Anomalous Diffusion and the Generalized Langevin Equation

Hung Nguyen Tulane University

Frontier Probability Days, Oregon State University March 30, 2018

Overview

The Generalized Langevin Equation (GLE)

Formal definition:

$$m\ddot{x}(t) = -\gamma \dot{x}(t) - \Phi'(x(t)) - \int_{-\infty}^{t} K(t-s)\dot{x}(s)\mathrm{d}s + F(t) + \sqrt{2\gamma}\dot{W}(t)$$

The GLE models the motion of microparticles moving in viscoelastic fluids.

- Introduction: Anomalous diffusion and the linear GLE
- Q GLE in a non-linear potential well with a special class of power-law memory kernels

Goal: Investigating unique ergodicity in non-linear potential wells.

I. Anomalous diffusion and the linear GLE (joint work with S. McKinley)

Linear GLE

Classical Langevin Equation (LE): Describes the diffusion of a particle with mass m in a viscous medium.

$$m\dot{\mathbf{v}}(t) = -\gamma \mathbf{v}(t) + \sqrt{2\gamma} \dot{W}(t),$$

v(t): velocity of the particle at time t

 γ : drag constant

W(t): standard Brownian Motion

Note: take $k_BT = 1$ throughout the talk.

$$x(t) := \int_0^t v(s) ds$$
, position at time t

 \Rightarrow Mean-Squared Displacement (MSD) $\mathbb{E}\left[x^2(t)\right] \sim t, \quad t \to \infty$, (Asymptotically diffusion)

Here, $f(t)\sim g(t),\ t o\infty$ means $\lim_{t o\infty}f(t)/g(t)=c\in(0,\infty).$

Anomalous Diffusion is observed in nature, particularly in viscoelastic fluids, e.g. mucus and cytoplasm.

$$\mathbb{E}\left[x(t)^2\right] \sim t^{\alpha}, \quad t \to \infty, \quad \alpha \neq 1.$$

- $\alpha \in (0,1)$: Sub-diffusion
- $\alpha > 1$: Super-diffusion

References

- M. Weiss, M. Elsner, F. Kartberg, and T. Nilsson. Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells. Biophysical journal 87, no. 5 (2004): 3518-3524.
- I. Golding and E. Cox. Physical nature of bacterial cytoplasm. Physical review letters 96, no. 9 (2006): 098102.
- D. Hill, P. Vasquez, J. Mellnik, S. McKinley, A. Vose, F. Mu, A. Henderson, S. Donaldson, N. Alexis, R. Boucher, and M. Forest. A biophysical basis for mucus solids concentration as a candidate biomarker for airways disease. PloS one, 9(2) (2014), p.e87681.
- etc.

Assumption (Kubo 1966, Mason & Weitz 1995)

Fluctuation-Dissipation relationship

The memory kernel of the drag term is the same as the covariance of the noise term.

	Langevin	Generalized Langevin
Force due to drag	$-\gamma v(t)$	$-\int_{-\infty}^t K(t-s)v(s)\mathrm{d}s$
Thermal fluctuation	$\sqrt{2\gamma}\dot{W}(t)$	$F(t)$ with $\mathbb{E}[F(t)F(s)] = K(t-s)$

Generalized Langevin Equation (GLE)

$$egin{cases} m\dot{v}(t) = -\int_{-\infty}^t K(t-s)v(s)\mathrm{d}s + F(t), \ \mathbb{E}\left[F(t)F(s)
ight] = K(t-s). \end{cases}$$

$$\begin{cases} m\dot{v}(t) = -\int_{-\infty}^{t} K(t-s)v(s)\mathrm{d}s + F(t), \\ \mathbb{E}\left[F(t)F(s)\right] = K(t-s), \end{cases}$$

GLE is able to produce subdiffusive diffusion.

Question: What type of memory $K(t) \Rightarrow$ subdiffusive diffusion?

Physicists' Guess: (Morgado, 2002)
$$x(t) = \int_0^t v(s) ds$$
,

$$egin{aligned} & lpha \in (0,1), \quad \mathcal{K}(t) \sim t^{-lpha}, \quad t o \infty, \ \\ & \Rightarrow \mathbb{E}\left[x(t)^2\right] \sim t^{lpha}, \quad t o \infty. \end{aligned}$$

$$\begin{cases} m\dot{v}(t) = -\int_{-\infty}^{t} K(t-s)v(s)\mathrm{d}s + F(t), \\ \mathbb{E}\left[F(t)F(s)\right] = K(t-s), \end{cases}$$

GLE is able to produce subdiffusive diffusion.

Question: What type of memory $K(t) \Rightarrow$ subdiffusive diffusion?

Physicists' Guess: (Morgado, 2002)
$$x(t) = \int_0^t v(s) ds$$
,

$$egin{aligned} & lpha \in (0,1), \quad \mathcal{K}(t) \sim t^{-lpha}, \quad t o \infty, \ \\ & \Rightarrow \mathbb{E}\left[x(t)^2\right] \sim t^{lpha}, \quad t o \infty. \end{aligned}$$

Theorem (Kou, 2008)

$$\alpha \in (0,1), K(t) = |t|^{-\alpha} \Rightarrow \mathbb{E}\left[x(t)^2\right] \sim t^{\alpha}, \quad t \to \infty.$$

Stationary statistics of MSD

$$\begin{cases} m\dot{v}(t) = -\int_{-\infty}^{t} K(t-s)v(s)\mathrm{d}s + F(t), \\ \mathbb{E}\left[F(t)F(s)\right] = K(t-s). \end{cases}$$

Well-posedness:

- ullet Theory of stationary random distributions, (Ito 1954) + Fourier Analysis
- (Weak) Solutions are understood as an operator $V: \mathsf{Dom}(V) \subset \mathcal{S}' \to L^2(\Omega)$
- $v(t) := \langle V, \delta_t \rangle$ and $x(t) := \langle V, 1_{[0,t]} \rangle$ when they are well-defined.

Theorem 1 (McKinley, N., 2017, arXiv:1711.00560 (in review))

Under extra assumptions on the memory kernel K(t),

	$K\in L^1(\mathbb{R})$	$\mathcal{K} otin L^1(\mathbb{R}) \ \exists \pmb{lpha} \in (0,1), \mathcal{K}(t) \sim t^{-\pmb{lpha}}, t ightarrow \infty$
Asymptotics of MSD	$\mathbb{E}\left[x(t)^2\right] \sim t,$ $t \to \infty$	$\mathbb{E}\left[x(t)^2 ight] \sim t^{lpha}, \ t o \infty$

II. GLE in a potential well with a class of power-law memory kernels (joint work with N. Glatt-Holtz, D. Herzorg and S. McKinley)

GLE in potential well

Formal definition of GLE in a potential well with viscous drag: $m, \gamma > 0$,

$$\begin{cases} m\ddot{x}(t) = -\gamma\dot{x}(t) - \Phi'(x(t)) - \int_{-\infty}^{t} K(t-s)\dot{x}(s)ds + F(t) + \sqrt{2\gamma}\dot{W}(t), \\ \mathbb{E}\left[F(t)F(s)\right] = K(t-s). \end{cases}$$

where

- $\Phi(x)$: potential well.
- W(t): standard Brownian motion.
- F(t): stationary Gaussian process with $\mathbb{E}[F(t)F(s)] = K(|t-s|)$.
- $K(t) \sim t^{-\alpha}, t \to \infty, \alpha > 0.$

$$\begin{cases} m\ddot{x}(t) = -\gamma\dot{x}(t) - \Phi'(x(t)) - \int_{-\infty}^{t} K(t-s)\dot{x}(s)ds + F(t) + \sqrt{2\gamma}\dot{W}(t), \\ \mathbb{E}\left[F(t)F(s)\right] = K(t-s). \end{cases}$$

Theory of linear stationary Gaussian processes does not apply.

Question: Does there exist a measure π on \mathbb{R}^2 s.t. $\forall f$ bounded

$$\lim_{t\to\infty}\frac{1}{T}\int_0^T f(x(t),v(t))dt=\int_{\mathbb{R}^2}f(u,v)\pi(du,dv).$$

$$\begin{cases} m\ddot{x}(t) = -\gamma\dot{x}(t) - \Phi'(x(t)) - \int_{-\infty}^{t} K(t-s)\dot{x}(s)ds + F(t) + \sqrt{2\gamma}\dot{W}(t), \\ \mathbb{E}\left[F(t)F(s)\right] = K(t-s). \end{cases}$$

Theory of linear stationary Gaussian processes does not apply.

Question: Does there exist a measure π on \mathbb{R}^2 s.t. $\forall f$ bounded

"
$$\lim_{t\to\infty}\frac{1}{T}\int_0^T f(x(t),v(t))dt = \int_{\mathbb{R}^2} f(u,v)\pi(du,dv).$$
"

 \Rightarrow We will use a Markov representation of the GLE Mori, 1965; Zwanzig, 1970 & 2001; Kupferman 2004; Goychuk, 2009; Pavliotis, 2014.

Well-posedness, stationary structure, unique ergodicity??

A toy model with a double-well potential

 $dx(t) = -\Phi'(x(t))dt + dW(t)$, The density of the unique invariant probability measure:

$$\Phi(x) = \frac{1}{4}x^4 - \frac{1}{2}x^2 + \frac{1}{4},$$

$$p(x) \propto e^{-\Phi(x)}$$

Figure: Trajectory of x(t)

Theorem (Doob's Theorem)

F(t) stationary Gaussian & $\mathbb{E}[F(t)F(s)] = K(|t-s|) = ce^{-\lambda|t-s|}$ $\Rightarrow F(t)$ is an Ornstein-Uhlenbeck process, i.e.

$$F(t) = \sqrt{c} \Big(e^{-\lambda t} F_0 + \sqrt{2\lambda} \int_0^t e^{-\lambda(t-s)} dW_1(s) \Big),$$

$$m\ddot{x}(t) = -\gamma \dot{x}(t) - \Phi'(x(t)) + \sqrt{2\gamma} \dot{W}_0(t)$$

$$- \int_{-\infty}^t K(t-s)\dot{x}(s) \mathrm{d}s + F(t)$$

Theorem (Doob's Theorem)

F(t) stationary Gaussian & $\mathbb{E}[F(t)F(s)] = K(|t-s|) = ce^{-\lambda|t-s|}$ $\Rightarrow F(t)$ is an Ornstein-Uhlenbeck process, i.e.

$$F(t) = \sqrt{c} \Big(e^{-\lambda t} F_0 + \sqrt{2\lambda} \int_0^t e^{-\lambda(t-s)} dW_1(s) \Big),$$

$$egin{aligned} m\ddot{x}(t) &= -\gamma \dot{x}(t) - \Phi'(x(t)) + \sqrt{2\gamma} \dot{W}_0(t) \ &- c \int_{-\infty}^t e^{-\lambda(t-s)} \dot{x}(s) \mathrm{d}s + F(t) \end{aligned}$$

Theorem (Doob's Theorem)

F(t) stationary Gaussian & $\mathbb{E}\left[F(t)F(s)\right] = K(|t-s|) = ce^{-\lambda|t-s|}$ $\Rightarrow F(t)$ is an Ornstein-Uhlenbeck process, i.e.

$$F(t) = \sqrt{c} \Big(e^{-\lambda t} F_0 + \sqrt{2\lambda} \int_0^t e^{-\lambda(t-s)} dW_1(s) \Big),$$

$$m\ddot{x}(t) = -\gamma \dot{x}(t) - \Phi'(x(t)) + \sqrt{2\gamma} \dot{W}_0(t)$$
$$-c \int_{-\infty}^t e^{-\lambda(t-s)} \dot{x}(s) ds - \sqrt{c} e^{-\lambda t} F_0 - \sqrt{2c\lambda} \int_0^t e^{-\lambda(t-s)} dW_1(s)$$

Theorem (Doob's Theorem)

F(t) stationary Gaussian & $\mathbb{E}[F(t)F(s)] = K(|t-s|) = ce^{-\lambda|t-s|}$ $\Rightarrow F(t)$ is an Ornstein-Uhlenbeck process, i.e.

$$F(t) = \sqrt{c} \Big(e^{-\lambda t} F_0 + \sqrt{2\lambda} \int_0^t e^{-\lambda(t-s)} dW_1(s) \Big),$$

$$m\ddot{x}(t) = -\gamma \dot{x}(t) - \Phi'(x(t)) + \sqrt{2\gamma} \dot{W}_0(t)$$
$$-\sqrt{c} \left[\underbrace{\sqrt{c} \int_{-\infty}^t e^{-\lambda(t-s)} \dot{x}(s) ds + e^{-\lambda t} F_0 + \sqrt{2\lambda} \int_0^t e^{-\lambda(t-s)} dW_1(s)}_{\mathbf{z}} \right]$$

$$\Rightarrow \begin{cases} m\ddot{x}(t) = -\gamma\dot{x}(t) - \Phi'(x(t)) + \sqrt{2\gamma}\dot{W}_{0}(t) - \sqrt{c}z(t) \\ \dot{z}(t) = -\lambda z(t) + \sqrt{c}\dot{x}(t) + \sqrt{2\lambda}\dot{W}_{1}(t) \end{cases}$$

Markov representation for finite sum of exponentials

$$K(t) = \sum_{k=1}^{N} c_k e^{-\lambda_k |t|}, c_k, \lambda_k > 0, k = 1, \dots, N$$

$$\begin{cases} dx(t) = v(t) dt \\ m dv(t) = \left(-\gamma v(t) - \Phi'(x(t)) - \sum_{k=1}^{N} \sqrt{c_k} z_k(t) \right) dt + \sqrt{2\gamma} dW_0(t), \\ dz_k(t) = -\lambda_k z_k(t) dt + \sqrt{c_k} v(t) dt + \sqrt{2\lambda_k} dW_k(t), k = 1, \dots, N. \end{cases}$$

- R. Kupferman. Fractional kinetics in Kac–Zwanzig heat bath models. Journal of statistical physics 114, no. 1-2 (2004): 291-326.
- J. Fricks, L. Yao, T. Elston and M. Gregory Forest. Time-domain methods for diffusive transport in soft matter. SIAM
 journal on applied mathematics 69, no. 5 (2009): 1277-1308.
- I. Goychuk. Viscoelastic subdiffusion: From anomalous to normal. Physical Review E 80, no. 4 (2009): 046125.
- M. Ottobre and G. Pavliotis. Asymptotic analysis for the generalized Langevin equation. Nonlinearity 24, no. 5 (2011): 1629..
- G. Pavliotis. Stochastic processes and applications: Diffusion processes, the Fokker-Planck and Langevin equations. Vol 60. Springer, 2014.
- etc.

Markov approximation for power-tail memory kernel

Proposition (Abate, 1999)

Given $\alpha, \beta > 0$, define K(t)

$$\mathcal{K}(t) = \sum_{k \geq 1} c_k e^{-\lambda_k |t|}, \text{ where } c_k = \frac{1}{k^{1+\alpha\beta}}, \ \lambda_k = \frac{1}{k^\beta}, \ k \geq 1.$$

Then, $K(t) \sim t^{-\alpha}$, $t \to \infty$.

Markov approximation for power-tail memory kernel

Proposition (Abate, 1999)

Given $\alpha, \beta > 0$, define K(t)

$$K(t) = \sum_{k \geq 1} c_k e^{-\lambda_k |t|}, \text{ where } c_k = \frac{1}{k^{1+\alpha\beta}}, \ \lambda_k = \frac{1}{k^{\beta}}, \ k \geq 1.$$

Then, $K(t) \sim t^{-\alpha}$, $t \to \infty$.

We arrive at

$$\begin{cases} dx(t) = v(t)dt \\ m dv(t) = \left(-\gamma v(t) - \Phi'(x(t)) - \sum_{k=1}^{\infty} \sqrt{c_k} z_k(t)\right) dt + \sqrt{2\gamma} dW_0(t), \\ dz_k(t) = -\lambda_k z_k(t) dt + \sqrt{c_k} v(t) dt + \sqrt{2\lambda_k} dW_k(t), \quad k = 1, 2, \dots. \end{cases}$$

$$K(t) = \sum_{k \geq 1} c_k e^{-\lambda_k |t|}, ext{ where } c_k = rac{1}{k^{1+lphaeta}}, ext{ } \lambda_k = rac{1}{k^eta}, ext{ } k \geq 1.$$

Recall Theorem 1 for linear GLE,

$$\begin{cases} m\dot{v}(t) = -\int_{-\infty}^{t} K(t-s)v(s)ds + F(t) \\ \mathbb{E}\left[F(t)F(s)\right] = K(t-s) \end{cases}$$

$K \in L^1$, $(\alpha > 1)$	$\mathbb{E}\left[x(t)^2 ight] \sim t, t o \infty$, (diffusion)
$lpha \in (0,1)$, $K(t) \sim t^{-lpha}$	$\mathbb{E}\left[x(t)^2 ight] \sim t^{oldsymbol{lpha}}, t o \infty$, (subdiffusion)
$lpha=1,~K(t)\sim t^{-1}$	N/A

$$\begin{cases} \mathrm{d} x(t) = v(t) \mathrm{d} t, & c_k = \frac{1}{k^{1+\alpha\beta}}, \qquad \lambda_k = \frac{1}{k^\beta}, \\ \mathrm{md} v(t) = \Big(-\gamma v(t) - \Phi'(x(t)) - \sum_{k=1}^\infty \sqrt{c_k} z_k(t) \Big) \mathrm{d} t + \sqrt{2\gamma} \mathrm{d} W_0(t), \\ \mathrm{d} z(t) = -\lambda_k z_k(t) \mathrm{d} t + \sqrt{c_k} v(t) \mathrm{d} t + \sqrt{2\lambda_k} \mathrm{d} W_k(t), \quad k = 1, 2, \ldots. \end{cases}$$

	Diffusion, $\alpha > 1$	Critical case $\alpha=1$	Subdiffusion, $0 < \alpha < 1$
Well-posedness			
Existence of invariant measure			
Uniqueness of invariant measure			

Well-posedness

Potential $\Phi \in C^{\infty}(\mathbb{R})$ satisfies

$$c(\Phi(x)+1)\geq x^2.$$

Examples:

- **1** Polynomial of even order, e.g., $\Phi(x) = x^{2n}$, $n \in \mathbb{N}^+$.
- $\Phi(x) = e^{x^2}$

Definition

For $s \in \mathbb{R}$, define

$$\mathcal{H}_{-s} = \left\{ X = (x, v, z_1, \dots, z_k, \dots) : x^2 + v^2 + \sum_{k \ge 1} k^{-2s} z_k^2 < \infty \right\},$$

equipped with the norm $||X||_{\mathcal{H}_{-s}}^2 = x^2 + v^2 + \sum_{k \geq 1} k^{-2s} z_k^2$.

$$\mathcal{H}_{-s} = \left\{ X = (x, v, z_1, \dots, z_k, \dots) : x^2 + v^2 + \sum_{k \ge 1} k^{-2s} z_k^2 < \infty \right\}$$

$$\begin{cases} dx(t) = v(t) dt, & c_k = \frac{1}{k^{1 + \alpha \beta}}, \quad \lambda_k = \frac{1}{k^{\beta}}, \\ m dv(t) = \left(-\gamma v(t) - \Phi'(x(t)) - \sum_{k=1}^{\infty} \sqrt{c_k} z_k(t) \right) dt + \sqrt{2\gamma} dW_0(t), \\ dz_k(t) = -\lambda_k z_k(t) dt + \sqrt{c_k} v(t) dt + \sqrt{2\lambda_k} dW_k(t), \quad k = 1, 2, \dots. \end{cases}$$

Proposition (Glatt-Holtz, Herzog, McKinley, N., 2018, in prep)

Under appropriate assumptions, for all initial conditions $X_0 \in \mathcal{H}_{-s}$, there exists a unique strong solution $X(\cdot, X_0) : \Omega \times [0, \infty) \to \mathcal{H}_{-s}$.

$$\begin{cases} \mathrm{d} x(t) = v(t) \mathrm{d} t, & c_k = \frac{1}{k^{1+\alpha\beta}}, \qquad \lambda_k = \frac{1}{k^\beta}, \\ \mathrm{md} v(t) = \Big(-\gamma v(t) - \Phi'(x(t)) - \sum_{k=1}^\infty \sqrt{c_k} z_k(t) \Big) \mathrm{d} t + \sqrt{2\gamma} \mathrm{d} W_0(t), \\ \mathrm{d} z_k(t) = -\lambda_k z_k(t) \mathrm{d} t + \sqrt{c_k} v(t) \mathrm{d} t + \sqrt{2\lambda_k} \mathrm{d} W_k(t), \quad k = 1, 2, \ldots. \end{cases}$$

	Diffusion, $\alpha > 1$	Critical case $\alpha=1$	Subdiffusion, $0 < \alpha < 1$
Well-posedness		✓	
Existence of invariant measure			
Uniqueness of invariant measure			

Invariant measure for finite-dimensional system

$$\begin{cases} \mathrm{d}x(t) = v(t)\mathrm{d}t \\ \mathrm{md}v(t) = \Big(-\gamma v(t) - \Phi'(x(t)) - \sum_{k=1}^N \sqrt{c_k} z_k(t)\Big)\mathrm{d}t + \sqrt{2\gamma}\mathrm{d}W_0(t), \\ \mathrm{d}z_k(t) = -\lambda_k z_k(t)\mathrm{d}t + \sqrt{c_k}v(t)\mathrm{d}t + \sqrt{2\lambda_k}\mathrm{d}W_k(t), \quad k = 1, \dots, N. \end{cases}$$

Theorem (Pavliotis, 2014)

Let p_N be the density probability measure on \mathbb{R}^{N+2} given by

$$p(x,v,z_1,\ldots,z_N) \propto \exp\left\{-\Phi(x) - \frac{mv^2}{2} - \sum_{k=1}^N \frac{z_k^2}{2}\right\}.$$

Then p_N is the density of the unique invariant probability measure for the finite-dimensional system.

Note: p_N does **not** depend on $c_k, \lambda_k!$

Existence of invariant measure for infinite-dimensional system

Definition

Denote by μ the probability measure on \mathbb{R}^{∞} given by

$$\mu = \left(c e^{-\Phi(x)} dx\right) \times \mathcal{N}(0, 1/m) \times \prod_{k>1} \mathcal{N}(0, 1).$$

Note:
$$\mu(\mathcal{H}_{-s}) = \begin{cases} 1, & s > 1/2 \\ 0, & s \leq 1/2 \end{cases}$$
, where
$$\mathcal{H}_{-s} = \left\{ X = (x, v, z_1, \dots, z_k, \dots) : x^2 + v^2 + \sum_{k \geq 1} k^{-2s} z_k^2 < \infty \right\}$$

Existence of invariant measure for infinite-dimensional system

Definition

Denote by μ the probability measure on \mathbb{R}^{∞} given by

$$\mu = \left(c e^{-\Phi(x)} dx\right) \times \mathcal{N}(0, 1/m) \times \prod_{k \geq 1} \mathcal{N}(0, 1).$$

Note:
$$\mu(\mathcal{H}_{-s}) = \begin{cases} 1, & s > 1/2 \\ 0, & s \leq 1/2 \end{cases}$$
, where $\mathcal{H}_{-s} = \left\{ X = (x, v, z_1, \dots, z_k, \dots) : x^2 + v^2 + \sum_{k \geq 1} k^{-2s} z_k^2 < \infty \right\}$

Theorem (Glatt-Holtz, Herzog, McKinley, N., 2018, in prep)

Under appropriate assumptions and s > 1/2, μ is an invariant measure.

Finite-dimensional space: (Pavliotis 2014) it suffices to check that

$$\mathcal{L}^*p=0$$
,

where p is the density of the candidate measure and \mathcal{L}^* is the dual of \mathcal{L} , the infinitesimal generator.

Finite-dimensional space: (Pavliotis 2014) it suffices to check that

$$\mathcal{L}^*p=0,$$

where p is the density of the candidate measure and \mathcal{L}^* is the dual of \mathcal{L} , the infinitesimal generator.

Infinite-dimensional space: $\forall \psi \in C_b^2(\mathcal{H}_{-s})$, we show that

$$\langle \psi, \mathcal{L}^* \mu \rangle := \int_{\mathcal{H}_{-s}} \mathcal{L} \psi(X) \mu(\mathsf{d}X) = 0.$$

Then, by an approximating argument,

$$\int_{\mathcal{H}_{-s}} \mathcal{P}_t \psi(X) \mu(\mathrm{d}X) = \int_{\mathcal{H}_{-s}} \psi(X) \mu(\mathrm{d}X),$$

where $\mathcal{P}_t \psi(X) = \mathbb{E}_X[\psi(X(t))]$ is the Markov process associated with \mathcal{L} .

$$\begin{cases} \mathrm{d} x(t) = v(t) \mathrm{d} t, & c_k = \frac{1}{k^{1+\alpha\beta}}, \qquad \lambda_k = \frac{1}{k^\beta}, \\ \mathrm{md} v(t) = \Big(-\gamma v(t) - \Phi'(x(t)) - \sum_{k=1}^\infty \sqrt{c_k} z_k(t) \Big) \mathrm{d} t + \sqrt{2\gamma} \mathrm{d} W_0(t), \\ \mathrm{d} z_k(t) = -\lambda_k z_k(t) \mathrm{d} t + \sqrt{c_k} v(t) \mathrm{d} t + \sqrt{2\lambda_k} \mathrm{d} W_k(t), \quad k = 1, 2, \dots. \end{cases}$$

	$\begin{array}{c} {\sf Diffusion,} \\ \alpha > 1 \end{array}$	Critical case $\alpha=1$	Subdiffusion, $0 < \alpha < 1$
Well-posedness	✓		
Existence of invariant	$\mu = \left(ce^{-\Phi(x)}dx\right) imes \mathcal{N}(0,1/m) imes \prod_{k\geq 1} \mathcal{N}(0,1)$		
measure	is invariant		
Uniqueness of invariant			
measure			

Uniqueness of invariant measure in diffusion

$$\begin{cases} \mathrm{d} x(t) = v(t) \mathrm{d} t, & c_k = \frac{1}{k^{1+\alpha\beta}}, \qquad \lambda_k = \frac{1}{k^\beta}, \\ \mathrm{md} v(t) = \Big(-\gamma v(t) - \Phi'(x(t)) - \sum_{k=1}^\infty \sqrt{c_k} z_k(t) \Big) \mathrm{d} t + \sqrt{2\gamma} \mathrm{d} W_0(t), \\ \mathrm{d} z_k(t) = -\lambda_k z_k(t) \mathrm{d} t + \sqrt{c_k} v(t) \mathrm{d} t + \sqrt{2\lambda_k} \mathrm{d} W_k(t), \quad k = 1, 2, \dots. \end{cases}$$

Theorem (Glatt-Holtz, Herzog, McKinley, N., 2018, in prep)

Under appropriate assumptions and assume that $\alpha > 1$, μ is the unique invariant probability measure.

Strategy: Asymptotic coupling

Goal: (Hairer, 2002) uniqueness is implied if we can show that $\forall X_0, \widetilde{X}_0 \in \mathcal{H}_{-s}$,

$$\mathbb{P}\Big\{\lim_{t\to\infty}\|X(X_0,t)-\widetilde{X}(\widetilde{X}_0,t)\|_{-s}=0\Big\}=1$$

This holds if Φ is a 4th-degree polynomial.

Strategy: Asymptotic coupling

Goal: (Hairer, 2002) uniqueness is implied if we can show that $\forall X_0, \widetilde{X}_0 \in \mathcal{H}_{-s}$,

$$\mathbb{P}\Big\{\lim_{t\to\infty}\|X(X_0,t)-\widetilde{X}(\widetilde{X}_0,t)\|_{-s}=0\Big\}=1$$

This holds if Φ is a 4th-degree polynomial.

More recent results show that

$$\mathbb{P}\Big\{\lim_{t\to\infty}\|X(X_0,t)-\widetilde{X}(\widetilde{X}_0,t)\|_{-s}=0\Big\}>0 \text{ works!}$$

• Hairer, Mattingly, Scheutzow, 2011; Glatt-Holtz, Richards, Mattingly, 2015; Kulik, Scheutzow, 2016.

Constructing stochastic control.

$$dX(t) = LX(t)dt + \Psi(X(t))dt + B dW(t)$$

$$d\widetilde{X}(t) = L\widetilde{X}(t)dt + \Psi(\widetilde{X}(t))dt + B \underbrace{\left(dW(t) + U(X(t), \widetilde{X}(t))1_{(t \le \tau)}dt\right)}_{d\widetilde{W}(t)}$$

Setting $\overline{X}(t) = X(t) - \widetilde{X}(t)$. Pick $U(X(t), \widetilde{X}(t))$ and τ s.t.

- $U(X(t), \widetilde{X}(t))$ forces $\overline{X}(t) \to 0$, $t \to \infty$.
- τ shuts down $U(X(t), \widetilde{X}(t))$ if $\overline{X}(t) \not\to 0$

Constructing stochastic control.

$$dX(t) = LX(t)dt + \Psi(X(t))dt + B dW(t)$$

$$d\widetilde{X}(t) = L\widetilde{X}(t)dt + \Psi(\widetilde{X}(t))dt + B \underbrace{\left(dW(t) + U(X(t), \widetilde{X}(t))\mathbf{1}_{(t \leq \tau)}dt\right)}_{d\widetilde{W}(t)}$$

Setting $\overline{X}(t) = X(t) - \widetilde{X}(t)$. Pick $U(X(t), \widetilde{X}(t))$ and τ s.t.

- $U(X(t), \widetilde{X}(t))$ forces $\overline{X}(t) \to 0$, $t \to \infty$.
- ullet au shuts down $U(X(t),\widetilde{X}(t))$ if $\overline{X}(t)
 eq 0$
- ullet Girsanov shift $\widetilde{W}(t):=W(t)+\int_0^t U(X(r),\widetilde{X}(r))1_{(r\leq au)}\mathrm{d}r$ satisfies

$$\widetilde{W}(\cdot) << W(\cdot) \text{ on } [0,\infty).$$

- $\mathbb{P}\left\{\|\overline{X}(t)\|_{\mathcal{H}_{-s}} \to 0, \ t \to \infty | \tau = \infty\right\} = 1.$ " τ is never activated $\Leftrightarrow \overline{X}(t) \to 0 \ t \to \infty$ "
- $\mathbb{P}\left\{\tau=\infty\right\}>0$. "There is a chance that τ is never activated"

Choice of
$$U$$
: $U(X(t), \widetilde{X}(t)) = (0, u(X(t), \widetilde{X}(t)), 0, ...)$

$$\begin{cases}
d\overline{x}(t) = \overline{v}(t)dt, \\
md\overline{v}(t) = \left(-\gamma \overline{v}(t) - \left[\Phi'(x(t)) - \Phi'(\widetilde{x}(t))\right] - \sum_{k=1}^{\infty} \sqrt{c_k} \overline{z}_k(t)\right)dt \\
+ u(X(t), \widetilde{X}(t))dt, \\
d\overline{z}_k(t) = -\lambda_k \overline{z}_k(t)dt + \sqrt{c_k} \overline{v}(t)dt, \quad k = 1, 2,\end{cases}$$

Choice of $U: U(X(t), \widetilde{X}(t)) = (0, u(X(t), \widetilde{X}(t)), 0, \dots)$

$$\begin{cases} d\overline{x}(t) = \overline{v}(t)dt, \\ md\overline{v}(t) = \left(-\gamma \overline{v}(t) - \left[\Phi'(x(t)) - \Phi'(\widetilde{x}(t))\right] - \sum_{k=1}^{\infty} \sqrt{c_k} \overline{z}_k(t)\right)dt \\ + u(X(t), \widetilde{X}(t))dt, \\ d\overline{z}_k(t) = -\lambda_k \overline{z}_k(t)dt + \sqrt{c_k} \overline{v}(t)dt, \quad k = 1, 2, \dots. \end{cases}$$

• $u(X(t), \widetilde{X}(t)) = -c\overline{x}(t) + [\Phi'(x(t)) - \Phi'(\widetilde{x}(t))] + \sum_{k=1}^{\infty} \sqrt{c_k}\overline{z}_k(t)$ "u cancels the non-linear term and the memory" $\Rightarrow \begin{cases} d\overline{x}(t) = \overline{v}(t)dt, \\ d\overline{v}(t) = (-\gamma\overline{v}(t) - c\overline{x}(t))dt, \end{cases}$ deterministic, **dissipative**

Choice of $U: U(X(t), \widetilde{X}(t)) = (0, u(X(t), \widetilde{X}(t)), 0, \dots)$

$$\begin{cases} d\overline{x}(t) = \overline{v}(t)dt, \\ md\overline{v}(t) = \left(-\gamma \overline{v}(t) - \left[\Phi'(x(t)) - \Phi'(\widetilde{x}(t))\right] - \sum_{k=1}^{\infty} \sqrt{c_k} \overline{z}_k(t)\right)dt \\ + u(X(t), \widetilde{X}(t))dt, \\ d\overline{z}_k(t) = -\lambda_k \overline{z}_k(t)dt + \sqrt{c_k} \overline{v}(t)dt, \quad k = 1, 2, \dots. \end{cases}$$

• $u(X(t), \widetilde{X}(t)) = -c\overline{x}(t) + [\Phi'(x(t)) - \Phi'(\widetilde{x}(t))] + \sum_{k=1}^{\infty} \sqrt{c_k}\overline{z}_k(t)$ "u cancels the non-linear term and the memory" $\Rightarrow \begin{cases} d\overline{x}(t) = \overline{v}(t)dt, \\ d\overline{v}(t) = (-\gamma\overline{v}(t) - c\overline{x}(t))dt, \end{cases}$ deterministic, **dissipative**

• The structure of Φ + Lyapunov function +choice of τ $\Rightarrow \overline{x}(t), \overline{v}(t)$ force $\overline{z}_k(t) \to 0$, $t \to 0$ \Rightarrow (a) + (b).

Choice of $U: U(X(t), \widetilde{X}(t)) = (0, u(X(t), \widetilde{X}(t)), 0, \dots)$

$$\begin{cases} d\overline{x}(t) = \overline{v}(t)dt, \\ md\overline{v}(t) = \left(-\gamma \overline{v}(t) - \left[\Phi'(x(t)) - \Phi'(\widetilde{x}(t))\right] - \sum_{k=1}^{\infty} \sqrt{c_k} \overline{z}_k(t)\right)dt \\ + u(X(t), \widetilde{X}(t))dt, \\ d\overline{z}_k(t) = -\lambda_k \overline{z}_k(t)dt + \sqrt{c_k} \overline{v}(t)dt, \quad k = 1, 2, \dots. \end{cases}$$

• $u(X(t), \widetilde{X}(t)) = -c\overline{x}(t) + [\Phi'(x(t)) - \Phi'(\widetilde{x}(t))] + \sum_{k=1}^{\infty} \sqrt{c_k}\overline{z}_k(t)$

"u cancels the non-linear term and the memory" $% \left(\frac{1}{2}\right) =\left(\frac{1}{2}\right) \left(\frac{$

$$\Rightarrow \begin{cases} d\overline{x}(t) = \overline{v}(t)dt, \\ d\overline{v}(t) = (-\gamma \overline{v}(t) - c\overline{x}(t))dt, \end{cases}$$
 deterministic, **dissipative**

- The structure of Φ + Lyapunov function +choice of τ $\Rightarrow \overline{x}(t), \overline{v}(t)$ force $\overline{z}_k(t) \to 0$, $t \to 0$ $\Rightarrow (a) + (b)$.
- (c) requires $\int_0^\infty K(t) dt < \infty \Leftrightarrow \alpha > 1$, (recall $K(t) \sim t^{-\alpha}$, $t \to \infty$).

$$\begin{cases} \mathrm{d} x(t) = v(t) \mathrm{d} t, & c_k = \frac{1}{k^{1+\alpha\beta}}, \qquad \lambda_k = \frac{1}{k^\beta}, \\ \mathrm{md} v(t) = \Big(-\gamma v(t) - \Phi'(x(t)) - \sum_{k=1}^\infty \sqrt{c_k} z_k(t) \Big) \mathrm{d} t + \sqrt{2\gamma} \mathrm{d} W_0(t), \\ \mathrm{d} z_k(t) = -\lambda_k z_k(t) \mathrm{d} t + \sqrt{c_k} v(t) \mathrm{d} t + \sqrt{2\lambda_k} \mathrm{d} W_k(t), \quad k = 1, 2, \dots. \end{cases}$$

	$\begin{array}{c} {\sf Diffusion,} \\ \alpha > 1 \end{array}$	Critical case $\alpha=1$	Subdiffusion, 0
Well-posedness	\checkmark		
Existence of invariant measure	$\mu = \left(ce^{-\Phi(x)}dx\right) imes \mathcal{N}(0,1/m) imes \prod_{k \geq 1} \mathcal{N}(0,1)$ is invariant		
Uniqueness of invariant measure	✓ Open question		

Summary

- Use a Markovian system to represent GLE when memory kernel $K(t) \sim t^{-\alpha}$, $t \to \infty$ admits a form of infinite sum of exponentials.
- There exists an invariant structure for the Markovian system.
- Unique ergodicity is obtained in diffusive regime ($\alpha > 1$). The marginal distribution in (x, v) of the invariant probability measure is given by

$$\pi(x,v) \propto \exp\left\{-\Phi(x) - \frac{mv^2}{2}\right\},$$

which is independent of c_k , λ_k .

• Unique ergodicity when $\alpha \in (0,1]$ remains open question.

Thank You!