
Math 5120 Spring 2007 – Some notes on numerical solution of diffusion equations and

reaction-diffusion equations

Consider the problem

PDE : ct = Dcxx + ac(1 − c) for 0 < x < L and t > 0,

with boundary conditions

BC : cx(0, t) = 0 and cx(L, t) = 0,

and initial conditions

IC : c(x, 0) = f(x) for 0 < x < L.

Here, D > 0, a > 0, L > 0 are given constants, and f(x) is the specified initial data. Note that

we have imposed no-flux boundary conditions at both ends of our interval. We will touch on other

boundary conditions later.

The partial derivative of c with respect to t can be approximated by a difference quotient:

ct(x, t) ≈ {c(x, t + ∆t) − c(x, t)}/∆t

provided 0 < ∆t << 1. Similarly, the spatial derivatives of c can be approximated by difference

quotients.

cx(x, t) ≈{c(x + ∆x, t) − c(x, t)}/∆x (1)

≈{c(x, t) − c(x − ∆x, t)}/∆x (2)

≈{c(x + ∆x, t) − c(x − ∆x, t)}/(2∆x). (3)

provided 0 < ∆x << 1. Further,

cxx(x, t) ≈
c(x − ∆x, t) − 2c(x, t) + c(x + ∆x, t)

(∆x)2

again provided 0 < ∆x << 1. Only the approximation to cxx might be surprising. One way to

motivate it is to write the RHS of this expression as

c(x+∆x,t)−c(x,t)
∆x

− c(x,t)−c(x−∆x,t)
∆x

∆x
,

that is, as a difference quotient of difference quotient approximations of cx. Alternatively, we can

write Taylor Series expansions of c(x − ∆x, t) and c(x + ∆x, t) about (x, t) to obtain:

c(x − ∆x, t) = c(x, t) − cx(x, t)∆x + 1
2cxx(x, t)(∆x)2 −

1

6
cxxx(x, t)(∆x)3 +

1

24
cxxxx(x, t)(∆x)4 + ...

c(x + ∆x, t) = c(x, t) + cx(x, t)∆x + 1
2cxx(x, t)(∆x)2 +

1

6
cxxx(x, t)(∆x)3 +

1

24
cxxxx(x, t)(∆x)4 + ...

1

It follows from these that

c(x − ∆x, t) − 2c(x, t) + c(x + ∆x, t) = {c(x, t) − 2c(x, t) + c(x, t)} + {−cx(x, t) + cx(x, t)}∆x

+ {1
2cxx(x, t) + 1

2cxx(x, t)}(∆x)2

+

{

−
1

6
cxxx(x, t) +

1

6
cxxx(x, t)

}

(∆x)3

+

{

1

24
cxxxx(x, t) +

1

24
cxxxx(x, t)

}

(∆x)4 + ...

= cxx(x, t)(∆x)2 +
1

12
cxxxx(x, t)(∆x)4 + ...

Dividing by (∆x)2, we see that

c(x − ∆x, t) − 2c(x, t) + c(x + ∆x, t)

(∆x)2
= cxx(x, t) +

1

12
cxxxx(x, t)(∆x)2 + ...

≈ cxx(x, t).

We will approximate the PDE as follows. We divide the interval [0, L] into subintervals of length

∆x where (N + 1)∆x = L and we divide time into steps of length ∆t starting at t = 0. We use the

difference quotient approximations for ct and cxx just discussed to write down a ‘finite-difference’

approximation to the PDE at the spatial points xj = j∆x for j = 0, 1, ..., N + 1, and at times

tn = n∆t for n = 0, 1, 2, Let Cn
j ≈ c(j∆x, n∆t) satisfy the equations

Cn+1
j − Cn

j

∆t
= D

Cn
j−1 − 2Cn

j + Cn
j+1

(∆x)2
+ aCn

j (1 − Cn
j). (4)

for j = 0, 1, ..., N + 1 and n = 0, 1, 2,

Next, we approximate the boundary conditions as follows:

Cn
1 − Cn

−1

(2∆x)
= 0, (5)

and
Cn

N+2 − Cn
N

(2∆x)
= 0. (6)

From (5), we see that Cn
−1 = Cn

1 and from (6) that Cn
N+2 = Cn

N . Equation (4) for j = 0 involves

Cn+1
0 , Cn

0 , Cn
−1, and Cn

1 , and in this equation we set Cn
−1 = Cn

1 as per (5). Equation (4) for

j = N + 1 involves Cn+1
N+1, Cn

N+1, Cn
N , and Cn+1

N+2, and in this equation we set Cn
N+2 = Cn

N as per

(6). Writing (4) as an equation for Cn+1
j and using these substitutions for j = 0 and j = N + 1,

our system of equations is

Cn+1
0 = Cn

0 +
D∆t

(∆x)2
(−2Cn

0 + 2Cn
1) + a∆tCn

0 (1 − Cn
0), (7)

Cn+1
j = Cn

j +
D∆t

(∆x)2
(Cn

j−1 − 2Cn
j + Cn

j+1) + a∆tCn
j (1 − Cn

j) for j = 1, ...,N,

Cn+1
N+1 = Cn

N+1 +
D∆t

(∆x)2
(2Cn

N − 2Cn
N+1) + a∆tCn

N+1(1 − Cn
N+1).

2

If we know Cn
j for j = 0, ..., N + 1, these formulas allow us to calculate Cn+1

j for j = 0, ..., N + 1.

Since we have initial data c(x, 0) = f(x), we start with C0
j = fj = f(j∆x) for j = 0, ..., N + 1.

Then we use (7) to calculate C1
0 , C1

1 , ..., C1
N+1. After this we use (7) again to calculate C2

0 , C2
1 ,

..., C2
N+1. In this way, we march forward in time, computing an approximate solution at each

time tn+1 = (n + 1)∆t. The method we just described is called the Forward Euler method applied

to Fisher’s Equation. It works reasonably well for ∆t and ∆x sufficiently small, provided these

numerical parameters also satisfy the condition D∆t
(∆x)2

≤ 1
2 . This combination of terms comes up

often so we give it a name, λ = D∆t
(∆x)2

. So the condition for the Forward Euler method behaving

reasonably is that 0 < λ ≤ 1
2 . This is illustrated in Fig.1. On the left, the timestep ∆t and

spacestep ∆x are chosen such that λ = 0.4, while on the right, they are chosen so that λ = 1.0.

The solution on the right grows to magnitude 1023 by t = 1.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
 Fishers Eq: D=0.001 a=0 λ=0.4, t=40.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

23 Fishers Eq: D=0.001 a=0 λ=1.0, t=1.

Figure 1: Left: Diffusion Equation solved with Forward Euler method with λ = D∆t/(∆x)2 = 0.4.

Right: Diffusion Equation solved with Forward Euler method with λ = D∆t/(∆x)2 = 1.0.

Fig.2 shows the results of a calculation with a = 1.0 and λ = 0.4. The solution c(x, t) grows to

1 in two waves moving outward from the initial region of nonzero c.

We can do some analysis which explains why we have the restriction λ ≤ 1
2 for the Forward Euler

method. To do this it is very useful to write equations (7) in matrix-vector form. Let Cn ∈ R
N+2

denote the vector whose entries are the values Cn
0 , Cn

1 , Cn
2 , ..., Cn

N+1 in that order, and let Cn+1 be

3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

 Fishers Eq: D=0.001 a=1 λ=0.4, t=20.

Figure 2: Fisher’s Equation solved with Forward Euler method with λ = D∆t/(∆x)2 = 0.4 for

a = 1.

defined similarly. Let A be the (N + 2) × (N + 2) matrix defined by

A =





























−2 2 0 0 0 ... 0

1 −2 1 0 0 ... 0

0 1 −2 1 0 ... 0
. . .

. . .
. . .

0 1 −2 1 0

0 1 −2 1

0 0 2 −2





























. (8)

and let M = I + λA, where I is the (N + 2) × (N + 2) identity matrix. Then, for the case a = 0,

equations (7) can be written

Cn+1 = MCn. (9)

The solution after n timesteps can therefore be written in terms of the initial values as

Cn = MnC0. (10)

where Mn means the nth power of the matrix M . Suppose the matrix A has eigenvalue α and

corresponding eigenvector X. Then the matrix M has eigenvalue 1 + λα and the corresponding

eigenvector is X. The matrix A has N + 2 eigenvalues which we denote by α(p) and we denote the

corresponding eigenvectors by X(p) for p = 0, 1, ..., N + 1. Suppose for a moment that C0 = X(p)

for some p. Then, from (10) it follows that Cn = (1 + λα(p))nX(p). If |1 + λα(p)| > 1, then the

4

initial vector gets amplified by a factor that grows without bound as n gets larger. This could be

the origin of the unstable behavior of the numerical method. To decide if this is the case, it would

be useful to know the eigenvalues and eigenvectors of A and therefore M .

The matrix A has eigenvectors X(p) with components X
(p)
j = cos

(

πpj∆x
L

)

= cos
(

πpj
N+1

)

. (Why

does it make sense that the eigenvectors are given by cosines? Think about the separation of

variables solution for the diffusion equation with boundary conditions cx(0, t) = 0 and cx(L, t) = 0.)

The corresponding eigenvalues of A are α(p) = −4 sin2
(

πp
2(N+1)

)

. The eigenvalues of M are therefore

µ(p) = 1 − 4λ sin2
(

πp
2(N+1)

)

. The eigenvalues of M are between -1 and 1 if 0 < λ ≤ 1
2 . For λ ≤ 1

2

the Forward Euler method is stable; for λ > 1
2 it is unstable and the solution grows unboundedly.

So far, we have considered the boundary conditions cx(0, t) = 0 and cx(L, t) = 0. If we want

to change the boundary condition at x = 0 to c(0, t) = g0 for some constant g0, we have only to

modify the equations (7) a little. The only change is to replace the first equation (the j = 0 one)

in (7) with the equation

Cn+1
0 = g0. (11)

This is useful for setting up a problem for which a travelling wave would develop as shown in Fig.3.

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

 Fishers Eq: D=0.001 a=1

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8
 x*(t) for c* =0.95 Speed=0.062314 sqrt(4aD) =0.063246

Figure 3: Fisher’s Equation solved with Forward Euler method with λ = D∆t/(∆x)2 = 0.4 for

a = 1.

The Forward Euler scheme works fine as long as λ ≤ 1
2 . To get a more accurate solution, we

choose smaller values of ∆x and ∆t. Suppose we have computed with some values ∆x = ∆x0 and

∆t = ∆t0 for which λ ≤ 1
2 . Suppose we decide to halve ∆x, so ∆xnew = 1

2∆x0. To keep λ the

same value, we would have to set ∆tnew = 1
4∆t0 and would therefore have to do four times as many

timesteps to get to the same time t as with the original ∆t0. This rapid increase in the number of

5

timesteps can get to be costly as we reduce ∆x. It would be nice to have a method for which we

could choose ∆t without having to worry about stability.

We can get an idea of how to achieve this by considering a much simpler problem

dy

dt
= −βy where β > 0. (12)

Since, dy
dt

≈ y(t+∆t)−y(t)
∆t

, we can define a finite-difference method for this ODE by

Y n+1 − Y n

∆t
= −βY n. (13)

This is the Forward Euler method for this simple ODE. We can rewrite equation (13) as

Y n+1 = (1 − β∆t) Y n. (14)

The solution to this equation at time tn = n∆t is

Y n = (1 − β∆t)n Y 0. (15)

Note that this scheme is therefore stable if |1 − β∆t| ≤ 1, and unstable otherwise. If β >> 1, a

very small value of ∆t is needed to satisfy the stability condition. Consider the alternative method

Y n+1 − Y n

∆t
= −β 1

2 (Y n + Y n+1). (16)

which we rewrite as

Y n+1 =
1 − 1

2β∆t

1 + 1
2β∆t

Y n, (17)

which has solution

Y n =

(

1 − 1
2β∆t

1 + 1
2β∆t

)n

Y0. (18)

Since the factor

(

1−
1
2β∆t

1+
1
2β∆t

)

is no greater than 1 in magnitude for any ∆t > 0 since β > 0, we see

that this method is stable for any ∆t > 0. The key to achieving this was to include enough of the

unknown future value Y n+1 on the right hand side of the approximate ODE.

We can do a very similar thing in the context of the diffusion equation or Fisher’s equation.

Again, let A by the matrix defined in (8). The Forward Euler method we considered earlier can be

written

Cn+1 − Cn = λACn.

Consider instead the method

Cn+1 − Cn = λA1
2

(

Cn + Cn+1
)

. (19)

6

This can be rewritten as

(I − λA)Cn+1 = (I + λA)Cn. (20)

This is the analog of (17) for the ODE. It can be shown that (20) is stable no matter what the

choice of ∆t > 0 and therefore for any choice of λ > 0. This method is known as the Crank-Nicolson

method. Not only is it more stable than the Forward Euler method; it is also more accurate in

that Forward Euler makes an error that is O(∆t)+O((∆x)2), while Crank-Nicolson makes an error

that is O((∆t)2) + O((∆x)2). Note that the price we pay for the improved performance of the

Crank-Nicolson method is that a linear system (20) has to be solved every timestep to determine

Cn+1. For this one-dimensional problem the corresponding matrix I − λA is a tridiagonal matrix

and the system is easily and inexpensively solved.

The Crank-Nicolson method can be made a component of the method for solving Fisher’s

equation. It is still a good idea to evaluate the reaction term aC(1 − C) using known values of C

because otherwise we would have a nonlinear system of equations to solve to determine the new

values Cn+1.

I combined the Crank-Nicolson method for the diffusion terms with a method known as the 4th

order Runge-Kutta method for the reaction terms. It gives the results shown in Fig.4.

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

 Fishers Eq: D=0.001 a=1

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10
 x*(t) for c* =0.95 Speed=0.06467 sqrt(4aD) =0.063246

Figure 4: Fisher’s Equation solved with Crank-Nicolson method combined with the 4th order

Runge-Kutta method, and run with λ = D∆t/(∆x)2 = 2.0 for a = 1.

7

