Anomalous Diffusion and the Generalized

Langevin Equation

Hung Nguyen
Tulane University

Frontier Probability Days, Oregon State University
March 30, 2018



Overview

The Generalized Langevin Equation (GLE)

Formal definition:

t

m)'%(t)——fyi((t)—d)'(x(t))—/ K(t — s)x(s)ds + F(t) + /2y W(t)

— 00

The GLE models the motion of microparticles moving in viscoelastic fluids.

@ Introduction: Anomalous diffusion and the linear GLE
@ GLE in a non-linear potential well with a special class of power-law
memory kernels
Goal: Investigating unique ergodicity in non-linear potential wells.



|. Anomalous diffusion and the linear GLE
(joint work with S. McKinley)



Linear GLE

Classical Langevin Equation (LE): Describes the diffusion of a particle
with mass m in a viscous medium.

mv(t) = —yv(t) + /2y W(t),

v(t) : velocity of the particle at time t

~ : drag constant
W(t) : standard Brownian Motion

Note: take kg T = 1 throughout the talk.
t
x(t) == / v(s)ds, position at time t
0

= Mean-Squared Displacement (MSD) E [x?(t)] ~t, t— oo,
(Asymptotically diffusion)
Here, f(t) ~ g(t), t — oo means lim; f(t)/g(t) = c € (0, 0).



Anomalous Diffusion is observed in nature, particularly in viscoelastic
fluids, e.g. mucus and cytoplasm.

E[x(t)’] ~t* t—oo, a#l.

e a € (0,1): Sub-diffusion
@ « > 1: Super-diffusion
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@ M. Weiss, M. Elsner, F. Kartberg, and T. Nilsson. Anomalous subdiffusion is a measure for cytoplasmic crowding in
living cells. Biophysical journal 87, no. 5 (2004): 3518-3524.
@ I. Golding and E. Cox. Physical nature of bacterial cytoplasm. Physical review letters 96, no. 9 (2006): 098102.

@ D. Hill, P. Vasquez, J. Mellnik, S. McKinley, A. Vose, F. Mu, A. Henderson, S. Donaldson, N. Alexis, R. Boucher, and
M. Forest. A biophysical basis for mucus solids concentration as a candidate biomarker for airways disease. PloS one,
9(2) (2014), p.e87681.

@ etc.



Assumption (Kubo 1966, Mason & Weitz 1995)

Fluctuation-Dissipation relationship

The memory kernel of the drag term is the same as the covariance of the
noise term.

Langevin Generalized Langevin

Force due to drag —yv(t) — [ K(t —s)v(s)ds

Thermal fluctuation | /2y W(t) | F(t) with E[F(t)F(s)] = K(t — s)

Generalized Langevin Equation (GLE)

{m\'/(t) = — [*_K(t — s)v(s)ds + F(t),
E[F(t)F(s)] = K(t — s).



{m\'/(t) = — [ _K(t—s)v(s)ds + F(t),
E[F(t)F(s)] = K(t - s),

GLE is able to produce subdiffusive diffusion.
Question: What type of memory K(t) = subdiffusive diffusion?

Physicists’ Guess:(Morgado, 2002) x(t) = fot v(s)ds,

ae(0,1), K(t)~t % t— o0,

= E [x(t)*] ~t*, t— o0



{m\'/(t) = — [ _K(t—s)v(s)ds + F(t),
E[F(t)F(s)] = K(t - s),

GLE is able to produce subdiffusive diffusion.

Question: What type of memory K(t) = subdiffusive diffusion?

Physicists’ Guess:(Morgado, 2002) x(t) = fot v(s)ds,

ae(0,1), K(t)~t % t— o0,
= E [x(t)*] ~t*, t— o0

Theorem (Kou, 2008) J

a € (0,1), K(t) = |t|™ = E [x(t)’] ~t*, t— co.




Stationary statistics of MSD

mv(t) = — fioo K(t — s)v(s)ds + F(t),
E[F(t)F(s)] = K(t — s).

Well-posedness:
@ Theory of stationary random distributions, (Ito 1954) + Fourier
Analysis
@ (Weak) Solutions are understood as an operator
V :Dom(V) C S — L%(Q)
o v(t) :=(V,d:) and x(t) := (V, 1| q) when they are well-defined.

Theorem 1 (McKinley, N., 2017, arXiv:1711.00560 (in review))

Under extra assumptions on the memory kernel K(t),

K ¢ L'(R)
1
R I Ja e (0,1), K(t) ~t™*, t = 0
Asymptotics | E [x(t)?] ~ t, E [x(£)?] ~ t*,
of MSD t— oo t — 00




[I. GLE in a potential well with a class of power-law memory kernels
(joint work with N. Glatt-Holtz, D. Herzorg and S. McKinley)



GLE in potential well

Formal definition of GLE in a potential well with viscous drag: m,~ > 0,

{mk(t) = —x(t) = ¥'(x(t)) — JI K(t = s)x(s)ds + F(t) + V27 W(2),
E[F(t)F(s)] = K(t — s).

where

e ®(x): potential well.

e W(t): standard Brownian motion.
(t): stationary Gaussian process with E[F(t)F(s)] = K(|t — s|).
0

e F
@ K(t) ~t™* t— o0, a>0.



{m)'é(t) = —yx(t) — '(x(2)) — [* K(t — s)x(s)ds + F(t) + 27 W(2),
E[F(t)F(s)] = K(t — s).

@ Theory of linear stationary Gaussian processes does not apply.
Question: Does there exist a measure 7 on R? s.t. Vf bounded

1 T

“lim = f(x(t),v(t))dt:/ f(u,v)m(du,dv).”

t—00 T 0 R2



{m)'é(t) = —yx(t) — '(x(2)) — [* K(t — s)x(s)ds + F(t) + 27 W(2),
E[F(t)F(s)] = K(t — s).

@ Theory of linear stationary Gaussian processes does not apply.

Question: Does there exist a measure ™ on R? s.t. Vf bounded
1 T
“lim = f(x(t),v(t))dt :/ f(u,v)m(du,dv).”

t—00 T 0 R2

= We will use a Markov representation of the GLE
Mori, 1965; Zwanzig, 1970 & 2001; Kupferman 2004; Goychuk, 2009;
Pavliotis, 2014.

Well-posedness, stationary structure, unique ergodicity??



A toy model with a double-well potential

dx(t) = —9'(x(t))dt + dW(t), The density of the unique invariant
probability measure:

000 = 1~ b+ ple) 0
il WW 1 d(x)
Faua W
| 1 1 )

Figure: Trajectory of x(t)




Markov representation for exponentials

Theorem (Doob’s Theorem)

F(t) stationary Gaussian & E[F(t)F(s)] = K(|t — s|) = ce Mt
= F(t) is an Ornstein-Uhlenbeck process, i.e.

F(t) = ve(e Af/ro+\/_/ NE=dna(s)),

where Fy ~ N(0,1).

ms(t) = —(t) — ©'(x(1)) + VT Wo(2)
- / " Kt - s)x(s)ds + F(1)

—00



Markov representation for exponentials

Theorem (Doob’s Theorem)

F(t) stationary Gaussian & E[F(t)F(s)] = K(|t — s|) = ce Mt
= F(t) is an Ornstein-Uhlenbeck process, i.e.
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Markov representation for exponentials

Theorem (Doob’s Theorem)

F(t) stationary Gaussian & E[F(t)F(s)] = K(|t — s|) = ce Mt
= F(t) is an Ornstein-Uhlenbeck process, i.e.

F(t) = ve(e Af/ro+\/_/ NE=dna(s)),
where Fy ~ N(0,1).

= —yx(t) — ®'(x(1)) + /27 Wo(t)
—c /t e M=) x(s)ds — /ce M Fy — \/ﬁ/t e M) d W (s)
o 0

mx(t)



Markov representation for exponentials

Theorem (Doob’s Theorem)

F(t) stationary Gaussian & E[F(t)F(s)] = K(|t — s|) = ce At
= F(t) is an Ornstein-Uhlenbeck process, i.e.

F(t) = f( Af/fo+\/_/ ME=D AW (s ))

where Fy ~ N(0,1).

mx(t) = —yx(t) — &' (x(t)) + /27 Wo(t)
\f/ Aok ds+e”Fo+f/ ‘A(ts)dW()}

z

_ {mﬂt = (t) - (x(8) + VI V(1) — vz (1)
2(t) = =Az(t) + Vex(t) + V2AWA(1)



Markov representation for finite sum of exponentials

K(t) = ZL\Izl e M g A >0 k=1,...,N

dx(t) = v(t)dt
N
mdv(t) = | —v(t) = ®'(x(1)) = D vaz(t) | dt +/2ydWo(t),
k=1

dzi(t) = —Akz(t)dt + /exv(t)dt + /2 ed Wi (t), k= 1,..., N.

@ R. Kupferman. Fractional kinetics in Kac-Zwanzig heat bath models. Journal of statistical physics 114, no. 1-2 (2004):
291-326.

@ J. Fricks, L. Yao, T. Elston and M. Gregory Forest. Time-domain methods for diffusive transport in soft matter. SIAM
journal on applied mathematics 69, no. 5 (2009): 1277-1308.

@ 1. Goychuk. Viscoelastic subdiffusion: From anomalous to normal. Physical Review E 80, no. 4 (2009): 046125.

@ M. Ottobre and G. Pavliotis. Asymptotic analysis for the generalized Langevin equation. Nonlinearity 24, no. 5 (2011):
1629..

@ G. Pavliotis. Stochastic processes and applications: Diffusion processes, the Fokker-Planck and Langevin equations. Vol
60. Springer, 2014.

@ etc.



Markov approximation for power-tail memory kernel

Proposition (Abate, 1999)

Given o, 3 > 0, define K(t)

K(t) = Z cre M where ¢ =
k>1

Then, K(t) ~ t™, t — oc.

1
kl+tapB’

1

)\kzma

k> 1.




Markov approximation for power-tail memory kernel

Proposition (Abate, 1999)

Given o, 3 > 0, define K(t)

1 1
K(t) = E Cke_)\k|t|, where Ck = W’ )\k = W’ k > 1.
k>1

Then, K(t) ~t=%, t — c0.

We arrive at
dx(t) = v(t)dt
mdv(t) = (= w(t) - ¢/(x(t) - Z Verzi(t) )de + /27dWo(t)

k=1
de(l') = —/\ka(t)dt + \/av(t)dt + 4/ 2A,d Wk(t), k=1,2,....



K(t) = Z cke Mt where ¢ =

k>1

1

Recall Theorem 1 for linear GLE,

E[F(t)F(s)] = K(t - s)

klt+aB’

1

Ak:ﬁ’

k> 1.

{m\'/(t) — — [t K(t — s)v(s)ds + F(t)

Kell, (a>1)

E [x(t)?] ~t,

t — oo, (diffusion)

a € (0,1), K(t) ~t™@

E [x(t)?] ~ t*,

t — 00, (subdiffusion)

a=1, K(t)~t!

N/A




1 1

WreB M E

dx(t) = v(t)dt, = PR

mdv(t) = (= (1) = & (x(8) = D VEze(2) ) dt + v/27dWo(
k=1

t),

dz(t) = —Xgzk(t)dt + /cev(t)dt + /22 dWy (t), k=1,2,....

Diffusion, | Critical case
a>1 a=1

Subdiffusion,
O<axl1

Well-posedness

Existence of invariant
measure

Uniqueness of invariant
measure




Well-posedness

Potential ® € C*°(RR) satisfies

c(d(x) +1) > x°.

Examples:
@ Polynomial of even order, e.g., ®(x) = x?", n € N*t.
Q d(x)=e"

Definition

For s € R, define

H_.= X:(x,v,zl,...,zk,...):x2+v2+Zk_2sz£<oo ,
k>1

equipped with the norm HX”%—LS =x2+vi4+ Yo k222

Note: (2 = Ho.
D



H s = {X(Xavvzlv"'7zk""):X2+V2+Zk2SZ£<OO}

k>1

1 1

= k1+(157 )‘k = W’

mdv(t) = (= yv() = ®'(x(£) = D vez(t) )de + /27 Wo 1),
k=1

dx(t) = v(t)dt, Ck

de(t) = —)\kzk(t)dt + J?kv(t)dt + 4/ 2)\de;((1'), k=1,2,....

Proposition (Glatt-Holtz, Herzog, McKinley, N., 2018, in prep)

Under appropriate assumptions, for all initial conditions Xy € H_s, there
exists a unique strong solution X(-, Xp) : Q x [0,00) — H_s.




1 1

WreB M E

dx(t) = v(t)dt, = PR

mdv(t) = (= (1) = & (x(8) = D VEze(2) ) dt + v/27dWo(
k=1

t),

dzp (t) = —Agzi(t)dt + /Cv(t)dt + /22X, dWi (t), k=1,2,....

Diffusion, | Critical case | Subdiffusion,
a>1 a=1 O<axl
Well-posedness v

Existence of invariant
measure

Uniqueness of invariant
measure




Invariant measure for finite-dimensional system

dx(t) = v(t)dt
N

mdv(t) = (= w(t) = &' (x(1) = D Vaz(0))dt + 27dWo(1),

k=1
dzy(t) = =Xz (t)dt + /Cev(t)dt + /22 dWi (L), k=1,..., N.

Theorem (Pavliotis, 2014)

Let py be the density probability measure on RN*2 given by

mV2 N ZE
p(X7 Vazly---,ZN)OceXP _(D(X)_T_ ? .
k=1

Then py is the density of the unique invariant probability measure for the
finite-dimensional system.

Note: pn does not depend on ¢, Ax!



Existence of invariant measure for infinite-dimensional

system

Definition
Denote by p the probability measure on R given by
u= (c e""(x)dx) x N(0,1/m) x HN(O, 1).

k>1

1, s>1/2
0, s<1/2
H_ .= {X: (x, v,zl,...,zk,...):x2+v2+zk21 k=272 < oo}

, Where

Note: pu(H_s) = {



Existence of invariant measure for infinite-dimensional

system

Definition
Denote by p the probability measure on R given by
u= (c e"b(x)dx) x N(0,1/m) x HN(O, 1).

k>1

1, s>1/2
Note: pu(H_s) = {O s<1/2

H_ .= {X: (x, v,zl,...,zk,...):x2+v2+zk21 k=272 < oo}

, where

Theorem (Glatt-Holtz, Herzog, McKinley, N., 2018, in prep)

Under appropriate assumptions and s > 1/2, p is an invariant measure.




Finite-dimensional space: (Pavliotis 2014) it suffices to check that

where p is the density of the candidate measure and L* is the dual of L,
the infinitesimal generator.



Finite-dimensional space: (Pavliotis 2014) it suffices to check that

L*p =0,

where p is the density of the candidate measure and L* is the dual of L,
the infinitesimal generator.

Infinite-dimensional space: V1) € C2(H_s), we show that

W)= [ Loxu(ex) =o
Then, by an approximating argument,

Prip(X)u(dX) = P(X)u(dX),
H—s H—s

where Pup(X) = Ex[1p(X(t))] is the Markov process associated with L.



1 1
dx(t) = v(t)dt, % = (Tiap’ Ak = B

mdv(t) = (= (1) — &' (x(8) = 3 Vaz(®) ) dt + \/27dWo (o),
k=1

dz (t) = —Agzi(t)dt + /Cev(t)dt + /22X d W (t), k=1,2,....
Diffusion, | Critical case Subdiffusion,
a>1 a=1 O<axl
Well-posedness v

Existence of invariant | u = (ce‘d’(x)dx) x N(0,1/m) x [1,>1 N(0,1)

measure is invariant
Uniqueness of invariant

measure




Uniqueness of invariant measure in diffusion

1 1

= das T g

dx(t) = v(t)dt, cx PR

mdv(t) = (= (1) = & (x(6) = D V() ) dt + v/27dWo (1),
k=1
dz (t) = =Xz (t)dt + /Sev(t)dt + /22X d W (t), k=1,2,....
Theorem (Glatt-Holtz, Herzog, McKinley, N., 2018, in prep)

Under appropriate assumptions and assume that o > 1, u is the unique
invariant probability measure.




Strategy: Asymptotic coupling

Goal: (Hairer, 2002) uniqueness is implied if we can show that
VX0, Xo € H s,

IP’{ Jim [[X(Xo, ) = X(Xo, t)]| s = o} ~1

This holds if ® is a 4th-degree polynomial.



Strategy: Asymptotic coupling

Goal: (Hairer, 2002) uniqueness is implied if we can show that
VX0, Xo € H s,

IP’{ Jim [[X(Xo, ) = X(Xo, t)]| s = o} ~1

This holds if ® is a 4th-degree polynomial.
More recent results show that

IP’{ Jim [X(Xo, ) = X(Xo, t)]| 5 0} > 0 works!

@ Hairer, Mattingly, Scheutzow, 2011; Glatt-Holtz, Richards, Mattingly,
2015; Kulik, Scheutzow, 2016.



Constructing stochastic control.

dX(t) = LX(t)dt + W(X(t))dt + BdW(t)
dX(t) = LX(t)dt + W(X(t))dt + B (dW(t) + U(X(t), X(t))1(s<n)dt)

~~

dW(t)

Setting X(t) = X(t) — X(t). Pick U(X(t),X(t)) and T s.t.
o U(X(t), X(t)) forces X(t) — 0, t — oc.

e 7 shuts down U(X(t), X(t)) if X(t) A 0



Constructing stochastic control.

dX(t) = LX(t)dt + W(X(t))dt + BdW(t)
dX(t) = LX(t)dt + W(X(t))dt + B (dW(t) + U(X(t), X(t))1(s<n)dt)

dW(t)

Setting X(t) = X(t) — X(t). Pick U(X(t),X(t)) and T s.t.
o U(X(t), X(t)) forces X(t) — 0, t — oc.
o 7 shuts down U(X(t),X(t)) if X(t) 4 0

@ Girsanov shift W(t) (t)+ [y U ))1(,§T)dr satisfies
W(-) << W(-) on [0, c0).

O P{|X(t)lp_, =0, t = oot =00} =1
“T is never activated < X(t) — 0 t — o0”

Q@ P{r =00} >0. “There is a chance that 7 is never activated”



Choice of U: U(X(t), X(t)) = (0, u(X(t), X(¢)),0,...)

dx(t) = v(t)dt,
mdv(t) = (= yu(e) - [©/(x(6)) — ' (3(0)]= D Vaza(t) )de
k=1

+ u(X(t), X(t))dt,
dzi(t) = —MzZi(t)dt + /av(t)dt, k=1,2,....




Choice of U: U(X(t), X(t)) = (0, u(X(t), X(¢)),0,...)

dx(t) = v(t)dt,
mdv(t) = (= yu(e) - [©/(x(6)) — ' (3(0)]= D Vaza(t) )de
k=1

+ u(X(t), X(t))dt,
dzi(t) = —MzZi(t)dt + /av(t)dt, k=1,2,....

o u(X(£), X (1)) = —eX(£)+[®/(x(£)) — &' (X(1))+ 3, Varz(t)
“u cancels the non-linear term and the memory”
_ {dx(t) = v(t)dt,

deterministic, dissipative
dv(t) = (—v(t) - cx(t))dt, b



Choice of U: U(X(t), X(t)) = (0, u(X(t), X(¢)),0,...)

dx(t) = v(t)dt,
mdv(t) = (= yu(e) - [©/(x(6)) — ' (3(0)]= D Vaza(t) )de
k=1

+ u(X(t), X(t))dt,
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o u(X(£), X (1)) = —eX(£)+[®/(x(£)) — &' (X(1))+ 3, Varz(t)
“u cancels the non-linear term and the memory”
_ {dx(t) = v(t)dt,
dv(t) = (—v(t) — cx(t))dt,
@ The structure of & + Lyapunov function +choice of 7
= X(t), v(t) force Zy(t) — 0, t = 0
= (a) + (b).

deterministic, dissipative



Choice of U: U(X(t), X(t)) = (0, u(X(t), X(¢)),0,...)

dx(t) = v(t)dt,
mdv(t) = (= yu(e) - [©/(x(6)) — ' (3(0)]= D Vaza(t) )de
k=1

+ u(X(t), X(t))dt,
dzi(t) = —MzZi(t)dt + /av(t)dt, k=1,2,....

o u(X(£), X(£) = —ex(t)+ &/ (x(£)) — O/ (R(e)]+ X771 Vaz(t)

“u cancels the non-linear term and the memory”

_ {dx(t) = v(t)dt,

dv(t) = (—v(t) — cx(t))dt,

@ The structure of & + Lyapunov function +choice of 7

= X(t), v(t) force Zy(t) — 0, t = 0

= (a) + (b).
o (c) requires [;* K(t)dt < oo < a > 1, (recall K(t) ~ t™, t — 00).

deterministic, dissipative



1 1
dx(t) = v(t)dt, % = (Tiap’ Ak = B

mdv(t) = (= (1) — &' (x(8) = 3 Vaz(®) ) dt + \/27dWo (o),
k=1

dz (t) = —Agzi(t)dt + /Cev(t)dt + /22X d W (t), k=1,2,....
Diffusion, | Critical case Subdiffusion,
a>1 a=1 O<axl
Well-posedness v
Existence of invariant | u = (ce‘d’(x)dx) x N(0,1/m) x [1,>1 N(0,1)
measure is invariant
Uniqueness of invariant )
g v Open question
measure




@ Use a Markovian system to represent GLE when memory kernel
K(t) ~ t™“, t — oo admits a form of infinite sum of exponentials.

@ There exists an invariant structure for the Markovian system.

@ Unique ergodicity is obtained in diffusive regime (o > 1).
The marginal distribution in (x, v) of the invariant probability
measure is given by

(%, v) o exp {—cb(x) - ’”2Vz}

which is independent of ¢, Ax.
@ Unique ergodicity when « € (0, 1] remains open question.



Thank You!



