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Background and Motivation

@ We consider the SDE
aX; = —f(Xt)Gdt—&—adBt, t>0,
where Xy = xo € R™ is a given initial condition.

@ B, ={(B},...,BY),t> 0} is a d-dimensional fBm of Hurst parameter
H € (0, 1), which is a zero mean Gaussian process whose components
are independent and have the covariance function

o 1
E(B;Bs) = Ru(t, s) := §(|f|2H + [P — |t - s[2")
fori=1,...,d.
@ o= (01,...,04) € R™¥,

@ The function f = (f;) : R™ — R™/ € C}(R™). Assume that there is a
positive constant L; independent of the initial condition xq € R™, such

/
that the Jacobian matrices Vf;(x) € R™* " satisfy 3 6,V f; > Ly Iy, where
=1

Im is the m x m identity matrix.
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@ Under the above assumptions, f satisfies the one-sided dissipative
Lipschitz condition:

(X =y, (f) = f())0) = Lilx =y, Vx,y €R".

4/21



@ Under the above assumptions, f satisfies the one-sided dissipative
Lipschitz condition:

(X =y, (f) = f())0) = Lilx =y, Vx,y €R".

@ The SDE admits a unique solution X;.

4/21



@ Under the above assumptions, f satisfies the one-sided dissipative
Lipschitz condition:

(X =y, (f) = f())0) = Lilx =y, Vx,y €R".

@ The SDE admits a unique solution X;.

@ There exists a constant C, > 0 such that
| Xtll o (rm) < Cp s

and
X = Xsllooem) < Colt — s/

forall t > s> 0.

4/21



@ Under the above assumptions, f satisfies the one-sided dissipative
Lipschitz condition:

(X =y, (f) = f())0) = Lilx =y, Vx,y €R".

@ The SDE admits a unique solution X;.
@ There exists a constant C, > 0 such that
[ Xillp@irm) < Cp

and
X = Xsllooem) < Colt — s/

forall t > s> 0.
@ X; € C*(R;RM) forall o < H.

@ Assume 0 = (64,...,6;) € R'is an unknown parameter vector.

4/21



@ Under the above assumptions, f satisfies the one-sided dissipative
Lipschitz condition:

(X =y, (f) = f())0) = Lilx =y, Vx,y €R".

@ The SDE admits a unique solution X;.

@ There exists a constant C, > 0 such that
| Xtll o (rm) < Cp s

and
| Xt — Xsl|toirmy < Cplt — S‘H
forall t > s> 0.
@ X; € C*(R;RM) forall o < H.
@ Assume 0 = (64,...,6;) € R'is an unknown parameter vector.

@ Suppose we have a continuous trajectory of the SDE, we are interested
in the estimation of the parameter vector 6.
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Previous work

@ In the linear case, X; is known as the fOU process. There are many
research results.

@ Kleptsyna and Le Breton (2002) studied the maximum likelihood
estimator (MLE) and prove the strong consistency.

@ Brouste and Kleptsyna(2010), Bercu, Courtin and Savy (2011) obtained
the central limit theorem.

@ Tudor and Viens (2007) also obtain the strong consistency of MLE in
linear and nonlinear cases for H € (0, 1).

@ Hu and Nualart (2010) proposed the least squares estimator for
He(3,1).

@ Hu, Nualart, Zhou (2017) obtained the strong consistency and central
limit theorem for all H € (0, 1).
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Least squares estimator

@ We write cdB; = dX; + f(X;)0dt.
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Least squares estimator

@ We write cdB; = dX; + f(X;)0dt.

@ The least squares estimator (LSE) aims to minimize

)
/ X+ F(X)0Pt
0

@ We propose the LSE for 6 as

-1

T T
or - </o (ftrf)(Xt)dt> /0 f(Xp)dX;
T -1 T
_ 9_< /0 (f”f)(X,)dt) /0 £ (X,)o B
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Strong consistency of LSE

Theorem (Hu, Nualart, Z ('18))

Assume that the components of f belong to Cj(R™) when H (3,1), and they
belong to C3(R™) when H € (4, 3)- f also satisfies the assumptions

mentioned above. Then the least squares estimator 1 of the parameter 6 is
strongly consistent, )
0r — 60, as.as T — co.
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Ingredients for the proof

@ Our target is to show

T -1 T
im |6 — 6] = lim (/ (f”f)(Xt)dt> / fr(X;)odB; = 0.
T—oo T T—oo 0 0
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Ingredients for the proof

@ Our target is to show

T -1 T
im |6 — 6] = lim (/ (f”f)(Xt)dt> / fr(X;)odB; = 0.
T—oo T T 0 0

— 00

@ It comes from the two important ingredients.

@ We will show that

q

1 /7 a e
(T /0 (f”f)(Xt)dt) SEEHE) T as.

@ Divergence integrals Z r = + fOT I;”(Xs)ast converge to 0 a.s. for
j=1,...,1.
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Ergodic property of fBm

@ Consider the canonical probability space of fBm (Q, F,P):
Q = Co(R;RY), F is the Borel s-algebra, and P is the probability
measure on (£, F) s.t. the coordinate process Bi(w) = w(t) is a fBm.
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Ergodic property of fBm

@ Consider the canonical probability space of fBm (Q, F,P):
Q = Co(R;RY), F is the Borel s-algebra, and P is the probability
measure on (£, F) s.t. the coordinate process Bi(w) = w(t) is a fBm.

@ The probability measure P is invariant with respect to the shift operators
¢, Which are defined as

pw() =w(-+1) —w(t), teRy,w e Q.
@ For any integrable random variable F : Q@ — R, we have

T—o0

.
lim 17/0 F(pue(w))dt = E(F).
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Ergodic property of SDE

Theorem (Garrido-Atienza, Kloeden, Neuenkirch ('09))

Assume the drift function f satisfies the assumptions above (polynomial
growth and one-sided Lipschitz). Then, the following results hold:

(i) There exists a random variable X : Q — R™ with E|X|P < oo for all p > 1
such that

lim [ Xp(w) — X(uw)| =0
t—oco
for P-almost all w € €.

(i) For any function g € C;(R™), we have

jim / Xyt =E[g(X)] P-as
0

T—oo T

This implies that (lT fOT(f”f)(X,)dt>_1 = (E((frA)(X))) as., given that
P(det(f"f)(X) > 0) > 0.
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Ingredients for the proof (cont.)

The next object is to show that divergence integrals +Zr = + fOT f'(Xs)o dBs
convergetoOa.s. forj=1,...,/,

@ We show the sequence {n~'Z; ,} — 0 a.s..

Z]P’(|n 1Z,n| > €) Sie PE (}n_1zj,n|p)

n=1 n=1
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@ We show the sequence {n~'Z; ,} — 0 a.s..

Z]P’(|n 1Z,n| > €) Sie PE (}n_1zj,n|p)

n=1 n=1

@ Next, we consider the limit of the process lTZ,-,T. Let the integer kr
defined by kr < T < kt + 1.

1 1| [k T

T4l < =g 9/(Xt)dB| + , 9i(Xt)dB;
1 kr 1 t
— 9i(X)dB| + -~ sup 9i(Xs)dBs
kr |Jo KT telkr k1]

@ Estimation of [|Z} nl|.o(q) @nd || SUP e iy kr+1] fkT 9i(Xs)dBs|| o (02)-
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Stochastic integrals

@ The Hilbert space £ is defined as the closure of £¢ endowed with the
inner product

d
(Mo,s,75 -+ Ljo,s41)> (Lpo,t75 - - - Ljo,t1)) 590 = Z Ru(si, ti) .

i=1
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Stochastic integrals

@ The Hilbert space £ is defined as the closure of £¢ endowed with the
inner product

d
(Mo,s,75 -+ Ljo,s41)> (Lpo,t75 - - - Ljo,t1)) 590 = Z Ru(si, ti) .

i=1

@ The mapping (Ljo,41;-- -, Ljo,47) — 27:1 B’;.j can be extended to a linear
isometry between $¢ and the Gaussian space #1 spanned by B.

@ For F =f(By,...,B,), where f € Ci°(R9*"), we define the Malliavin
derivative as the $17-valued random variable given by
DF = (D'F,...,DYF) whose jth component is

n
i of
DlsF: E —6 /.(8117...,81”)]1[071,.](3).
i=1 9%

i
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@ The Sobolev space DP9 is the closure of the space of smooth cylindrical
random variables w.r.t the norm || - |

p.q

nlQ

p d
IFlg.a =E(FIN+D_E || > 1D Fllfgee

=1 Jisendi=1
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2

p d
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random variables w.r.t the norm || - |

p.q

g
2

p d
IFlgq =E(FI)+ > E (Z ||m~--vffF||%ﬁd)®f)

p Jiooi=1
@ Let usuch that |[E(D'F, u)g| < cy||F| 2, for any F € D'2.

@ The divergence operator & is defined as the adjoint of the Malliavin
derivative D/. ‘ ,
E(F¥(u)) = E(D'F, u)g .

@ Define the divergence operator on 9 as §(u) = -7, ¥/(w) for
u=(u,...,ug) € N Dom(&).
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p-th moment of divergence integrals

The divergence operator § is continuous from D'P($9) into LP(Q), which
means

E(8(u)?) < Cp (E(II24) + E(IDU[0)) -

for some constant C, depending on p.
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p-th moment of divergence integrals

The divergence operator § is continuous from D'P($9) into LP(Q), which
means

E(8(u)?) < Cp (E(II24) + E(IDU[0)) -

for some constant C, depending on p.

LetH € ($,1) and let u be an element of D'($7), p > 1. Then u belongs to
the domain of the divergence operator § in LP(Q2). Moreover, we have

E(S(UIP) < Gt (IE(U)IE: g0 mepmey + E (1DUIE1 0 seyeoce)
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p-th moment of divergence integrals when H < (0, %)

LetH € (0,}) and p > 2. Assume that the R?-valued stochastic process
{us, t > 0} satisfies the regularity Hypothesis (i)-(iv).

) [Ullp,0,00 = SUP>0 [ Utllp(@rey < 00,
(i) lur — usllprey < K(t—8)7,

(iii) || Dutl| p(;nommey < K,

(iv) ||Du; — Dus || 1p(0; 50 erey < K(t — 5)Ps>.

where the constants K >0, 3> 1 — H and X € (0, H]. Then forany T > 0,
the divergence integral 5(ulp 1)) is in LP(2), and

E(|6(ulp,n)IP) < CTP(1+ TPH)(1 + T7),

where the constant C is independent of T.
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Maximal inequality for stochastic integrals

Theorem (Hu, Nualart, Z ('18))
@ LetH e (3,1)and | + ¢ = H with p > q. Suppose that for all T > 0

fo (lus|P)ds < oo,
(ii) fo fo (|Drus|P)dtds < oo.

Then the divergence integral fo usdBs is in LP(2) for all t > 0 and for any
interval [a, b], we have

t P b
E(sup /uSdBS ) < C(b—a)g/ E(|us|P)ds
tela,b] |/ a a

2 b ps
+Cb—a)% / / E(|Dyus|P)ditds,
a a

where the constant C does not depend on a, b.

o
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Maximal inequality for stochastic integrals

Theorem (Hu, Nualart, Z ('18))

Let {u;, t > 0} be an RY-valued stochastic process. For the divergence
integral fot usdBs, t > 0, we have the following statements:

@ LetH e (4, %) andp > };. Assume that the stochastic process u satisfies

the regularity Hypothesis. Then the divergence integral fot usdBs is in
LP(Q2) for allt > 0 and for any 0 < a < b we have the estimate

t
E| sup / usdBs
tela,b] |/ a

where C is a generic constant that does not depend on a, b.

p
) < C(b—a)P"(1+ (b—a)’)(1 +b7),
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@ Based on factorization method,
¢ P
E ( sup / usdBs )
tela,b] |/ a
H P t t
= (sm(om)> E ( sup / </ (t—n>Y(r- s)adr> UsdBs
T tela,b] |/ a s
b

< Cup(b— a)P! / E(G/[P)ar,

a

)

where ,
G = / (r —s)”“usdBs, relabl.
a

18/21



@ Based on factorization method,
¢ P
E(sup /usst )
tela,b] |/ a
H P t t
_(Sln(om)) E| sup / /(tfr)o‘*‘(rfs)*adr usdBs
T tela,b] |/ a s
b

< ca,p(b—a)m—1/ (|G, P)ar,

a

)

where ,
G = / (r —s)”“usdBs, relabl.
a

@ Then apply the previous estimate about the p-th moment of the
stochastic integrals. In the case when H < % we require the regularity of
(r — 8)~%us and this triggers the restriction of H > }.
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(1) The solution X; satisfies
| Xtll o (rm) < Cp s

and
[ X — Xs|l o (@rm < Cplt — s|”

forallt > s> 0.

(2) The Malliavin derivative of the solution X; satisfies for all0 < s < t
|DsX;| < |o]e~h(t=9) | as.
Moreover, ifv < u < s < t, we have
|DuXe = Dy Xtl| p(mmxay < Ce~ M= (A A Ju—v]),
[DuXt — DuXs||1p(irmxey < Ce M1 Alt—s)),
1DuXe— Dy Xe—(DuXs—Dy Xs) | o(mxay < CeHED(An|u—v|)(1At—5])

v
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Conclusion

@ Convergence of the sequence n~'Z; , = 1 [ f"(Xs)o dBs.

ZP(|n_1Zj,n| >e) < ie_pE (}n_1zj,n|p)
n=1 n=1

cneH when H e (1,1)
E(l1Z: ~IP) < 2’
(12.al") < {Cnp(ZHH) when H e (1, 1)
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Conclusion

@ Convergence of the sequence n~'Z;, = 1 [ 7"(Xs)o dBs.

~n

iP(|n_1Zj,n’ >e) < ie_pE (}n_1zj,n|p)
n=1 n=1

cneH when H e (1,1)
E(l1Z: ~IP) < 2’
(12.al") < {Cnp(ZHH) when H e (1, 1)

@ Convergence of the sequence T‘1Z,-,T.

1 1| [k 1 !
=17l < - 9i(Xt)dBt| + .~ sup 9i(Xs)dBs| .
T kr kr telkr,kr+1] |/ kr
t p 1
C when He (3,1)
E su i(Xs)dB < 2’
(te[kr,kEH] kr 9/(Xs)be ) - {C(kr +1)PA when He (1.1),

where \ € (0, H).
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THANK YOU!
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