
eff

mK D

(
C∞ −

C0

K

)
. (3.34)

The special caseC0 = 0, K = 1 andkeff = ∞ yields

Rcrit =

√
2n

DC∞

m
, (3.35)

a well-known result [e.g.,Graham(1988)]. Note that it is possible to determine in
exactly the same way critical values for other model parameters.

(4) One more interesting limit case arises when we take the thicknessδ of the
static fluid film that surrounds the organism to infinity. This situation can be sim-
ulated in the laboratory by placing one small organism at the centre of a large
water-filled tank. For an infinite sheet and an infinite cylinder takingδ to infinity
means thatkeff goes to zero. The reason for this is the nonexistence of a station-
ary solution for the diffusion problem outside the organism for these two shapes.
Though for a sphere-like organism, say with radiusR, such an external stationary
solution does exist:uex(x) = C∞ + (u(R)/K −C∞)R/x, with x > R the distance
from the centre of the sphere. It follows thatkeff takes the valueDw/R = Dw/(3L),
with Dw again the diffusion coefficient of oxygen in water. Substituting this value
for keff in (3.32) we obtain:(

3

2
+

3K D

Dw

)
L2

−
D

m
(KC∞ − C0) = 0. (3.36)

So the critical value of the volume to surface area ratio for this case is:

Lcrit =

√
2Dw D(KC∞ − C0)

3m(Dw + 2K D)
. (3.37)

The special caseC0 = 0 andK = 1 yields:

Lcrit =

√
2Dw DC∞

3m(Dw + 2D)
, (3.38)

also a well-known result [e.g.,Lee and Strathmann(1998)].
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(5) Finally we discuss the question: what happens at the critical surfaceSconf?
Will a growing organism, beyond its critical size, eventually change into a pure
conformer, or will it always remain in a mixed state? For the infinite sheet this
question is answered by means of equation (3.6). Rewriting this equation in terms
of the original model parameters, see (2.11), we obtain after some rearrangements:

keff

(
C∞ −

C0

K

)
=

√
mDC0 tanh

(
L

√
m

DC0

)
. (3.39)

Therefore, if it holds that

keff

(
C∞ −

C0

K

)
≥

√
mDC0, (3.40)

a growing organism of this shape will always retain a region with regulator beha-
viour, which is the case for all eight teleost embryos in Table1. A simple inspection
of the right-hand side of equations (3.18) and (3.26) shows that the same condition
applies for an infinite cylinder and for a sphere.

We will show that this condition also holds for an organism of arbitrary shape.
With that goal in mind we put a given point on a smooth part of the surface∂G
of the organism under a magnifying-glass: in this way we interpret the organism
in the neighbourhood of this point as a (left) half-space. Then, assuming that the
organism is a pure conformer, the following initial value problem describes the
tendency of the system in the neighbourhood of this point, see equations (2.8)
and (2.9):

PDE:
∂

∂τ
v(ξ, τ ) =

∂2

∂ξ2
v(ξ, τ ) −

P

E
v(ξ, τ ), for ξ < 0 and τ > 0; (3.41)

BC:
∂

∂ξ
v(0, τ ) +

Q

K
v(0, τ ) = Q, IC: v(ξ, 0) = v0. (3.42)

Next we apply the Laplace transformation:v(ξ, τ ) → V(ξ, s). A straightforward
calculation yields:

V(ξ, s) =
v0

s + P/E
+

(
Q

s
−

v0Q/K

s + P/E

)
exp(ξ

√
s + P/E)

Q/K +
√

s + P/E
. (3.43)

It follows:

lim
τ→∞

v(0, τ ) = lim
s↓0

sV(0, s) =
Q

Q/K +
√

P/E
. (3.44)

Thus a condition for regulator behaviour in the neighbourhood of this point is:

Q

Q/K +
√

P/E
≥ E. (3.45)

If we rewrite this result with the help of (2.11) in terms of the original model
parameters, we retrieve equation (3.40).



192 J. L. W. Gielen and S. Kranenbarg

4. HIGHER -DIMENSIONAL CASES

In Section3 we provided a complete analytical solution of the nonlinear bound-
ary value problem stated in equations (2.12) and (2.13) for three 1D cases. Such
a general solution is not feasible for higher-dimensional cases. The difficulty here
is the description of the surface inside the organism that separates the region with
regulator behaviour from the region with conformer behaviour. But if we restrict
ourselves to the pure regulator case or to the pure conformer case the problem sim-
plifies to a linear boundary value problem and a solution by the method of eigen-
function expansion becomes possible. This method enables us to obtain useful
expressions for the critical surfacesSreg andSconf for higher-dimensional cases.

4.1. A formal solution. We consider the following eigenvalue problem, which
will prove to be central to our purpose:

PDE: 1Eξ X(Eξ) + λX(Eξ) = 0, for Eξ ∈ G′
; (4.1)

BC:
∂

∂ En′
X(Eξ) +

Q

K
X(Eξ) = 0, for Eξ ∈ ∂G′. (4.2)

Such an eigenvalue problem admits an infinite number of (positive) eigenvaluesλn

with corresponding eigenfunctionsXn(Eξ)(n = 1, 2, 3, . . .) [cf. Churchill (1955)].
If we expand the constant functiong(Eξ) = 1 onG′ with respect to this (orthogonal)
set of eigenfunctions, the result is:

1 =

∞∑
n=1

γnXn(Eξ), with γn = (g, Xn)/(Xn, Xn)

=

∫
G′

Xn(Eξ) dω′

/∫
G′

Xn(Eξ)2 dω′. (4.3)

As we will shortly see, both special cases mentioned are solvable in terms of the
eigenfunctionsXn(Eξ), the eigenvaluesλn, and the Fourier coefficientsγn.

For apure regulatorit holds thatv(Eξ) ≥ E for all Eξ ∈ G′. This means that
8(v) = P, as follows from (2.10). Then equations (2.12) and (2.13) reduce to:

PDE: 1Eξv(Eξ) = P, for Eξ ∈ G′
; (4.4)

BC:
∂

∂ En′
v(Eξ) +

Q

K
v(Eξ) = Q, for Eξ ∈ ∂G′. (4.5)

The formal solution of this problem is:

vreg(Eξ) = K − P
∞∑

n=1

γn

λn
Xn(Eξ), (4.6)
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as follows easily by inspection. The critical surfaceSreg is given by minEξ∈G′[vreg(Eξ)]

= E, see (2.14). This yields the following equation for the critical surface:

Sreg : K − E = P max
Eξ∈G′

(
∞∑

n=1

γn

λn
Xn(Eξ)

)
. (4.7)

For apure conformerit holds thatv(Eξ) ≤ E for all Eξ ∈ G′. This means that
8(v) = Pv/E, see, again, (2.10). So this time equations (2.12) and (2.13) reduce
to:

PDE: 1Eξv(Eξ) −
P

E
v(Eξ) = 0, for Eξ ∈ G′

; (4.8)

BC:
∂

∂ En′
v(Eξ) +

Q

K
v(Eξ) = Q, for Eξ ∈ ∂G′. (4.9)

The formal solution of this problem is:

vconf(Eξ) = K − K (P/E)

∞∑
n=1

γn

P/E + λn
Xn(Eξ), (4.10)

as follows again by inspection. The second critical surfaceSconf is given by
maxEξ∈G′[vconf(Eξ)] = E, see, again, (2.14). This yields the following equation for
the critical surface:

Sconf : K − E = K (P/E)] min
Eξ∈G′

(
∞∑

n=1

γn

P/E + λn
Xn(Eξ)

)
. (4.11)

For a pure regulator thedimensionless oxygen consumption rate0 = P, as
follows from first principles or, for that matter, from the first equality in equa-
tion (2.16). For a pure conformer it follows from (4.10) and the second equality in
equation (2.16) that

0 = −K (P/E)/A′

∞∑
n=1

γn

P/E + λn

∫
∂G′

∂

∂ En′
Xn(Eξ) dσ ′. (4.12)

An application of Green’s identity on the surface integral in the right-hand side of
equation (4.12) yields, together with (4.1):

0 = K (P/E)/A′

∞∑
n=1

γnλn

P/E + λn

∫
G′

Xn(Eξ) dω′. (4.13)
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Parseval’s relation for the constant functiong(Eξ) = 1 on G′ yields, together
with (4.3):

V ′
= (g, g) =

∞∑
n=1

(g, Xn)
2/(Xn, Xn) =

∞∑
n=1

γn

∫
G′

Xn(Eξ) dω′. (4.14)

Next we define: gn =
γn

V ′

∫
G′

Xn(Eξ) dω′, which means:
∞∑

n=1

gn = 1.

(4.15)
In this way we obtain from (4.13) and (4.15), and with the equalityV ′

= A′ in
mind, the following concise expression for the dimensionless consumption rate0

for a pure conformer:

0 = K (P/E)

∞∑
n=1

gnλn

P/E + λn
. (4.16)

Note that the parameter combinationQ/K plays a role in the determination of the
eigenvaluesλn and the weight factorsgn.

4.2. Three characteristic shapes.It should be noted that it is not always possible
to find an analytical solution for the eigenvalue problem stated in (4.1) and (4.2).
For exotic regionsG′ we have to use numerical methods, for instance, a Galerkin
procedure (Fairweather, 1978). But for (from a mathematical point of view) rea-
sonably shaped organisms an explicit solution is attainable [cf.Gielen (2000)].
The regionsG′ discussed in the following three examples, are determined by one
or two shape-parameters. We use these parameters in Section 5 to distinguish and
compare between elongated, compact and sheet-like organisms.

4.2.1. Infinite beam. First we discuss in some detail the case of a (rectangular)
infinite beam with length 2R1 and breadth 2R2. We may takeR1 ≤ R2, which
means thatα = R2/R1 ≥ 1. Note thatα defines the shape of the beam and that
the ‘dimensions’ of the standard beam of this shape are 2(1 + 1/α) and 2(1 + α),
respectively. WithG′

= [−1 − 1/α, 1 + 1/α] × [−1 − α, 1 + α] equations (2.12)
and (2.13) constitute a two-dimensional boundary value problem.

Because of the inherent symmetry of the case under consideration, it is obvi-
ous that in the equilibrium situation there will be no oxygen transport through the
planesξ1 = 0 andξ2 = 0. Therefore it is possible to restrict the problem to the
region[0, 1 + 1/α] × [0, 1 + α] by taking no-flow boundary conditions on these
planes. Then the eigenvalue problem stated in (4.1) and (4.2) may be written as:

PDE:
∂2

∂ξ2
1

X(ξ1, ξ2) +
∂2

∂ξ2
2

X(ξ1, ξ2) + λX(ξ1, ξ2) = 0, (4.17)
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BC1:
∂

∂ξ1
X(0, ξ2) = 0, BC2:

∂

∂ξ1
X(1 + 1/α, ξ2)

+
Q

K
X(1 + 1/α, ξ2) = 0, (4.18)

BC3:
∂

∂ξ2
X(ξ1, 0) = 0, BC4:

∂

∂ξ2
X(ξ1, 1 + α)

+
Q

K
X(ξ1, 1 + α) = 0. (4.19)

Applying the well-known separation of variables technique:X(ξ1, ξ2) = X̃1(ξ1)

X̃2(ξ2), we obtain two (almost identical) so-called regular Sturm–Liouville prob-
lems:

X̃′′

1(ξ1) + λ1X̃1(ξ1) = 0, for 0 < ξ1 < 1 + 1/α,

X̃′

1(0) = 0,

X̃′

1(1 + 1/α) + (Q/K )X̃1(1 + 1/α) = 0;

(4.20)
X̃′′

2(ξ2) + λ2X̃2(ξ2) = 0, for 0 < ξ2 < 1 + α,

X̃′

2(0) = 0,

X̃′

2(1 + α) + (Q/K )X̃2(1 + α) = 0.

(4.21)

BecauseQ/K > 0 the eigenvaluesλ1,n andλ2,n are positive: we writeλ1,n = µ2
1,n

with µ1,n > 0, andλ2,n = µ2
2,n with µ2,n > 0(n = 1, 2, 3, . . .). A straightforward

calculation yields the eigenfunctions:

X̃1,n(ξ1) = cos(µ1,nξ1) and X̃2,n(ξ2) = cos(µ2,nξ2), (4.22)

whereµ1,n is thenth positive root of the first and whereµ2,n is thenth positive
root of the second of the following two characteristic equations forµ:

−µK sin(µ(1 + 1/α)) + Q cos(µ(1 + 1/α)) = 0,

−µK sin(µ(1 + α)) + Q cos(µ(1 + α)) = 0.
(4.23)

Hence the eigenfunctionsXi, j (ξ1, ξ2) and corresponding eigenvaluesλi, j of the
original problem are:

Xi, j (ξ1, ξ2) = cos(µ1,i ξ1) cos(µ2, j ξ2), with λi, j = µ2
1,i + µ2

2, j . (4.24)

Following the guideline set out in Section4.1, we determine the Fourier coefficients
γi, j of the constant functionf (ξ1, ξ2) = 1 with respect to this orthogonal set of
eigenfunctionsXi, j (ξ1, ξ2). It follows from equation (4.3) that

γi, j =

∫ 1+1/α

0 X̃1,i (ξ1) dξ1∫ 1+1/α

0 X̃1,i (ξ1)2 dξ1

×

∫ 1+α

0 X̃2, j (ξ2) dξ2∫ 1+α

0 X̃2, j (ξ2)2 dξ2

, (4.25)
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which leads, with the shorthandQ/K = q, to

γi, j =

2(−1)i +1q
√

q2 + µ2
1,i

(1 + 1/α)(µ3
1,i + q2µ1,i ) + qµ1,i

×

2(−1) j +1q
√

q2 + µ2
2, j

(1 + α)(µ3
2, j + q2µ2, j ) + qµ2, j

.

(4.26)
Onceγi, j is known, the dimensionless concentrationvreg(ξ1, ξ2) follows from (4.6)
and (4.24), and the dimensionless concentrationvconf(ξ1, ξ2) follows from (4.10)
and (4.24).

The next step, still following the path set out in Section4.1, is the determination
of the minimum value ofvreg(ξ1, ξ2) and the maximum value ofvconf(ξ1, ξ2) on
G′. In general this is not an easy task; numerical methods may be needed, though
for the highly symmetrical case we are dealing with here the problem is not that
difficult. The minimum value of (any stationary)v(ξ1, ξ2) on an infinite beam will
always be found on the central axis of the beam and the maximum value will always
be attained on the edges of the beam. In this way we infer from (4.7) and (4.11) for
the critical surfaces the following equations:

Sreg : K − E = P
∞∑

i, j =1

γi, j

µ2
1,i + µ2

2, j

, (4.27)

Sconf : K − E = K (P/E)

∞∑
i, j =1

γi, j cos(µ1,i (1 + 1/α)) cos(µ2, j (1 + α))

P/E + µ2
1,i + µ2

2, j

.(4.28)

Note that the infinite sum in the right-hand side of (4.27) is a function ofQ/K
alone, while the infinite sum in the right-hand side of (4.28) is a function ofQ/K
andP/E.

4.2.2. Rectangular parallelepiped.Next we discuss the case of a (rectangular)
parallelepiped with length 2R1, breadth 2R2 and height 2R3. We may takeR1 ≤

R2 ≤ R3, which means thatα = R2/R1 ≥ 1 andβ = R3/R1 ≥ α. The shape
of the parallelepiped is fixed byα andβ, and the ‘dimensions’ of the standard
parallelepiped of this shape are 2(1+1/α+1/β), 2(1+α+α/β) and 2(1+β+β/α),
respectively. The symmetry argument already used for the case of an infinite beam
yields, this time, a three-dimensional eigenvalue problem for an unknown function
X(ξ1, ξ2, ξ3) on the region[0, 1+1/α+1/β)]×[0, 1+α+α/β]×[0, 1+β+β/α].

The same reasoning as applied for the case of the infinite beam leads to the
following eigenfunctionsXi, j,k(ξ1, ξ2, ξ3) and corresponding eigenvaluesλi, j,k:

Xi, j,k(ξ1, ξ2, ξ3) = cos(µ1,i ξ1) cos(µ2, j ξ2) cos(µ3,kξ3),

with λi, j,k = µ2
1,i + µ2

2, j + µ2
3,k, (4.29)
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whereµ1,n is thenth positive root of the first,µ2,n is thenth positive root of the
second andµ3,n is thenth positive root of the third of the following three charac-
teristic equations forµ(n = 1, 2, 3, . . .):

−µK sin(µ(1 + 1/α + 1/β)) + Q cos(µ(1 + 1/α + 1/β)) = 0,

−µK sin(µ(1 + α + α/β)) + Q cos(µ(1 + α + α/β)) = 0, (4.30)

−µK sin(µ(1 + β + β/α)) + Q cos(µ(1 + β + β/α)) = 0.

The Fourier coefficientsγi, j,k of the constant functionf (ξ1, ξ2, ξ3) = 1 with respect
to this new orthogonal set of eigenfunctions are:

γi, j,k =

2(−1)i +1q
√

q2 + µ2
1,i

(1 + 1/α + 1/β)(µ3
1,i + q2µ1,i ) + qµ1,i

×

2(−1) j +1q
√

q2 + µ2
2, j

(1 + α + α/β)(µ3
2, j + q2µ2, j ) + qµ2, j

×

2(−1)k+1q
√

q2 + µ2
3,k

(1 + β + β/α)(µ3
3,k + q2µ3,k) + qµ3,k

, (4.31)

where, again, the shorthandq = Q/K is used.
The minimum value of (any stationary)v(ξ1, ξ2, ξ3) on a rectangular parallelepiped

will always be found in the centre and the maximum value will always be attained
on the vertices. With these facts in mind we infer from (4.7) and (4.11) the follow-
ing equations for the critical surfaces [see Fig.2(b)]:

Sreg : K − E = P
∞∑

i, j,k=1

γi, j,k

µ2
1,i + µ2

2, j + µ2
3,k

, (4.32)

Sconf : K − E = K (P/E) (4.33)

×

∞∑
i, j,k=1

γi, j,k cos(µ1,i (1 + 1/α + 1/β)) cos(µ2, j (1 + α + α/β)) cos(µ3,k(1 + β + β/α))

P/E + µ2
1,i + µ2

2, j + µ2
3,k

.

If (for instance) we letβ tend to infinity, than equations (4.30ab) transform
into (4.23ab); hence the roots of (4.30ab) change into the roots of (4.23ab). And
for the rootsµ3,n of equation (4.30c) it holds thatµ3,n → 0, butµ3,n(1 + β +

β/α) → (2n − 1)π/2. Thusγi, j,k changes intoγi, j (4/π)(−1)k+1/(2k − 1), with
γi, j given by (4.26). By means of the well-known equality

∑
∞

k=1 (−1)k+1/(2k − 1)

= π/4 it follows that equation (4.32) transforms into (4.27). So we see that in this
respect an elongated parallelepiped resembles an infinite beam. The same result
can be obtained for equations (4.33) and (4.28), using a slightly more involved
argument.
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4.2.3. Finite cylinder. Finally we discuss the case of a finite cylinder with
diameter 2R1 and length 2R2. The shape of the cylinder is again fixed byα =

R2/R1, this time with 0< α < ∞, and the ‘dimensions’ of the standard finite
cylinder of this shape are 2(2 + 1/α) and 2(1 + 2α), respectively. Symmetry
arguments yield, in accordance with (4.1) and (4.2), a two-dimensional eigenvalue
problem for an unknown functionX(ξ1, ξ2) on the region[0, 2+1/α]×[0, 1+2α]:

PDE:
1

ξ1

∂

∂ξ1

[
ξ1

∂

∂ξ1
X(ξ1, ξ2)

]
+

∂2

∂ξ2
2

X(ξ1, ξ2) + λX(ξ1, ξ2) = 0, (4.34)

BC1: lim
ξ1→0

ξ1
∂

∂ξ1
X(ξ1, ξ2) = 0, BC2:

∂

∂ξ1
X(2 + 1/α, ξ2)

+
Q

K
X(2 + 1/α, ξ2) = 0, (4.35)

BC3:
∂

∂ξ2
X(ξ1, 0) = 0, BC4:

∂

∂ξ2
X(ξ1, 1 + 2α)

+
Q

K
X(ξ1, 1 + 2α) = 0. (4.36)

The separation of variables technique:X(ξ1, ξ2) = X̃1(ξ1)X̃2(ξ2), yields:


(1/ξ1)(ξ1X̃′

1(ξ1))
′
+ λ1X̃1(ξ1) = 0, for 0 < ξ1 < 2 + 1/α,

limξ1→0 ξ1X̃′

1(ξ1) = 0,

X̃′

1(2 + 1/α) + (Q/K )X̃1(2 + 1/α) = 0;

(4.37)
X̃′′

2(ξ2) + λ2X̃2(ξ2) = 0, for 0 < ξ2 < 1 + 2α,

X̃′

2(0) = 0,

X̃′

2(1 + 2α) + (Q/K )X̃2(1 + 2α) = 0.
(4.38)

Also for this case the eigenvaluesλ1,n andλ2,n are positive: we write, again,λ1,n =

µ2
1,n with µ1,n > 0, andλ2,n = µ2

2,n with µ2,n > 0 (n = 1, 2, 3, . . .). With the
help of the Bessel functions J0 and J1 (Abramowitz and Stegun, 1965) we obtain
the eigenfunctions:

X̃1,n(ξ1) = J0(µ1,nξ1) and X̃2,n(ξ2) = cos(µ2,nξ2), (4.39)

whereµ1,n is thenth positive root of the first and whereµ2,n is thenth positive
root of the second of the following two characteristic equations forµ:

−µKJ1(µ(2 + 1/α)) + QJ0(µ(2 + 1/α)) = 0,

−µK sin(µ(1 + 2α)) + Q cos(µ(1 + 2α)) = 0.
(4.40)
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Hence the eigenfunctionsXi, j (ξ1, ξ2) and corresponding eigenvaluesλi, j of the
original problem are:

Xi, j (ξ1, ξ2) = J0(µ1,i ξ1) cos(µ2, j ξ2), with λi, j = µ2
1,i + µ2

2, j . (4.41)

The Fourier coefficientsγi, j of the constant functionf (ξ1, ξ2) = 1 with respect to
this new orthogonal set of eigenfunctionsXi, j (ξ1, ξ2) follow again from (4.3):

γi, j =

∫ 2+1/α

0 ξ1X̃1,i (ξ1) dξ1∫ 2+1/α

0 ξ1X̃1,i (ξ1)2 dξ1

×

∫ 1+2α

0 X̃2, j (ξ2) dξ2∫ 1+2α

0 X̃2, j (ξ2)2 dξ2

, (4.42)

which leads, with the shorthandQ/K = q, to

γi, j =
2q2

µ1,i (2 + 1/α)(q2 + µ2
1,i )J1(µ1,i (2 + 1/α))

×

2(−1) j +1q
√

q2 + µ2
2, j

(1 + 2α)(µ3
2, j + q2µ2, j ) + qµ2, j

. (4.43)

The minimum value of (any stationary)v(ξ1, ξ2) on a finite cylinder will be found
in the centre and the maximum value will be attained on the border circles of the
cylinder. In this way we infer from (4.8) and (4.12) for the critical surfaces the
following equations:

Sreg : K − E = P
∞∑

i, j =1

γi, j

µ2
1,i + µ2

2, j

, (4.44)

Sconf : K − E = K (P/E)

∞∑
i, j =1

γi, j J0(µ1,i (2 + 1/α)) cos(µ2, j (1 + 2α))

P/E + µ2
1,i + µ2

2, j

. (4.45)

If we apply to this case the line of reasoning already developed in the last para-
graph of Section4.2.2we obtain forα → ∞ the case of an infinite cylinder and
for α → 0 the case of an infinite sheet: an elongated cylinder resembles an infinite
cylinder and a flattened cylinder resembles an infinite sheet.

5. CRITICAL SIZE FOR DIFFERENTLY SHAPED ORGANISMS

Due to growth of the organism or to changes in the environmental conditions the
organism experiences, the representation〈P, Q, E, K 〉 of the organism follows a
path in parameter space. Also in parameter space we find, subject to the shape of
the organism, the critical surfacesSreg and Sconf. If the organism changes shape
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Figure 4. ForE = 0 andK = 1: a parabolic growth trajectory representing undisturbed
growth and critical curves for six different shapes. Whenever a growth trajectory crosses
a critical curve from below an organism of corresponding shape starts to experience
oxygen deficiency.

during its growth process these critical surfaces will shift accordingly in parameter
space. A critical point arises whenever the path the organism follows intersects one
of its critical surfaces. From a biological point of view the arrival at a critical point
is important: we then expect an essential change in the behaviour of the organism.

In this section we discuss what happens at the critical surfaceSreg for some con-
stant value ofE and forK = 1. As a result of these restrictions the critical surface
Sreg degenerates into a critical curve in the reduced parameter space〈P, Q〉. In
this section we also pay special attention to block-like organisms (block: short for
rectangular parallelepiped, see Section4.2.2). The reason for this is the possibil-
ity to distinguish within this class between compact, elongated or flat structures.
The numerical justification of the results in this section rests upon equations (3.5),
(3.17), (3.25), (4.27), (4.32) and (4.44).

Figure4 shows, forE = 0 andK = 1, the critical curves for six organisms
of different shape and a possible trajectory an organism, that goes through an oth-
erwise undisturbed growth process, could follow in the reduced parameter space
〈P, Q〉. During such a growth process only the volume to surface area ratioL
of the organism increases, while all other parameter values are constant. In this
way we obtain, with the help of equation (2.11), the trajectory〈Q(L), P(L)〉L =

〈keffL/D, mL2/(DC∞)〉L , which is a simple parabola. An equation for this
parabola is:P = RQ2, with R = P/Q2

= mD/(k2
effC∞). Such a parabola is

completely determined by the parameterR. The intersection of this parabola with
one of the critical curves yields a critical point(Qcrit, Pcrit). Thus it becomes obvi-
ous that the value ofQcrit, and therefore the value ofLcrit, depends solely on the
value of the dimensionless parameter combinationR (for a given value ofE and
K and for a given shape of the organism).
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Figure 5. ForE = 0.01 andK = 1; Tcrit as a function ofS for six different shapes: infinite
sheet (1), infinite cylinder (2), infinite beam withα = 1 (3), sphere (4), finite cylinder with
α = 1 (5), cube (6). BecauseTcrit ∝ Lcrit andS ∝ keff, this picture shows how the outward
water conditions influence the critical size of the organism. Also the results forS andT
from Table1 are plotted in this figure: African catfish (ac), common carp (cc), herring
(hg), largemouth bass (lb), plaice (pl), rabbitfish (rf), winter flounder (wf), zebrafish (zf).

From Qcrit we can deduceLcrit [see (2.11)]: Lcrit = DQcrit/keff. In Fig. 5 we
have plotted, forE = 0.01 andK = 1, the dimensionless parameterTcrit =

Qcrit

√
R as a function of the dimensionless parameterS = 1/

√
R. Because

Tcrit = Lcrit
√

m/(DC∞) is directly proportional toLcrit (and does not depend on
keff) and S = keff

√
C∞/(mD) is directly proportional tokeff, Fig. 5 shows the

dependency of the critical volume to surface area ratioLcrit on the mass transfer
coefficientkeff. Remember:keff is a measure for the outward water conditions
the organism experiences; the limitS → ∞ (keff → ∞) represents well-stirred
water conditions. Figure5 also shows that, at least for largekeff, a flattened shape
allows for a largerLcrit and is therefore more favourable for oxygen supply than a
compact one.

In Fig. 5, again, zebrafish, rabbitfish, winter flounder, plaice and herring are
smaller than the critical sizeTcrit even for the most disadvantageous shape (i.e.,
the cube) under the given value of the mass transfer coefficient. This value of the
mass transfer coefficient is not large enough to fully meet the oxygen demands of
common carp, African catfish and largemouth bass (though note the effect of the
shape used to model the embryo).

Next we turn our attention to block-like organisms. A structure from this class
is determined by its proportions: 1: α : β, with α ≥ 1, β ≥ α (see Sec-
tion 4.2.2). This yields a multitude of critical curvesSα,β

reg in the reduced parameter
space〈P, Q〉. The positioning of these curves in parameter space is not obvious
and is, for instance, quite different for small and large values ofQ, see Fig.6. It
can be seen, for instance, thatP1,1

crit (0.05) > P10,10
crit (0.05) andP1,1

crit (2) < P10,10
crit (2).

Therefore, the critical curves of a cube and a sheet with proportions 1: 10 : 10
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(b)

(a)

Figure 6. For a block with proportions 1: α : β and for E = 0, K = 1: the critical
dimensionless consumption ratePcrit as a function ofα andβ for (a) Q = 0.05 and for
(b) Q = 2. Note the symmetry inα andβ: a block with proportions 1: α : β behaves the
same as a block with proportions 1: β : α.

coincide somewhere betweenQ = 0.05 andQ = 2. Numerical evaluation yields
(Q, P) = (0.0874, 0.072) for this common point. It follows that, for condi-
tions compatible withR = P/Q2

= 9.425, a cube and a sheet with proportions
1 : 10 : 10 share the same value forLcrit and hence are equally well equipped for
oxygen supply.

As before, we determine for a given value ofS (or, equivalently, a given value of
R), for all allowed values ofα andβ, a critical valueQα,β

crit (or equivalentlyTα,β

crit or
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Lα,β

crit ). Using the cube (α = 1, β = 1) as a gauge, we define the relative critical
sizeFα,β(S) by:

Fα,β(S) =
Qα,β

crit (S)

Q1,1
crit(S)

=
Tα,β

crit (S)

T1,1
crit (S)

=
Lα,β

crit (S)

L1,1
crit(S)

. (5.1)

Hence, if it holds for a given value ofS that Fα,β(S) < 1, then the critical size of
a block-like organism with proportions 1: α : β is smaller than the critical size
of a cube, which means that a cube for the given value ofS is more favourable for
oxygen supply.

In Fig. 7(a) we have plottedFα,β for a small value ofS (i.e., a small value ofkeff)
and in Fig.7(b) we have plottedFα,β for a large value ofS (i.e., a large value of
keff). The results show that for almost stagnant water a compact structure is more
favourable for oxygen supply and that for well-stirred water conditions a flat shape
is more favourable. This concurs with the predictions already made byKranenbarg
et al. (2001).

Apart from pure growth an organism may also (slowly) change its shape. During
such a process, supposing all other parameter values are kept constant, again only
the volume to surface area ratioL of the organism changes. Hence the organism
follows again a parabola in parameter space. In addition the change of shape of the
organism also results in a new corresponding critical curve.

If we take, for instance, a block-like organism with proportions 1: α0 : β0, with
volumeV0 and with volume to surface area ratioL0, we have:

V0 =
(α0 + β0 + α0β0)

3

α2
0β

2
0

8L3
0. (5.2)

Hence, if a block with proportions 1: α0 : β0 and with volume to surface area ratio
L0 alters into a block with proportions 1: α1 : β1 and with volume to surface area
ratio L1, at the same time changing its volumeV0 into V1 = g3V0, we have:

L1 =
α0 + β0 + α0β0

α1 + β1 + α1β1

(
α1β1

α0β0

)2/3

gL0. (5.3)

By comparing, for a given value ofS, L0 with Lα0,β0
crit (S) andL1 with Lα1,β1

crit (S) it is
possible to see if the proposed growth-spurt of the organism will result in a change
of its oxygen consumption pattern and, therefore, of its behaviour. Following this
procedure it can be shown, for example, that a critical cube would change into a
supercritical sphere if the volume were kept constant in the transition.
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(b)

(a)

Figure 7. For a block with proportions 1: α : β and for E = 0, K = 1: the relative
critical sizeFα,β (S) as a function ofα andβ for (a) S = 0.05 (a cube appears to be the
most favourable shape for oxygen supply) and for (b)S = 1 (a cube appears to be the least
favourable shape for oxygen supply).

6. DISCUSSION

We presented a model that describes the oxygen balance in small organisms
without an active internal oxygen transport mechanism, e.g., flatworms (Platy-
helminthes) or precirculation embryos of higher organisms. In three important
aspects this model expands on earlier models of oxygen transport. Firstly, we
included the effect of a moving medium on the oxygen balance. Secondly, we
modelled the consumption pattern of the organism as a combination of regula-
tor behaviour above a specified threshold oxygen concentration and conformer
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behaviour below the threshold. This is a more realistic oxygen consumption pattern
than a pure regulator or a pure conformer pattern as adopted in previous models.
And thirdly, by using the method of eigenfunction expansion we were able to treat,
within our model, organisms with a wide variety of shapes, contrary to existing
analytical models that mainly analyse infinite sheets, infinite cylinders or spheres.

We defined four dimensionless parameters that completely describe the state of
the organism. This state includes the value of tissue variables (oxygen diffusion
coefficient, maximum respiration rate, oxygen consumption concentration thresh-
old), outward conditions variables (mass transfer coefficient, free water oxygen
concentration), and size and shape of the organism. For a given shape of the
organism, and based on the oxygen concentration threshold, we were able to define
the critical surfacesSreg and Sconf. These surfaces divide parameter space into
three domains: the regulator domain (oxygen deficiency nowhere in the organ-
ism), the mixed domain (oxygen deficiency at least somewhere in the organism),
and the conformer domain (oxygen deficiency everywhere in the organism). Oxy-
gen deficiency is defined here as a local oxygen concentration below the threshold
concentration.

A change in the four parameters describing the state of the organism may, for
instance, occur due to a variation in environmental conditions (for instance, a
change of the ambient temperature) or due to growth of the organism. Such a
change triggers a journey along a certain trajectory in parameter space. Whenever
this trajectory crosses a critical surface in parameter space, an essential change in
the behaviour of the organism is expected. If, for example, such a trajectory enters
the conformer domain (i.e., passesSconf), the organism experiences oxygen defi-
ciency everywhere in its tissues and lowers its respiration rate. Eventually, this
may lead to the complete shut down of certain biological processes, cf. the sus-
pended animation observed in zebrafish embryos after they had been transferred to
an anoxic environment (Padilla and Roth, 2001).

If a trajectory in parameter space enters the mixed domain from the regulator
domain (i.e., passesSreg), this marks the onset of oxygen shortage somewhere in the
organism. Because oxygen is needed to perform essential biological processes such
as aerobic respiration and growth, we expect natural selection to favour residence
of an organism without a circulatory system in the regulator domain. This enabled
us to define a critical size for an organism: the largest size for which it can maintain
pure regulator behaviour. Size is defined here as the volume to surface area ratio,
so the critical size represents the maximum volume of respiring tissue that can be
fully supplied with oxygen per unit surface area.

The shape of an organism, apart from its size, acts in our model as a ‘fifth’ inde-
pendent variable. Contrary to the prevailing models of oxygen supply to small
organism, this feature of our model enabled us to analyse the class of block-like
organisms. In fact, even more exotically shaped organisms can be analysed, though
this would require numerical methods, such as Galerkin procedures. The analysis
of the class of block-like structures allowed us to distinguish between cube-like,
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elongated and sheet-like organisms. In this way we were able to confirm a conjec-
ture of Kranenbarget al. (2001): they stated that for almost stagnant water a flat
shape is more favourable for oxygen supply, while for well-stirred water conditions
a compact shape is more favourable.

The analysis of oxygen dynamics data of teleost embryos fromKranenbarget al.
(2000) illustrates a useful application of the presented theoretical framework. Sev-
eral teleost embryos (zebrafish, rabbitfish, winter flounder, plaice and herring)
appear to be relatively insensitive to external flow conditions. These species will
not experience oxygen deficiency even in nearly stagnant water. Other species
however (common carp, African catfish and largemouth bass) apparently need a
certain amount of external stirring to fully meet their oxygen demands.

Oxygen consumption data of common carp and African catfish are considerably
higher than the average oxygen consumption of teleost embryos (Kranenbarget al.,
2000). This could be indicative of rearing conditions with excess oxygen. The
predictions for maximum size for these specimens should therefore be interpreted
with caution.

Interestingly, largemouth bass is the only species in our analysis in which the
male fans the nest in which the eggs are deposited (Scott and Crossman, 1973).
This fanning greatly enhances external stirring and might explain the relatively
large size of the largemouth bass embryo.
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