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Young diagrams are related with:
combinatorics; representation theory; . . .
polymer physics; genetics; zero-temperature Ising model; . . ..

2D/3D Young diagrams: static theory (statistical mechanics),
dynamical theory

We will be focusing on models of 2D Young diagrams.



Let p = (p1,p2,p3, . . . ,pn), pk ≥ pk+1, be a partition of the
integer

M(p) =
n∑

k=1

pk .

For example, p = (4,2,2,1) is a partition of

9 = 4 + 2 + 2 + 1

The corresponding Young diagram:

p = (4,2,2,1)



Shape function F (x):

p = (4,2,2,1)
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F (x) = F (x ; p)
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Clearly:

M(p) :=
n∑

k=1

pk =

∫ ∞
0

F (x)dx .



Size density (or configuration of particles) η = (η(k))k∈N:

p = (4,2,2,1)
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η = (1,2,0,1,0, . . .)
1 2 3 4

M(p) =
∑
k=1

kη(k).



Relations between F and η:

F (x) =
∑
k≥x

η(k), η(k) = F (k)− F (k + 1)

η(k) can be viewed as negative gradient of F at k .
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η = (1,2,0,1,0, . . .)
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The size of a diagram grows, of course, as the M(p) grows.
For the limit M →∞, rescale the diagram by setting the width
and height of one square by µx and µy respectively. After
rescaling, the area of the Young diagram is µx µy M.

Before scaling
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After scaling
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If we set µx = µy =
1√
M

rescaled shape function

FM(x ; p) =
1√
M

F (x
√

M; p)

A classical result of A. Vershik [V]: Let PM be the uniform
probability on all partitions of M, e.g. (4,2,2,1) and (5,4) are
equally likely. As M →∞, FM concentrate near

F (x) = −
√

6
π

ln
(

1− e−πx/
√

6
)

Precisely, for all M > M0(a,b, ε)

PM

{
sup

x∈[a,b]
|FM(x ; p)− F (x)| > ε

}
< ε.



The uniform measure Pµ can be thought as a canonical
ensemble. Similar result as above holds for other choices of
measures. For example

Pµ(p) =
1

Zµ
e−µM(p).

or the general Grand-canonical ensemble (cf. e.g. [EG], [FS],
[V], [VY])

Pβ,µ(p) =
1

Zβ,µ
e−β

∑
k∈p Ek−µM(p)

Rescale Fµ(x ; p) :=
1

µEµ(M)
F (x/µ; p).

I β = 0: Fµ →
6
π2 ln(1− e−x )

I Ek ∼ ln k , 0 < β < 1: Fµ →
1

Γ(2− β)

∫ ∞
x

u−βe−udu

I Ek � ln k , β > 0: Fµ → e−x



For our evolutional models, start with the particle systems
directly. Introduce generator

Lf (η) =
∞∑

k=1

{
λk

[
f
(
ηk ,k+1

)
− f (η)

]
χ{η(k)>0}

+
[
f
(
ηk ,k−1

)
− f (η)

]
χ{η(k)>0,k>1}

}
where

λk = e−β(Ek+1−Ek )−µ, ηx ,y (k) =


η(k)− 1 k = x
η(k) + 1 k = y
η(k) otherwise

.



Weakly asymmetric zero range process on Z+.

1 2 3 k − 1 k k + 1

rate 1 rate λk

Remember λk = e−β(Ek+1−Ek )−µ.



Growth at (2,1) a particle jumps from site 2 to 3
1 2 3 4

In this example, a particle at site 2 jumps (with rate λ2) to site 3
corresponds to creation of a square at the corner (2,1).



Loss at (3,0) a particle jumps from site 4 to 3
1 2 3 4

Here, a particle at site 4 jumps (with rate λ4) to site 3
corresponds to annihilation of a square at the corner (3,0).



Remember η(k) = F (k)− F (k + 1). Since

Fµ(x ; p) :=
1

µEµ(M)
F (x/µ; p)

we consider rescaled empirical measures

πµt (dx) = πµ(ηt ,dx) = µγµ

∞∑
k=1

ηt (k)δkµ(dx).

where γµ =
1

µ2Eµ(M)
. Since Eµ(M) ∼ µ−2e−βE1/µ (c.f. [FS])

γµ =



1 β = 0

µ−β 0 < β < 1,Ek ∼ ln k

(ln 1
µ)β 0 < β,Ek ∼ ln(ln k)



Theorem (Case β = 0)
With appropriate initial measures, for any test function
G ∈ C∞c (0,∞), for all 0 < t ≤ T , as µ→ 0

〈G, πµt/µ2〉 →
∫ ∞

0
G(x)ρ(t , x)dx , in probability

where ρ(t , x) is the unique weak solution of the equation
∂tρ = ∂2

x
ρ

ρ+ 1
+ ∂x

ρ

ρ+ 1

ρ(0, ·) = ρ0(·),
∫ ∞

0
ρ(t , x)dx =

∫ ∞
0

ρ0(x)dx

ρ(t , ·) ≤ φ(·) for all t ≤ T

.



Theorem (Case Ek ∼ ln k )
With appropriate initial measures, for any test function
G ∈ C∞c (0,∞), for all 0 < t ≤ T , as µ→ 0

〈G, πµt/µ2〉 →
∫ ∞

0
G(x)ρ(t , x)dx , in probability

where ρ(t , x) is the unique weak solution of the equation
∂tρ = ∂2

xρ+ ∂x

(
β + x

x
ρ

)
ρ(0, ·) = ρ0(·),

∫ ∞
0

ρ(t , x)dx =

∫ ∞
0

ρ0(x)dx

ρ(t , ·) ≤ φc(·) for all t ≤ T

. (1)



Theorem (Case Ek � ln k )
With appropriate initial measures, for any test function
G ∈ C∞c (0,∞), for all 0 < t ≤ T , as µ→ 0

〈G, πµt/µ2〉 →
∫ ∞

0
G(x)ρ(t , x)dx , in probability

where ρ(t , x) is the unique weak solution of the equation
∂tρ = ∂2

xρ+ ∂xρ

ρ(0, ·) = ρ0(·),
∫ ∞

0
ρ(t , x)dx =

∫ ∞
0

ρ0(x)dx

ρ(t , ·) ≤ φc(·) for all t ≤ T

. (2)



The macroscopic equations:
I β = 0:

∂tρ = ∂2
x

ρ

ρ+ 1
+ ∂x

ρ

ρ+ 1
I Ek ∼ ln k :

∂tρ = ∂2
xρ+ ∂x

(
β + x

x
ρ

)
I Ek � ln k :

∂tρ = ∂2
xρ+ ∂xρ

Funaki and Sasada [FuSa] obtained the the same equation, as
in the case β = 0, for a different model.



I Case β = 0: λk = e−µ =: ε

1 2 3 k − 1 k k + 1

rate 1 rate ε

I [FuSa] model: a weakly asymmetric reservoir at site 0

0 1 2 3 k − 1 k k + 1

rate 1 rate ε



Invariant measures:
I model in [FuSa]:

Pµ(η) =
1

Zµ
e−µ

∑
k kη(k) =

1
Zµ

∏
k

(
e−kµ

)η(k)
I Case β = 0: for all 0 < c ≤ 1

Pµ,c(η) =
1

Zµ,c

∏
k

(
c e−kµ

)η(k)
Initial conditions:

I model in [FuSa] :
∫ ∞

0
ρ0(x)dx =∞.

I Case β = 0: ρ0 < φ,
∫ ∞

0
ρ0(x)dx <∞



Formal derivation of macroscopic equations:

〈G, π(ηt )〉 = 〈G, π(η0)〉+

∫ t

0
µ−2L 〈G, π(ηs)〉ds + MG

t

with

µ−2L 〈G, πt (η)〉 = µ

∞∑
k=2

∆µG (kµ) γµχ{ηt (k)>0}

+ µ

∞∑
k=2

λk − 1
µ
∇µG (kµ) γµχ{ηt (k)>0}

As kµ→ x

λk − 1
µ

→


1 β = 0
β + x

x
Ek ∼ ln k

1 Ek � ln k



Equilibrium measures are products of geometrics with
parameters very close locally.

γµχη(k) ∼ γµEηε/µ(k)(χη>0) =
γµη

ε/µ

1 + ηε/µ
.

Notice that typically γµη
ε/µ
t (k)→ ρε(t , x) then

γµη
ε/µ

1 + ηε/µ
∼ ρ(x)

1 + γ−1
µ ρ(x)

I β = 0: γµ = 1, γµχη(k) ∼
ρ(x)

1 + ρ(x)
I Ek ∼ ln k or Ek � ln k : γµ →∞, γµχη(k) ∼ ρ(x)



Brief sketch of proof for the case β = 0:
I 1-block estimate:

lim sup
l→∞

lim sup
N→∞

EN

∣∣∣∣∣∣ 1
N

∑
aN≤k≤bN

∫ T

0
DG,t

N,k

(
χηN2t (k)>0 −

ηl
N2t (k)

1 + ηl
N2t (k)

)
dt

∣∣∣∣∣∣ = 0.

I 2-block estimate:

lim sup
l→∞

lim sup
τ→0

lim sup
N→∞

EN

∣∣∣∣∣∣ 1
N

∑
aN≤k≤bN

∫ T

0
DG,t

N,k

(
ηl

N2t (k)

1 + ηl
N2t (k)

−
ητN

N2t (k)

1 + ητN
N2t (k)

)
dt

∣∣∣∣∣∣ = 0.

A 1-block estimate will be sufficient for the cases when β 6= 0.
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Thank you!


