An Impossibility Theorem of Quantifying Causal Effect

Yue Wang

Department of Applied Mathematics University of Washington yuewang@uw.edu

March 29, 2018

Yue Wang Quantifying Causal Effect

ヘロン ヘアン ヘビン ヘビン

ъ

- This work is collaborated with Dr. Linbo Wang at Department of Biostatistics, Harvard University.
- Full paper can be found at https://arxiv.org/abs/1711.04466

(雪) (ヨ) (ヨ)

ъ

- What is causal effect.
- Existing causal quantities and their problems.
- Criteria for a "good" causal quantity
- An impossibility theorem.

(雪) (ヨ) (ヨ)

3

- Heating with fire causes water to boil. (Deterministic)
- HIV exposure causes AIDS. (Stochastic, strong effect)
- Smoking causes lung cancer. (Stochastic, weak effect)

Skip 100 pages of philosophical discussions of causal effect...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- We have some random variables X_1, X_2, \cdots, X_n, Y .
- X₁,..., X_n (cause variables) are exactly all the direct causes of Y (result variable). We assume there is no hidden cause of Y.
- Our purpose is to quantify the effect of a causal relationship X₁ → Y, based on the joint probability distribution of X₁, X₂, · · · , X_n, Y.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

- Idea: if X causes Y, then X contains information of Y. Use information to quantify causal effect.
- Measure of information: entropy.

$$\mathsf{H}(X) = -\sum_i p_i \log p_i,$$

where $p_i = \mathbb{P}(X = x_i)$.

• $H(X) \ge 0$. Equality holds if and only if X is deterministic.

(雪) (ヨ) (ヨ)

Mutual information (MI)

$$\mathsf{MI}(X, Y) = \mathsf{H}(X) + \mathsf{H}(Y) - \mathsf{H}(X, Y).$$

<ロ> (四) (四) (三) (三) (三)

- Intuition: the information shared between X and Y. The information gain of Y if we know X. The predict power of X on Y.
- If X causes Y, then MI(X, Y) can be used to describe the causal effect of X → Y.
- MI(X, Y) ≥ 0. Equality holds if and only if X and Y are independent.

(雪) (ヨ) (ヨ)

Conditional Mutual information (CMI)

• Generalize MI for more variables.

 $\mathsf{CMI}(X_1, Y \mid X_2) = \mathsf{MI}(X_1X_2, Y) - \mathsf{MI}(X_2, Y).$

- Conditioned on the knowledge of X₂, how much extra information of Y could X₁ provide.
- Can be used to describe the causal effect of X₁ → Y if X₁ and X₂ cause Y.
- CMI(X₁, Y | X₂) ≥ 0. Equality holds if and only if X₁ and Y are independent conditioned on X₂. This means that with the knowledge of X₂, X₁ contains no new knowledge of Y.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Problem of CMI

- CMI measures unique information. When X₁ ≈ X₂, they contain nearly the same information of Y. Both CMI(X₁, Y | X₂) and CMI(X₂, Y | X₁) are very small.
- Cannot distinguish:

 ϵ and δ are independent small noises.

CMI(X₁, Y | X₂) is 0 in the first case, and very small in the second case.

New methods

۲

- Utilize the slight difference between X_1 and X_2 .
- Causal strength (CS) and part mutual information (PMI).

$$\mathsf{CS}(X_1,Y) = \sum_{x_1,x_2,y} \mathbb{P}(x_1,x_2,y) \log \frac{\mathbb{P}(y \mid x_1,x_2)}{\sum_{x_1'} \mathbb{P}(y \mid x_1',x_2) \mathbb{P}(x_1')}.$$

$$\mathsf{PMI}(X_1, Y \mid X_2) = \\ \sum_{x_1, x_2, y} \mathbb{P}(x_1, x_2, y) \log \frac{\mathbb{P}(x_1, y \mid x_2)}{\sum_{x_1'} \mathbb{P}(y \mid x_1', x_2) \mathbb{P}(x_1') \sum_{y'} \mathbb{P}(x_1 \mid x_2, y') \mathbb{P}(y')}$$

(雪) (ヨ) (ヨ)

E DQC

 ϵ and δ are independent small noises. CS(X_1 , Y) and PMI(X_1 , $Y \mid X_2$) are 0 in the first case, and relatively large in the second case.

Problem of new methods

 ϵ and δ are independent small noises.

- These two joint distributions are almost the same, but the resulting causal effects are very different.
- CS and PMI may not be continuous with joint distribution (under total variation distance) when both $\{X_1\}$ and $\{X_2\}$ have all the information of *Y* contained in $\{X_1, X_2\}$.

Assume we have cause variables $S = \{X_1, \dots, X_n\}$ and the result variable *Y*. A Markov boundary of *Y*, S_1 , is a subset of *S*, which is minimal, and keeps its information of *Y*.

 $\mathsf{MI}(\mathcal{S}_1, Y) = \mathsf{MI}(\mathcal{S}, Y),$

 $\forall \mathcal{S}_2 \subsetneqq \mathcal{S}_1, \quad \mathsf{MI}(\mathcal{S}_2, Y) < \mathsf{MI}(\mathcal{S}, Y).$

This means $Y \perp \mathcal{S} \setminus \mathcal{S}_1 \mid \mathcal{S}_1$.

- MB may not be unique. (Set X₁ = X₂ in the above example.)
- Assume MB is unique. A cause variable inside MB has positive irreplaceable predict power of *Y*, and a cause variable outside MB has zero irreplaceable predict power of *Y*. Therefore the unique MB should be exactly all the cause variables with positive causal effect.

- When there are multiple MB, both CS and PMI are not directly defined. (Contains 0/0 in the expression.)
- Try to use continuation: choose a sequence of distributions (for which CS and PMI are defined) converging to the original distribution, and check whether the corresponding CS and PMI converge.

< 回 > < 回 > < 回 > -

Theorem

In any arbitrarily small neighborhood of a distribution with multiple MB, CS (also PMI) can take any value in an interval with positive length.

- When there are multiple MB, both CS and PMI cannot be well-defined.
- Similar to the behavior of a complex function near an essential singularity.
- Calculating CS and PMI in such case is not numerically feasible.

ヘロト ヘアト ヘビト ヘビト

- Construct two sequences of distributions, both of which converge to the original distribution.
- CS (or PMI) of two sequences always exist, but converge to different values.
- Distribution of one sequence can continuously transform into distribution of the other sequence, during which CS (or PMI) is always defined.

- We have cause variables $S = \{X_1, X_2, \dots, X_n\}$ and result variable *Y*.
- Our purpose is to quantify the effect of a causal relationship $X_1 \rightarrow Y$.
- We propose several criteria for a "good" causal quantity.
- We focus on the case where MB is unique. In such case, the unique MB should be exactly all the variables with positive causal effect.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Criteria for quantifying causal effect

- C0. The effect of X₁ → Y is identifiable from the joint distribution of cause variables and result variable.
- C1. If there is unique MB *M*, and X₁ ∉ *M*, then the effect of X₁ → Y is 0.
- C2. If there is unique MB *M*, and X₁ ∈ *M*, then the effect of X₁ → Y is at least CMI(X₁, Y | *M*\{X₁}).
- C3. The effect of X₁ → Y is a continuous function of the joint distribution.
- CMI fails in C2. CS and PMI fail in C3.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Theorem

Assume in a distribution, Y has multiple MB. X_1 belongs to at least one MB, but not all MB. Then in any neighborhood of this distribution, the effect of $X_1 \rightarrow Y$ cannot be defined while satisfying criteria C0–C3.

・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ

For variable X_1 , we define X_1 with ϵ -noise to be X_1^{ϵ} , which equals X_1 with probability $1 - \epsilon$, and equals an independent noise with probability ϵ . Denote all cause variables by S.

Lemma (Strict Data Processing Inequality)

 S_1 is a group of variables without X_1 , Y. If we add ϵ -noise on X_1 to get X_1^{ϵ} , then $CMI(X_1^{\epsilon}, Y | S_1) \leq CMI(X_1, Y | S_1)$, and the equality holds if and only if $CMI(X_1, Y | S_1) = 0$.

Lemma

Assume Y has multiple MB. For one MB \mathcal{M}_0 , if we add ϵ noise on all variables of $S \setminus \mathcal{M}_0$, then in the new distribution, \mathcal{M}_0 is the unique MB.

ヘロト ヘ戸ト ヘヨト ヘヨト

- Assume $X_1 \in \mathcal{M}_0, X_1 \notin \mathcal{M}_1$ for MB $\mathcal{M}_0, \mathcal{M}_1$.
- We can add *ϵ*-noise on *S**M*₁, such that *M*₁ is the unique MB. Criterion C1 shows that the effect of *X*^{*ϵ*}₁ → *Y* is 0.
- We can add ϵ -noise on $S \setminus M_0$, such that M_0 is the unique MB. Criterion C2 shows that the effect of $X_1 \to Y$ is at least $CMI(X_1, Y \mid M_0 \setminus \{X_1\}) > 0$.
- Let *ϵ* → 0. Criterion C3 shows that the effect of *X*₁ → *Y* should be at least CMI(*X*₁, *Y* | *M*₀*X*), and should be 0.

- Quantifying causal effect with multiple MB is an essentially ill-posed problem.
- When a distribution with unique MB is close to another distribution with multiple MB, a reasonable causal quantity is either very small (CMI) or fluctuate violently (CS, PMI). Therefore in such case, quantitative method is not feasible.
- A practical problem: detecting whether MB is unique from data.

Algorithm 1: An assumption-free algorithm for determining the uniqueness of MB

(1) Input Observations of $S = \{X_1, \ldots, X_k\}$ and Y (2) Set $\mathcal{E} = \emptyset$ (3) **For** $i = 1, \ldots, k$, Test whether $X_{i} \perp Y \mid S \setminus \{X_i\}$ If $X_i \perp Y \mid S \setminus \{X_i\}$ $\mathcal{E} = \mathcal{E} \cup \{X_i\}$ (4) If $Y \perp \mathcal{S} \mid \mathcal{E}$ output: Y has a unique MB Else output: Y has multiple MB

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Algorithm 2: An assumption-free algorithm for producing one MB

(1) Input Observations of $S = \{X_1, ..., X_k\}$ and Y(2) Set $\mathcal{M}_0 = S$ (3) Repeat Set $X_0 = \arg \min_{X \in \mathcal{M}_0} \Delta(X, Y \mid \mathcal{M}_0 \setminus \{X_i\})$ If $X_0 \perp Y \mid \mathcal{M}_0 \setminus \{X_0\}$ Set $\mathcal{M}_0 = \mathcal{M}_0 \setminus \{X_0\}$ Until $X_0 \perp Y \mid \mathcal{M}_0 \setminus \{X_0\}$ (4) Output \mathcal{M}_0 is a MB

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Algorithm 3: A general algorithm for determining the uniqueness of MB

(1) Input

Observations of S = {X₁,...,X_k} and Y
Algorithm Ω which can correctly produce one MB

(2) Set M₀ = {X₁,...,X_m} to be the result of Algorithm Ω on S
(3) For i = 1,...,m,
Set M_i to be the result of Algorithm Ω on S | {X_i} If Y \LLM₀ | M_i
Output Y has multiple MB
Terminate

(4) Output Y has a unique MB

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Algorithm 4: An assumption-free algorithm for determining the uniqueness of MB

(1) Input Observations of $S = \{X_1, ..., X_k\}$ and Y(2) Set $\mathcal{M}_0 = \{X_1, ..., X_m\}$ to be the result of Algorithm 2 on S(3) For i = 1, ..., m, If $Y \perp X_i \mid S \setminus \{X_i\}$ If $X_i \not\perp Y \mid S \setminus \{X_i\}$ Output Y has multiple MB Terminate (4) Output Y has a unique MD

(4) Output Y has a unique MB

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Algorithms performances

Figure: Success rates and average time costs per execution (in seconds) of Algorithms 1 (red circle), 3-KI (green 'x'), 3-AF (blue '+'), 4 (black diamond) with different numbers of observations in Case A. Number of observations and time costs are in logarithm.

< 🗇 🕨

Algorithms performances

Figure: Success rates and average time costs per execution (in seconds) of Algorithms 1 (red circle), 3-KI (green 'x'), 3-AF (blue '+'), 4 (black diamond) with different numbers of observations in Case B. Number of observations and time costs are in logarithm.

Algorithms performances

Figure: Success rates and average time costs per execution (in seconds) of Algorithms 1 (red circle), 3-KI (green 'x'), 3-AF (blue '+'), 4 (black diamond) with different numbers of observations in Case C. Number of observations and time costs are in logarithm.

< 🗇 🕨

- CMI: DOBRUSHIN, R. L. (1963). General formulation of Shannon's main theorem in information theory. Amer. Math. Soc. Trans. 33, 323–438.
- CS: JANZING, D., BALDUZZI, D., GROSSE-WENTRUP, M. & SCHÖLKOPF, B. (2013). Quantifying causal influences. Ann. Stat. 41, 2324–2358.
- PMI: ZHAO, J., ZHOU, Y., ZHANG, X. & CHEN, L. (2016).
 Part mutual information for quantifying direct associations in networks. Proc. Natl. Acad. Sci. 113, 5130–5135.
- MB: PEARL, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Thank you!

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで