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What is causal effect

Heating with fire causes water to boil. (Deterministic)
HIV exposure causes AIDS. (Stochastic, strong effect)
Smoking causes lung cancer. (Stochastic, weak effect)
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What is causal effect

Skip 100 pages of philosophical discussions of causal
effect...

Yue Wang Quantifying Causal Effect



Purpose

We have some random variables X1,X2, · · · ,Xn

,Y .
X1, · · · ,Xn

(cause variables) are exactly all the direct
causes of Y (result variable). We assume there is no
hidden cause of Y .
Our purpose is to quantify the effect of a causal
relationship X1 ! Y , based on the joint probability
distribution of X1,X2, · · · ,Xn

,Y .
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Information theory

Idea: if X causes Y , then X contains information of Y . Use
information to quantify causal effect.
Measure of information: entropy.

H(X ) = �
X

i

p

i

log p

i

,

where p

i

= P(X = x

i

).
H(X ) � 0. Equality holds if and only if X is deterministic.
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Mutual information (MI)

MI(X ,Y ) = H(X ) + H(Y )� H(X ,Y ).
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Mutual information (MI)

Intuition: the information shared between X and Y . The
information gain of Y if we know X . The predict power of X

on Y .
If X causes Y , then MI(X ,Y ) can be used to describe the
causal effect of X ! Y .
MI(X ,Y ) � 0. Equality holds if and only if X and Y are
independent.
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Conditional Mutual information (CMI)

Generalize MI for more variables.

CMI(X1,Y | X2) = MI(X1X2,Y )� MI(X2,Y ).

Conditioned on the knowledge of X2, how much extra
information of Y could X1 provide.
Can be used to describe the causal effect of X1 ! Y if X1
and X2 cause Y .
CMI(X1,Y | X2) � 0. Equality holds if and only if X1 and Y

are independent conditioned on X2. This means that with
the knowledge of X2, X1 contains no new knowledge of Y .
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Problem of CMI

CMI measures unique information. When X1 ⇡ X2, they
contain nearly the same information of Y . Both
CMI(X1,Y | X2) and CMI(X2,Y | X1) are very small.
Cannot distinguish:
X1

&&

✏✏

X1

&&

✏✏

Y Y

X2

88

X2

88

X2 = X1 + ✏, Y = X2 + � X2 = X1 + ✏, Y = X1 + �
X1 ?? Y | X2 X2 ?? Y | X1
✏ and � are independent small noises.
CMI(X1,Y | X2) is 0 in the first case, and very small in the
second case.

Yue Wang Quantifying Causal Effect



New methods

Utilize the slight difference between X1 and X2.
Causal strength (CS) and part mutual information (PMI).

CS(X1,Y ) =

X

x1,x2,y

P(x1, x2, y) log
P(y | x1, x2)P

x

0
1
P(y | x

0
1, x2)P(x 0

1)
.

PMI(X1,Y | X2) =

X

x1,x2,y

P(x1, x2, y) log
P(x1, y | x2)P

x

0
1
P(y | x

0
1, x2)P(x 0

1)
P

y

0 P(x1 | x2, y 0
)P(y 0

)

.
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New methods

X1

&&

✏✏

X1

&&

✏✏

Y Y

X2

88

X2

88

X2 = X1 + ✏, Y = X2 + � X2 = X1 + ✏, Y = X1 + �
X1 ?? Y | X2 X2 ?? Y | X1
✏ and � are independent small noises.
CS(X1,Y ) and PMI(X1,Y | X2) are 0 in the first case, and
relatively large in the second case.

Yue Wang Quantifying Causal Effect



Problem of new methods

X1

&&

✏✏

X1

&&

✏✏

Y Y

X2

88

X2

88

X2 = X1 + ✏, Y = X2 + � X2 = X1 + ✏, Y = X1 + �
X1 ?? Y | X2 X2 ?? Y | X1
✏ and � are independent small noises.
These two joint distributions are almost the same, but the
resulting causal effects are very different.
CS and PMI may not be continuous with joint distribution
(under total variation distance) when both {X1} and {X2}
have all the information of Y contained in {X1,X2}.
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Markov boundary (MB)

Assume we have cause variables S = {X1, · · · ,Xn

} and the
result variable Y . A Markov boundary of Y , S1, is a subset of S,
which is minimal, and keeps its information of Y .

MI(S1,Y ) = MI(S,Y ),

8S2 $ S1, MI(S2,Y ) < MI(S,Y ).

This means Y ?? S\S1 | S1.
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Markov boundary (MB)

MB may not be unique. (Set X1 = X2 in the above
example.)
Assume MB is unique. A cause variable inside MB has
positive irreplaceable predict power of Y , and a cause
variable outside MB has zero irreplaceable predict power
of Y . Therefore the unique MB should be exactly all the
cause variables with positive causal effect.
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Problem of new methods

When there are multiple MB, both CS and PMI are not
directly defined. (Contains 0/0 in the expression.)
Try to use continuation: choose a sequence of distributions
(for which CS and PMI are defined) converging to the
original distribution, and check whether the corresponding
CS and PMI converge.
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Problem of new methods

Theorem
In any arbitrarily small neighborhood of a distribution with

multiple MB, CS (also PMI) can take any value in an interval

with positive length.

When there are multiple MB, both CS and PMI cannot be
well-defined.
Similar to the behavior of a complex function near an
essential singularity.
Calculating CS and PMI in such case is not numerically
feasible.
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Sketch of the proof

Construct two sequences of distributions, both of which
converge to the original distribution.
CS (or PMI) of two sequences always exist, but converge
to different values.
Distribution of one sequence can continuously transform
into distribution of the other sequence, during which CS (or
PMI) is always defined.
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Purpose

We have cause variables S = {X1,X2, · · · ,Xn

} and result
variable Y .
Our purpose is to quantify the effect of a causal
relationship X1 ! Y .
We propose several criteria for a “good” causal quantity.
We focus on the case where MB is unique. In such case,
the unique MB should be exactly all the variables with
positive causal effect.
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Criteria for quantifying causal effect

C0. The effect of X1 ! Y is identifiable from the joint
distribution of cause variables and result variable.
C1. If there is unique MB M, and X1 /2 M, then the effect
of X1 ! Y is 0.
C2. If there is unique MB M, and X1 2 M, then the effect
of X1 ! Y is at least CMI(X1,Y | M\{X1}).
C3. The effect of X1 ! Y is a continuous function of the
joint distribution.
CMI fails in C2. CS and PMI fail in C3.
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An impossibility theorem

Theorem
Assume in a distribution, Y has multiple MB. X1 belongs to at

least one MB, but not all MB. Then in any neighborhood of this

distribution, the effect of X1 ! Y cannot be defined while

satisfying criteria C0–C3.
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Sketch of proof

For variable X1, we define X1 with ✏-noise to be X

✏
1, which

equals X1 with probability 1 � ✏, and equals an independent
noise with probability ✏. Denote all cause variables by S.

Lemma (Strict Data Processing Inequality)
S1 is a group of variables without X1,Y. If we add ✏-noise on X1
to get X

✏
1, then CMI(X

✏
1,Y | S1)  CMI(X1,Y | S1), and the

equality holds if and only if CMI(X1,Y | S1) = 0.

Lemma
Assume Y has multiple MB. For one MB M0, if we add ✏ noise

on all variables of S\M0, then in the new distribution, M0 is the

unique MB.
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Sketch of proof

Assume X1 2 M0, X1 /2 M1 for MB M0,M1.
We can add ✏-noise on S\M1, such that M1 is the unique
MB. Criterion C1 shows that the effect of X

✏
1 ! Y is 0.

We can add ✏-noise on S\M0, such that M0 is the unique
MB. Criterion C2 shows that the effect of X1 ! Y is at least
CMI(X1,Y | M0\{X1}) > 0.
Let ✏ ! 0. Criterion C3 shows that the effect of X1 ! Y

should be at least CMI(X1,Y | M0\X ), and should be 0.
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Summary

Quantifying causal effect with multiple MB is an essentially
ill-posed problem.
When a distribution with unique MB is close to another
distribution with multiple MB, a reasonable causal quantity
is either very small (CMI) or fluctuate violently (CS, PMI).
Therefore in such case, quantitative method is not feasible.
A practical problem: detecting whether MB is unique from
data.
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Algorithms

Algorithm 1: An assumption-free algorithm for determining the
uniqueness of MB

(1) Input
Observations of S = {X1, . . . ,Xk

} and Y

(2) Set E = ;
(3) For i = 1, . . . , k ,

Test whether X

i |= Y | S \ {X

i

}
If X

i

6?? Y | S \ {X

i

}
E = E [ {X

i

}
(4) If Y |= S | E

output: Y has a unique MB
Else

output: Y has multiple MB
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Algorithms

Algorithm 2: An assumption-free algorithm for producing one
MB

(1) Input
Observations of S = {X1, . . . ,Xk

} and Y

(2) Set M0 = S
(3) Repeat

Set X0 = argmin

X2M0 �(X ,Y | M0 \ {X

i

})
If X0 |= Y | M0 \ {X0}

Set M0 = M0 \ {X0}
Until X0 6?? Y | M0 \ {X0}

(4) Output M0 is a MB
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Algorithms

Algorithm 3: A general algorithm for determining the
uniqueness of MB

(1) Input
Observations of S = {X1, . . . ,Xk

} and Y

Algorithm ⌦ which can correctly produce one MB
(2) Set M0 = {X1, . . . ,Xm

} to be the result of Algorithm ⌦ on S
(3) For i = 1, . . . ,m,

Set M
i

to be the result of Algorithm ⌦ on S | {X

i

}
If Y |=M0 | M

i

Output Y has multiple MB
Terminate

(4) Output Y has a unique MB
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Algorithms

Algorithm 4: An assumption-free algorithm for determining the
uniqueness of MB

(1) Input
Observations of S = {X1, . . . ,Xk

} and Y

(2) Set M0 = {X1, . . . ,Xm

} to be the result of Algorithm 2 on S
(3) For i = 1, . . . ,m,

If Y |= Xi

| S \ {X

i

}
If X

i

6?? Y | S \ {X

i

}
Output Y has multiple MB
Terminate

(4) Output Y has a unique MB
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Algorithms performances
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Figure: Success rates and average time costs per execution (in
seconds) of Algorithms 1 (red circle), 3-KI (green ‘x’), 3-AF (blue ‘+’),
4 (black diamond) with different numbers of observations in Case A.
Number of observations and time costs are in logarithm.
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Algorithms performances
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Figure: Success rates and average time costs per execution (in
seconds) of Algorithms 1 (red circle), 3-KI (green ‘x’), 3-AF (blue ‘+’),
4 (black diamond) with different numbers of observations in Case B.
Number of observations and time costs are in logarithm.
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Algorithms performances
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Figure: Success rates and average time costs per execution (in
seconds) of Algorithms 1 (red circle), 3-KI (green ‘x’), 3-AF (blue ‘+’),
4 (black diamond) with different numbers of observations in Case C.
Number of observations and time costs are in logarithm.
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Thank you!
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