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Wasserstein Distance

Order p ≥ 1.

Metric space (X , ρ).

Two probability measures P and Q on X .

Wasserstein distance of order p:

Wp(P,Q) = inf [Eρp(X ,Y )]1/p

where the infinum is taken over all couplings (X ,Y ) ∼ (P,Q).

It is also called Kantorovich distance

Convergence in Wp = weak conv. + conv. of pth moments
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Relative Entropy

Metric space (X , d).

Two probability measures P and Q on X .

Relative Entropy or Kullback-Leibler divergence:

H(Q | P) = EP [ϕ ln(ϕ)] , ϕ :=
dQ
dP

,

if Q� P and ∞ otherwise.

This is a generalization of entropy of the distribution (p1, . . . , pn):

H(p) = −p1 ln p1 − . . .− pn ln pn.
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Talagrand Concentration Inequalities

We write P ∈ Tp(C ) if for every Q� P we have:

Wp(P,Q) ≤
√

2CH(Q | P).

We say P satisfies transportation-cost information inequality or
Talagrand concentration inequality of order p with constant C .

For 1 ≤ q < p, Tp(C ) is stronger than Tq(C ).
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Examples

Gaussian measure N (0, Id) satisfies T2(C ) with C = 1 on the
space Rd with the Euclidean norm.

Brownian motion W = (W (t), 0 ≤ t ≤ T ) satisfies T2(C ) with
C = T on C [0,T ] with the max-norm.

Pinsker inequality: Every P satisfies T1(C ) with C = 1/4 with
discrete metric ρ(x , y) = 1 for x 6= y .
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Applications: Gaussian Tail Estimate

1-Lipschitz function f : X → R: |f (x)− f (y)| ≤ ρ(x , y).

Theorem (Marton, 1996)

If P ∈ T1(C ), then for any 1-Lipschitz function f : X → R with
median m(f ) we have a Gaussian tail estimate

P(|f −m(f )| ≥ δ) ≤ 2 exp
(
−δ2/(8C )

)
, δ ≥ 2

√
2C log 2.

In fact, the converse is also true: Gaussian tail implies T1.

Theorem (Bobkov, Gotze, 1999; Djellout, Guillin, Wu, 2004)

If P has first moment on X , then P ∈ T1(C ) if and only if for all
1-Lipschitz functions f : X → R with

∫
f dP = 0, and all a > 0,∫

eaf dP ≤ ea
2C/2.
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Importance of Order 2

If P,Q ∈ T2(C ), then P×Q ∈ T2(C ) on the product space X ×X
with distance

ρ2((x1, y1), (x2, y2)) =
[
ρ2(x1, x2) + ρ2(y1, y2)

]1/2
.

This property holds only for order 2. (Ledoux, 2001)

Poincare inequality Varµ(f ) ≤ C
∫
|∇f |2 dµ follows from T2(C ).
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Finer Structure

Any probability measure with Gaussian tail satisfies T1.

A Bernoulli measure on {0, 1} does not satisfy Tp for p > 1.

Therefore, any measure with disconnected support (where
components are at a positive distance from each other) does not
satisfy Tp for p > 1.
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Stochastic Differential Equations

The process X = (X (t), t ≥ 0) in R1 satisfies

dX (t) = g(t,X (t))dt + σ(t,X (t))dW (t), X (0) = x .

Bounded σ: |σ(t, x)| ≤ Kσ. Lipschitz g and σ:

|g(t, x)− g(t, y)| ≤ Lg |x − y |, |σ(t, x)− σ(t, y)| ≤ Lσ|x − y |,

Then X in C [0,T ] satisfies T2(CT ) with

CT := 3K 2
σT exp

[
3T 2L2g + 12L2σT

]
.

Similarly in Rd , with Euclidean norm and Frobenius matrix norm.

(Pal, 2012)
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Proof Sketch

For every Q� P, there exist a process Z such that, under Q,

W̃ (t) = W (t)−
∫ t

0
Z (s) ds, is a Brownian motion;

H(Q | P) =
1

2
EQ
∫ T

0
Z 2(t) dt.

Couple (P,Q) as follows under Q:

dX (t) = g(t,X (t))dt + σ(t,X (t))Z (t)dt + σ(t,X (t))dW̃ (t),

dY (t) = g(t,Y (t))dt + σ(t,Y (t))dW̃ (t), X (0) = x .

Apply martingale inequalities and Gronwall’s lemma to prove

EQ max
0≤t≤T

|X (t)− Y (t)|2 ≤ CT · EQ
∫ T

0
Z 2(t) dt.
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Stochastic Heat Equation

Unknown function: u(t, x), t ≥ 0, 0 ≤ x ≤ 1.

∂u

∂t
= Lu(t, x) + g(x , u(t, x)) + σ(x , u(t, x)) Ẇ (t, x).

Operator: L = 1
2
∂2

∂x2
(Laplace in 1D)

Initial condition: u|t=0 = u0(x), deterministic.

Boundary condition: u|x=0 = u|x=1 = 0 (Dirichlet).

Space-time white noise: W (t, x), “flickers” of independent noise
at every point (t, x).
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Mild Solution

Defined as a function u(t, x), satisfying

u(t, x) =

∫
R
u0(y)G (t, x , y) dy

+

∫
R

∫ t

0
g(y , u(s, y))G (t − s, x , y)ds dy

+

∫
R

∫ t

0
σ(y , u(s, y))G (t − s, x , y)W (ds, dy).

G (t, x , y) : Fundamental solution (heat kernel) of operator L with
given boundary conditions; transition density of the corresponding
stochastic process (absorbed Brownian motion on [0, 1])
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Assumptions

Drift coefficient g : |g(x , u)− g(x , v)| ≤ L|u − v |.
Diffusion coefficient σ ≡ 1.

Solution exists and is unique, is a.s. continuous.

Works only in dimension 1: For spatial dimension 2 or more, the
solution to the stochastic heat equation as a function does not
even exist!
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Main Result

Consider the max-norm on the space C ([0,T ]× [0, 1]) of
continuous functions u : [0,T ]× [0, 1]→ R .

Theorem (Khoshnevisan, S, 2017)

The distribution of u satisfies T2(C ) in the space
C ([0,T ]× [0, 1]), with

C = 2GT exp(2L2T 2), GT := π−1/2
√
T .
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Proof Sketch

Similarly to SDE, we represent Q� P by Girsanov transformation:
There exists a field Z (t, x) such that, under Q,

W̃ (dt, dx) = W (dt, dx)− Z (t, x) dt dx ,

is a space-time white noise. Moreover,

H(Q | P) =
1

2
EQ
∫ T

0

∫
R
Z 2(t, x)dt dx .

Couple (P,Q) via solutions of SPDE.
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Other Operators

Similar results hold for other operators L instead of Laplacian:

fractional Laplacian: α-stable Lévy process

general second-order differential operator:
stochastic differential equation

and different boundary conditions:

Neumann: ux |x=0 = ux |x=1 = 0: reflected process

periodic: u|x=0 = u|x=1 , ux |x=0 = ux |x=1:
process on the circle

Need GT := sup
0≤x≤1

∫ T

0

∫ 1

0
G 2(t, x , y) dy dt.
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Another Result

Instead of C ([0,T ]× [0, 1]), take L2([0,T ]× [0, 1]), with L2-norm.

Diffusion σ is not necessarily 1, needs to be Lipschitz and bounded.

Another result, with a complicated constant CT .
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