Sofic and percolative entropies of Gibbs measures on regular infinite trees

> Moumanti Podder Georgia Institute of Technology

Joint work with Tim Austin

March 30, 2018 Frontier Probability Days

Ising model on finite graphs

- Finite graph G = (V, E).
- $\mathcal{F} = \{\{v_1, v_2\} : \{v_1, v_2\} \text{ is an edge}\}.$
- Set of spins $\{-1,1\}^V$.
- Interaction Φ defined on the edges. For spin configuration $\sigma \in \{-1, 1\}^V$,

$$\Phi\left(\sigma_{\{v_1,v_2\}}\right) = \beta\sigma_{v_1}\sigma_{v_2}.$$

- β called *inverse temperature*.
- Ising measure μ defined as

$$\mu(\sigma) \propto \exp\left\{\sum_{\{v_1, v_2\}\in E} \beta \sigma_{v_1} \sigma_{v_2}\right\}, \quad \sigma \in \{-1, 1\}^V.$$

▶ The exponent, called *Hamiltonian*, denotes total energy of system.

Ising model on infinite graphs

- Cannot be defined directly as Hamiltonian, being an infinite sum, may diverge.
- ▶ Defined via consistency conditions *DLR equations*.
- G = (V, E) infinite graph. Call µ on {-1,1}^V a Gibbs state for Ising model if for every finite U ⊆ V and spin configuration η on V \ U, marginal of µ on U coincides with finite Gibbs measure on U with boundary condition η.
- Ising measure μ need not be unique on infinite graphs.

The infinite graph we are interested in

- The infinite *d*-regular tree, T_d .
- Root of T_d denoted ϕ .
- For $r \in \mathbb{N}$, let T_d^r denote closed ball of radius r around ϕ .
- ► Let δT_d^r denote the boundary of T_d^r , i.e. all vertices at distance r from ϕ .

Ising measures on T_d

- ► Let μ_+^r Gibbs measure on T_d^r conditioned on all positive spins on δT_d^r . Let μ^+ be weak^{*} limit of μ_+^r as $r \to \infty$.
- ► Let μ_{-}^{r} Gibbs measure on T_{d}^{r} conditioned on all negative spins on δT_{d}^{r} . Let μ^{-} be weak^{*} limit of μ_{-}^{r} as $r \to \infty$.
- Let μ^r Gibbs measure on T_d^r with no restrictions on boundary conditions (called *free boundary*). Let μ be weak^{*} limit of μ^r as $r \to \infty$.
- ▶ When Ising measure non-unique, the marginals at root ϕ of μ_+^r , μ_-^r and μ^r , even for r large, are distinct. The impact of boundary conditions does not decay with $r \to \infty$.
- ► Exists critical β_c such that for lower β , there is a unique Ising Gibbs measure.

More on the set-up for our result

- Finite *d*-regular graphs $G_n = (V_n, E_n)$.
- ► $\{G_n\}$ locally converges to T_d , i.e. for each $r \in \mathbb{N}$ and uniformly random I in V_n ,

 $P[\text{neighbourhood } B(I,r) \text{ isomorphic to } T_d(r)] \to 1 \text{ as } n \to \infty.$

B(I,r) is the closed ball of radius r around I.

• In ergodic theory, such a sequence called *sofic approximation* to T_d .

Aim of the result

- ▶ No direct definition of entropy for Ising measure μ on T_d , since infinite sample space $\{-1, 1\}^{T_d}$.
- ▶ Two notions of entropy available:
 - Use Shannon entropies $H(\mu_n)$ of Gibbs measures μ_n on G_n , where μ_n obtained from μ via a suitable *pull-back*.
 - Use *percolative entropy* $H_{\text{perc}}(\mu)$ of μ function of T_d and Φ alone.
- ► We show, under strong mixing conditions, that $|V_n|^{-1}H(\mu_n)$ converges to $H_{\text{perc}}(\mu)$ as $n \to \infty$.
- ► As strong mixing conditions used, our result is true in high temperature regimes.

Shannon entropy

- G = (V, E) finite graph.
- μ Ising measure on G.
- ▶ Shannon entropy $H(\mu)$ defined as

$$H(\mu) = -\sum_{\sigma \in \{-1,1\}^V} \mu(\sigma) \log \mu(\sigma).$$

• Specific entropy defined as $|V|^{-1}H(\mu)$.

Percolative entropy – definition

- ▶ μ Ising measure on T_d . Random configuration $\sigma \sim \mu$.
- ► For $S \subseteq T_d$, set $H_{\mu}(\sigma_{\phi}|\sigma_{S\setminus\phi})$ Shannon entropy at root ϕ conditioned on configuration $\sigma_{S\setminus\phi} \in \{-1,1\}^{S\setminus\phi}$.
- ► S random subset of T_d , where each vertex included, independently, with probability p. Let θ_p denote law of S.
- ▶ *Percolative entropy* defined as

$$H_{\text{perc}}(\mu) = \int_0^1 \int_{S \subseteq T_d} H_{\mu} \left(\sigma_{\phi} | \sigma_{S \setminus \phi} \right) \theta_p(dS) dp.$$

Story behind percolative entropy

- ▶ Introduced by ergodic theorist John C. Kieffer in "A generalized Shannon-McMillan theorem for the action of an amenable group on a probability space".
- \blacktriangleright Γ a countable group.
- ► $\{U_g : g \in \Gamma\}$ collection of i.i.d. U[0, 1] random variables.
- Almost surely all distinct hence induce random total ordering on Γ as follows: $g \prec h$ if $U_g < U_h$.
- \blacktriangleright Total entropy per element in Γ can be defined, via chain rule, by the formal average

$$\frac{1}{|\Gamma|} \sum_{g \in \Gamma} H(U_g | \{U_h : h \prec g\}).$$

• Percolative entropy is a rigorous version of the above, and makes sense even when $|\Gamma| = \infty$.

Our result

Theorem (Austin, P.)

- μ Ising measure on T_d .
- μ exhibits strong spatial mixing (strong spatial mixing \implies weak spatial mixing \implies uniqueness of Ising measure).
- ▶ μ_n Gibbs measure on $\{-1, 1\}^{V_n}$ derived from μ via suitable pull-back map.

Then the limit of specific Shannon entropies of μ_n 's equals percolative entropy of μ , i.e.

$$\lim_{n \to \infty} \frac{1}{|V_n|} H(\mu_n) = H_{\text{perc}}(\mu) \,.$$

Pull-back maps

- Fix $v \in V_n$ and any surjection $\varphi_v : T_d \to V_n$ with $\varphi_v(\phi) = v$.
- ► For configuration $\sigma \in A^{V_n}$, set *pull-back configuration centered at* v as

$$\Pi_{v,\varphi_v}(\sigma) = \left(\sigma_{\varphi_v(g)} : g \in T_d\right).$$

- Note that $\Pi_{v,\varphi_v}(\sigma) \in A^{T_d}$.
- Gibbs measure μ_n defined on A^{V_n} as

$$\mu_n(\sigma) \propto \exp\left\{\sum_{v \in V_n} \sum_{u \sim \phi} \beta \sigma_{\varphi_v(u)} \sigma_v\right\}$$

.

Strong spatial mixing

- ▶ For $r \in \mathbb{N}$, and η spin configuration on $T_d \setminus T_d^r$, let $\mu_{\phi, T_d^r, \eta}$ denote the marginal of the Ising measure μ at root ϕ conditioned on η .
- μ exhibits strong spatial mixing if

$$\max_{\eta,\tau} \left\| \left\| \mu_{\phi,T^r_d,\eta} - \mu_{\phi,T^r_d,\tau} \right\| \right\|_{\mathrm{TV}} \to 0,$$

where maximum taken over all spin configurations η , τ on $T_d \setminus T_d^r$.

 Our definition is more general, where we add arbitrary self-interactions, and convergence is uniform in this self-interaction.

Strong spatial mixing for well-known models

- In the uniqueness regime, Ising model on T_d exhibits strong spatial mixing, which can be deduced from results given in Noam Berger, Claire Kenyon, Elchanan Mossel, and Yuval Peres. "Glauber dynamics on trees and hyperbolic graphs".
- ▶ Dror Weitz in "Counting independent sets up to the tree threshold" showed strong spatial mixing for independent set model on T_d with activity parameter λ when $\lambda \leq \lambda_c(d) = \frac{(d-1)^{d-1}}{(d-2)^d}$.

Generalization and further questions of interest

Our result holds for very general statistical models. The interaction should be translation invariant, of bounded range, and exhibit strong spatial mixing.

Further questions:

- What about removing assumption of strong spatial mixing? We no longer necessarily have uniqueness of Gibbs measure on T_d .
- ▶ Related to above what happens at low temperatures?
- ▶ What about random trees (may be with bounded degree)?

Suggestions of other questions are most welcome.

Thank you!