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Molecular Motors

Biological engines which catabolize ATP (fuel) to do useful work in
a biological cell.

Molecular pumps.

Walking motors: Kinesin, Dynein.

Rowing motors: Myosin

Polymer Growth.

R. Vale, Cell 2003



Physics of Molecular Motors

Scales ∼ 102 nm:

friction-dominated

thermal fluctuations important

In fact the functioning of the molecular motor relies on effectively
random thermal fluctuations

diffusive transport of ATP (fuel) to activate chemically-driven
steps

physical search for binding sites

We will focus on porter molecules kinesin and dynein which
transport cargo (vesicles and organelles in cells) along
microtubules.



Molecular Scale View

Mechanochemistry of stepping process of motors; video available
at http://valelab.ucsf.edu;

Length scale 10− 102 nm.
Goal: relate effective mechanical motion of motors to their
governing chemomechanical cycle and physical characteristics.

http://valelab.ucsf.edu


Gating of Mechanochemical Cycle

(Milic, Andreasson, Hancock, and Block, PNAS 2015)



Reason for Differences in Motor Properties

(Andreasson, Shastry, Hancock, Block Current Biology 2015)



Nanoscale Stepping Model for Kinesin

The dynamics is often
characterized by a
continuous-time Markov chain
S(t) with prescribed rates
between allowed transitions
(Kolomeisky and Fisher 2007,
Wang, Peskin, Elston 2003)

(Kutys, Fricks, Hancock, PLOS Comp. Bio., 2010)



Nanoscale Stepping Model for Kinesin

More detailed models (Peskin and Oster 1995, Kutys, Fricks,
Hancock 2010; represent some transitions via stopping times
related to a (flashing ratchet) stochastic differential equation for a
head coordinate X (t) :

dX (t) = γ−1(−F − φ′S(t)(X (t)))dt +

√
2kBT

γ
dW (t),

where F is an applied load force, φ is potential energy (depending
on chemical state S(t)), kB is Boltzmann’s constant, T is
temperature, γ is friction constant, W (t) is Wiener process.



Inference of Parameters of Stepping Models

Such models can be used to infer parameters from experimental
observations:

kinetic parameters of reaction network (Maes and van Wieren
2003, Keller, Berger, Liepelt, Lipowsky 2013)

Investigation of force-law hypotheses for neck-linker
component; WLC seems most plausible (Hughes, Hancock,
Fricks 2012). See also Bates & Jia 2010.



Effective Transport Properties

A useful coarse-grained description of nanoscale models exploits
the periodicity and central limit theorem arguments (Elston 2000)
to characterize the long-time properties of the motor through:

drift

V = lim
t→∞

〈X (t)〉
t

,

diffusion

D = lim
t→∞

〈
(X (t)− 〈X (t)〉)2

〉
2t

.



Force-Velocity and Force-Diffusivity Relations

For a given motor, these are usefully expressed in terms of load
force F through:

Force-velocity relation U = g(F )

Force-diffusivity relation D = h(F )

These are one way in which experimental measurements are
presented:

(Schnitzer et al, Nature Cell Biology, 2000) (Visscher et al, Nature, 1999)



Methods to Derive Effective Transport Properties

Homogenization theory (Pavliotis 2005, Blanchet, Dolbeault,
Kowalcyk 2008)

Method of Wang, Peskin, Elston (2003) (WPE) based on
spatial discretization preserving detailed balance

Analysis of kinesin stepping model via intermediate
(reward)-renewal process framework (Hughes, Hancock, Fricks
2011)

These approaches have generally treated applied force as constant
(slowly varying), but especially in context of multiple motors,
stochastic force fluctuations should probably be averaged over
(Hendricks, Epureanu, Meyhöfer 2009)



Cargo Scale View

Interaction of cargo with molecular motors and microtubules

Welte & Gross, HFSP J 2008

Length scale: 102 − 103 nm
Goal: Relate the effective dynamics of multiple interacting
molecular motors to the properties of the individual motors and
microtubule(s).



Collective Force Generation by Teams of Motors

(Rai, Rai, et al, Cell 2013)



Engineered Constructs of Motor Groups

(Furuta, Furuta, PNAS 2013)

(Feng, Mickolajczyk, Chen, and Hancock,

Biophysical Journal 2018)



Force-balance (mean field) Markov Chain Model (Müller,
Klumpp & Lipowsky)

Müller, Klumpp & Lipowsky, PNAS 2008



Some Other Cargo Scale Modeling Approaches

One-dimensional models with stochastic spatial fluctuations of
individual motors

Lattice stepping models (Wang & Li 2009, Posta, D’Orsogna
& Chou 2009); some with steric interference (Klumpp &
Lipowsky 2005, Goldman 2010)

Continuous-space model, coarse-graining over steps (Kunwar
et al 2008, McKinley, Athreya,et al 2012)

Three-dimensional models, including spatial resolution of cargo and
cargo-tether binding sites (Korn, Klumpp, et al 2009, Jamison,
Driver, et al 2010)

explored primarily through numerical simulations



Confront Models and Experiments

Statistical inference of model parameters

motor-coupling properties and reattachment rates from in
vitro N-motor cargo assemblies (Jamison et al 2010, Keller et
al 2013)

Purely mechanical model for tug-of-war scenarios appear
incomplete in vivo (Kunwar, Tripathy,. . . , Mogilner, Gross 2011;
Hancock 2014)

what other regulatory factors?



Cellular Scale View

Mallik & Gross, Current Biology 2004

Length scale µm - cm
Goal: Explain mechanistically how molecular motors moving on a
microtubule architecture achieve goals of intracellular transport,
including targeting cargo delivery and responding to regulatory
cues.



Some Key Questions About Cellular Transport

How is cargo delivered to appropriate destination, i.e.,
synapses along dendrites or axon of neuron?

How can cell dynamically regulate cargo transport goals, i.e.,
melanosomes ?

What role does microtubule architecture and polarity have in
large-scale transport, esp. in neurons?



Navigating Complex Filament Network

(Lombardo, Nelson, et al, Nature Communications 2017)



Experimental Exploration of Intersections

(Lombardo, Nelson, et al, Nature Communications 2017)



Cellular Scale Modeling Approaches

Kinetic theories for attaching/detaching to microtubule network at
various orientations:

∂pon(r, θ, t)

∂t
= −∇ · (V(r, θ)pon) + ∇∇ : (Don(r, θ)pon)

+ kon(r, θ)poff − koff(r, θ)pon,

∂poff(r, t)

∂t
= Doff∆poff − poff

∫ 2π

0
kon(r, θ) dθ +

∫ 2π

0
koff(r, θ)pon dθ

Popovic, McKinley, & Reed 2011: parallel network in axon

Bressloff & Xu (2015): cell polarization

Lawley, Tufts, & Brooks (2015): virus trafficking

Ciocanel, Mowry, Sandstede (2017): mRNA transport

Newby & Bressloff, “Stochastic Models of Intracellular Transport”
(2013) review (also target search models with environmental cues
(e.g., microtubule associated proteins))



Collective Dynamics of Molecular Motors: Motivation

What is the purpose of the diversity of kinesin and other processive
motor types?

Probably for different cargo types in different environments,
etc.

But then why would two different motor types be used
simultaneously for the same cargo?

kinesin-1 and kinesin-2 for synaptotagmin-rich axonal vesicles
(Hendricks, Perlson, et al 2010)



kinesin-1 and kinesin-2

Relative to kinesin-1, kinesin-2 is (Andreasson, Shastry, Hancock,
Block 2015; Feng, Mickolajczyk, Chen, and Hancock 2018):

half as fast at low load

detach from microtubule more readily under load

reattaches to microtubule four times as rapidly

Moreover, (Feng, Mickolajczyk, Chen, and Hancock 2018) observe
that kin1-kin2 pairs:

covered longer distance (2.18± 0.39µm) than kin1-kin1 pairs
(1.62± 0.23µm)

almost as long as kin2-kin2 pairs (2.38± 0.26µm)

speed?

One might have expected the partnering of dissimilar motors to be
more disruptive.



Collective Dynamics of Molecular Motors: Approach

We are building on previous model which neglects
attachment/detachment.

S. McKinley, A. Athreya, J. Fricks, P. Kramer, “Asymptotic
Analysis of Microtubule-Based Transport by Multiple Identical
Molecular Motors,” J. Theor. Bio. 305 (2012): 54-69.

We want to maintain following features:

we don’t assume load force shared equally among bound
motors, and track the fluctuating positions and forces
experienced by the motors

we use coupled stochastic differential equation models

we pursue analytical procedures to describe collective behavior
rather than only numerical simulations



Coarse-Grained Description

Each motor is coarse-grained to point particle with effective
velocity and diffusivity as function of applied force,
parameterized in principle by either:

Experiment
Coarse-graining of molecular scale model

2

FT

Z(t) X (t)X (t)
1



Force-Velocity and Force-Diffusivity Relations

For a given motor i , effective transport properties are usefully
expressed in terms of load force F through:

Force-velocity relation V = gi (F )

Force-diffusivity relation D = hi (F ) (we take constant)

These are one way in which experimental measurements are
presented:

(Schnitzer et al, Nature Cell Biology, 2000) (Visscher et al, Nature, 1999)



Attachment/Detachment Model

Dynamical elements:

t: time

Bi (t): state of motor i (= 1 if attached; = 0 if detached from
microtubule)

Xi (t): position of ith motor

Z (t): position of cargo



Transition Rates

Motor attachment rate ai for each detached motor,

Motor detachment rate diΥi

(
|F )|/F d

i

)
for each attached

motor i

di = detachment rate at zero force (Υ(0) = 1)
F d
i = force scale of detachment rate function

functional form Υi often modeled as asymmetric double
exponential



Model Equation for Cargo

γdZ (t) = −
2∑

j=1

κi (Z (t)− Xj(t))dt − FT dt +
√

2kBTγ dWz(t)

kBT : Boltzmann’s constant × temperature

γ: friction constant of cargo (∝ η (solvent viscosity))

κi : spring constant (linear regime) of motor i

Wz(t): Gaussian white noise



Model Equations for Motors

Attached state (Bi = 1):

dXi (t) = vigi (κi (Xi (t)− Z (t))/F s
i ) dt + σi dWi (t)

Detached state (Bi = 0):

γm,idXi (t) = −κi (Xi (t)− Z (t))dt +
√

2kBTγm,i dWi (t).

vi : unencumbered motor speed
1
2σ

2
i : bound motor diffusivity

gi : nondimensional force-velocity relation

F s
i : stall force

γm,i : friction constant of motor (∝ η (solvent viscosity))

Wi (t): independent Gaussian white noise



Switched Diffusion Model Schematic



Sample Trajectories

Motors Cargo



Some Model Shortcomings

Point particle representation of cargo moving in one
dimension

no distinction between longitudinal and transverse forces on
motors
no distinction between fluid and solid cargo

No steric effects of motors or cargo

Linear spring model is too crude

Can be generalized to nonlinear case

Mechanistic models may not be adequate for representing in
vivo behavior (Kunwar, Tripathy, et al 2011)



Nondimensionalization

Nondimensionalize system with respect to:

length scale
√

kBT/κ̄ of thermal tail fluctuations

time scale γ/κ̄ of cargo-tail response

where κ̄ = κ1+κ2
2 .

Nondimensional parameters:

εi ≡ viγ√
2kBTκi

∼ 3× 10−3

si ≡
√
2kBTκi
F s
i
∼ 0.2

ui ≡
√
2kBTκ
F u
i
∼ 1

κ̃i = κi/κ̄

F̃ ≡ FT
√
κi√

2kBT
∼ 1− 10

σ2m/c,i ≡
σ2
i γ

2kBT
∼

6× 10−3,

ãi = aiγ/κ ∼ 10−4

d̃ = diγ/κ ∼ 10−4

Γ = γm/γ ∼ 10−1

Set σm/c,i =
√
ερi to prepare asymptotic analysis with

ã, d̃ � ε� 1� Γ−1 and si , ui , F̃ , ρi ∼ ord (1).



Nondimensionalization

Equation for motors switch between bound state (Bi = 1):

dX̃i (t̃) = εgi

(
si

[
X̃i (t̃)− Z̃ (t̃)

])
dt̃ +

√
ερidWi (t̃)

and unbound state (Bi = 0):

dX̃i (t̃) = −Γ−1(X̃i (t)− Z̃i (t))dt̃ +
√

Γ−1 dWi (t).

Attachment (Bi = 0→ 1) rate ãi and detachment (Bi = 1→ 0)

rate d̃i (ui

[
X̃i − Z̃

]
).

Cargo equation always:

dZ̃ (t̃) =

[
2∑

i=1

(
X̃i (t̃)− Z̃ (t̃)

)
− F̃

]
dt̃ + dWz(t̃).

Note the separation of dynamical time scales, from fastest to
slowest (Γ, ε� 1):

unbound motor � cargo � bound motor �
attachment/detachment rates



Asymptotic Reformulation

Detached motors treated as always in stationary distribution w.r.t.
cargo position:

X̃i ∼ N

(
Z̃ (t̃),

1

2

)
when Bi = 0.

When B1(t) = 1 and/or B2(t) = 1, cargo treated as always in
stationary distribution w.r.t. positions of attached motors:

Z̃ ∼ N

(∑2
i=1 bi X̃i

b1 + b2
− F̃

b1 + b2
,

1

2(b1 + b2)

)

Unbound motors do not affect cargo dynamics to leading order



Coarse-Grained Dynamics

On O(1/ε̄) nondimensional time scale (ε̄ = (ε1 + ε2)/2), attached
motor dynamics (while Bi (t) = 1):

dX̄i (t) = ḡi (X̄1(t), X̄2(t),B1(t),B2(t)) dt +
√
ρi dWi (t),

with averaged drift:

ḡi (x1, x2, b1, b2) =
εi
ε̄

∫
R
gi (si (xi − z)) pZ̃ |X̃ ,B(z |(x1, x2); (b1, b2))dz

Each attached motor detaches with rate

d̄i (x1, x2, b1, b2) = d̃i

∫
R

Υi (ui (xi − z)) pZ̃ |X̃ ,B(z |(x1, x2); (b1, b2))dz .

If only motor 1 detached, it reattaches at rate ã1, and does so at a
random position

X̃ |Z̃ ∼ N

(
Z̃ ,

1

2

)
, Z̃ ∼ N

(
X̃2 − F̃ ,

1

2

)
;

similarly if only motor 2 detached.



Central Coordinate

In experiments, the cargo position is typically observed, but the
rapid fluctuations of Z̃ (t) make it awkward to use as the observed
variable.
Instead we will examine statistics of the mean cargo position under
the istationary distribution given the attached motor configuration:

M(t) = E(Z̃ |X̃1(t), X̃2(t),B1(t),B2(t)) =

∑2
i=1 Bi (t)κ̃i X̃i (t)− F̃∑2

i=1 Bi (t)κ̃i

which will evolve more smoothly (on O(1) time scale), so long as
at least one motor attached.
Other relevant variables will be considered “internal” variables.

Internal variables affect central coordinate M(t) but not vice
versa.



Central/Internal Variable Dynamics with One Attached
Motor

When B1(t) = 1,B2(t) = 0:

no internal variable

Central coordinate undergoes constant coefficient
drift-diffusion

dM(t) = V̄ (1) dt +
√

2D̄(1)dW (t),

Detachment of motor 1 at constant rate d̄
(1)
1

Attachment of second motor at constant rate ã2 at position

X̄2 = X̄1 + Ξ(1→2)

with Ξ(1→2) ∼ N(−F̃/κ̃1, 1/(κ̃1κ̃2)).

Central coordinate M(t) jumps by 1
2 (κ̃2Ξ(1→2) + κ̃1F̃ )

Similarly for B1(t) = 0,B2(t) = 1



Attachment Jump to Two-Motor-Attached State



Central/Internal Variable Dynamics for Two Attached
Motors

When B1(t) = B2(t) = 1 (both motors attached), internal variable
R(t) = X̄1(t)− X̄2(t) and central coordinate
M(t) = 1

2(X̄1(t) + X̄2(t)− F̃ ) obey SDEs of form:

d

[
M(t)
R(t)

]
= G(R(t))dt + Σ dW (t)

with constant noise matrix Σ.

Detachment of motor 1 at effective rate d̄
(1,2)
1 (R(t))

Central coordinate M(t) jumps by κ̃1

2

[
− F̃
κ̃2
− R(t)

]
Detachment of motor 2 at effective rate d̄

(1,2)
2 (R(t)), formulas

mutatis mutandi.



Detachment Jump from Two-Motor-Attached State



Switched Diffusion Model Schematic



Slow Switching Approximation

Under the approximation of slow attachment/detachment
(ãi , d̃i � ε), we can at least nominally homogenize over the
internal coordinate R(t):

time spent in each attachment/detachment phase is long
compared to time scale of relaxation of R(t) to (explicit)
stationary distribution

in practice, need that the effective detachment rates are also
small when enhanced by typical force fluctuation

gives homogenized constant-coefficient drift-diffusion in
2-motor attached state:

dM(t) = V̄ ∗(1,2) dt +
√

2D̄∗(1,2)dW (t)

constant effective detachment rate d̄
∗(1,2)
i of motor i

motor separation on detachment R̃ weighted by detachment
rate:

pR̃(r) = C̃RpR(r)(d̄
(1,2)
1 (r) + d̄

(1,2)
2 (r))



Coarse-Grained Markov Chain Model

The slow switching dynamics can be viewed as a 4-state Markov
chain parameterized by attachment state
((b1, b2) ∈ {0, 1} × {0, 1}) with:

absorption at fully detached state (b1, b2) = (0, 0)
random increments ∆Mb1,b2 for the tracking variable

Starting from the 2-motor attached state (b1, b2) = (1, 1), go
through Nc cycles (either (1, 1)→ (1, 0)→ (1, 1) or
(1, 1)→ (0, 1)→ (1, 1)) before complete detachment.

Nc is geometrically distributed with mean 1−p0
p0

, with

p0 = pd1
d̄
(1)
1

a2 + d̄
(1)
1

+ pd2
d̄
(1)
2

a2 + d̄
(1)
2

probability motor i detaches first (indicator Idi )

pdi = P(Idi ) =
d̄
∗(1,2)
i

d̄
∗(1,2)
1 + d̄

∗(1,2)
2

.



Attachment/Detachment Cycle Statistics

In each of these attachment/detachment cycles, time advances by
a random increment

∆Tc = ∆Ta + ∆Td,2Id1 + ∆Td,1Id2

with:

∆Ta ∼ Exp((d̄
∗(1,2)
1 + d̄

∗(1,2)
2 )−1) is the time spent in the

2-motor attached state,

∆Td,i ∼ Exp((ãi ′ + d̄
(1)
i )−1) is the time spent with just motor

i attached

The tracking variable will advance by a random increment

∆Mc = ∆Ma + ∆Md,2Id1 + ∆Md,1Id2

with parallel interpretation of the terms.



Switched Diffusion Model Schematic



Tracking Increment Statistics: Two-Motor-Attached Phase

Increment while both motors attached

∆Ma = V̄ ∗(1,2)∆Ta +
√

2D̄∗(1,2) ∆W (∆Ta)

so

E∆Ma =
V̄ ∗(1,2)

d̄
∗(1,2)
1 + d̄

∗(1,2)
2

,

Var ∆Ma =

(
V̄ ∗(1,2)

d̄
∗(1,2)
1 + d̄

∗(1,2)
2

)2

+
2D̄∗(1,2)V̄ ∗(1,2)

d̄
∗(1,2)
1 + d̄

∗(1,2)
2

.



Tracking Increment Statistics during
Attachment/Detachment

Tracking variable increment when motor 1 detaches and reattaches
is sum of detachment jump, motion in motor-2 attached state,
reattachment jump:

∆Md,2 = ∆Ma→d,1 + V̄ (2)∆Td,2 +
√

2D̄(2) ∆W (∆Td,2) + ∆Md→a,1,

E∆Md,2 =
κ̃1
2

(
−ER̃ − F̃

κ̃2

)
+

V̄ (2)

ã1 + d̄
(1)
2

,

Var ∆Md,2 =
κ̃21
2

Var R̃ +
(V̄ (2))2

(ã1 + d̄
(1)
2 )2

+
2D̄(2)

ã1 + d̄
(1)
2

+
κ̃2

4κ̃1
.

Similarly for when motor 2 detaches and reattaches.



Run Length and Time Statistics

Mean time T until complete detachment

ET = (1 + ENc)(E∆Tc) =

(
pd1

d̄
(1)
1

a2 + d̄
(1)
1

+ pd2
d̄
(1)
2

a2 + d̄
(1)
2

)−1

× 1

d̄
∗(1,2)
1 + d̄

∗(1,2)
2

(
1 +

d̄
∗(1,2)
1

d̄
(1)
2 + a1

+
d̄
∗(1,2)
2

d̄
(1)
1 + a2

)
Distance M(T ) until complete detachment has mean

EM(T ) = (1 + ENc)(E∆Mc)− . . .

and variance

VarM(T ) = (VarNc)(E∆Mc) + (1 + ENc)(Var ∆Mc)− . . .

with correction terms to exclude the final reattachment
adjustment.



Summary of Cooperative Motor Dynamic Model

Relate properties of two dissimilar but cooperative motors to their
effective transport working together

can show existence of parameter regimes where team of two
dissimilar motors go faster than either team of two identical
motors
integrate stochastic spatial fluctuations with
attachment/detachment dynamics
exploit separation fo time scales for explicit effective transport
formulas

Comparison with kin1-kin2 experimental results in progress. . .
For N > 2 cooperative motors, or for N = 2 without slow
switching, need to numerically homogenize cargo-averaged
dynamics.
Averaging of detachment rates has limited validity

more delicate coarse-graining of detachment surely required
for antagonistic motors



Attachment Dynamics of Molecular Motors: Motivation

For transport by multiple motors along a microtubule:

understand how motors detached from microtubule reattach

how affected by cargo properties and the attached motors
(Furuta, Furuta et al 2013)

or other anchoring mechanisms like dynactin (Smith and
McKinley 2018)

attempt to improve on spherical search arguments (Feng,
Mickolajczyk, Chen, and Hancock 2018)

For transport through microtubule network:

need probabilities and rates of cargo switching to different
microtubule filaments.

bridge cargo-scale description to cellular-scale

explore parametric validity of slow attachment rate
approximations for network transport theories such as
(Bressloff and Xu 2015)



Attachment Dynamics of Molecular Motors: Approach

Model spatial dynamics of (re)-attachment of molecular motors to
microtubules

Quantitatively represent the spatial search time scale through
dynamical model

Estimate probability to reattach to same or different
microtubule

Track spatial “memory” of motor-cargo complex as it
detaches and reattaches

As complement to simulations, aiming for
analytical/asymptotic procedures to relate model parameters
to effective transport properties of the motor.

Cargo represented by a sphere with finite radius and a fixed
attachment point of tether on surface.



Physical Model

Molecular motor

while attached, point particle moving in one direction
(longitudinally) with effective velocity, diffusivity, detachment
rate
while detached, overdamped dynamics in three dimensions
with friction constant γm. Reattach upon spatial contact with
microtubule (with reactivity Ka)

Cargo

rigid sphere of radius ρc , with overdamped dynamics with
translational (rotational) friction coefficient γc (γr )

Motor-cargo tether

spring (linear approximation for now) connecting motor
particle to fixed attachment point on cargo surface

Microtubule network

periodic array of parallel cylinders with radius ρMT and period
spacing `MT



Attached Phase

The dynamics of a motor with cargo while attached to a
microtubule is well-studied (Elston & Peskin 2000); we subcontract
this analysis to previous work which coarse-grains the properties of
motor, cargo, and tether to effective dynamics of motor position
X1(t) along microtubule to:

dX1(t) = va dt +
√

2DadW (t)

with:

effective velocity va,

effective diffusivity Da (= 0 for now).

Also assume effective constant detachment rate kd (through, i.e.,
stochastic averaging as in previous part).



Two-Dimensionalization in Detached Phase

To develop the methodology without the complexities of
three-dimensional rotational dynamics, we currently project the
detached dynamics onto two-dimensional planes

first passage time problem in plane transverse to the
microtubules

transport along longitudinal plane through cargo center at
detachment and microtubule

This is not a controlled approximation, and will partially relax it
later.



Detached Transverse Dynamics



Detached Transverse Dynamics

Motor:

γmdX⊥(t) = −κ(X⊥(t)− (Z⊥(t) + ρc R̂⊥(t)))dt

+
√

2kBTγm dWx ,⊥(t).

Cargo:

γcdZ⊥(t) = −κ(Z⊥(t) + ρc R̂⊥(t)− X⊥(t))dt

+
√

2kBTγc dWz,⊥(t),

γrdR̂⊥(t) = −κρc(Z⊥(t) + ρc R̂⊥(t)− X⊥(t)) · Θ̂⊥(t)Θ̂⊥(t) dt

+
√

2kBTγr dWθ,⊥(t)

where R̂⊥(t) =
[
cos Θ⊥(t), sin Θ⊥(t)

]T
,

Θ̂⊥(t) =
[
− sin Θ⊥(t), cos Θ⊥(t)

]T
.

Attach when X⊥(t) ≡ x′ (mod `MT) for some |x′| ≤ `MT.
No steric interactions at this point. . .



First Passage Time Problem

We attempt a simplification by taking ε ≡ ρMT/`MT � 1.

Small target problem (Ward & Keller, Bressloff, Lawley,
Isaacson, Schuss, Holcman, . . . )

asymptotic analysis of 5-dimensional PDE for mean first
passage time (MFPT) T̄a = 〈Ta〉
logarithms arise as in 2-dimensional PDE because target is
“small” in two directions and large in three

Exponential distribution (if not starting close)



Leading Order Asymptotics

If motor starts at distance `d from microtubule center then MFPT

T̄a ∼
`2MT

2πDm

[
ln

(
`d
ρMT

)
+

1

Ka

] [
1 + O

(
1/ ln

(
1

ε

))]
.

No dependence on presence of cargo in this asymptotic limit.



Probability to Reattach on Same Microtubule

Once motor distance from microtubule `d is more than a few
microtubule radii `d � ρMT away from the nearest microtubule,
well-mixed and likely to attach to different microtubule in the
vicinity.
But if detachment of motor at small distance `d . O(ρMT) from
microtubule, probability to reattach to the same microtubule is
enhanced by factor

1− ln(`d/ρMT)

ln(`MT/ρMT)
.

Better to have a more realistic model of motor dynamics just after
detachment, modeling escape from weak binding potential (Smith
and McKinley 2018)



Cargo Effects

The thin microtubule approximation implicitly assumes the motor
search time scale is long compared to cargo time scale

so cargo reaches uniform stationary distribution before motor
attachment

A complementary frozen cargo approximation:

thin microtubule approximation, but cargo time scale to move
kBT
κDc

longer than motor search time from current location

so in general valid only for cargo near enough to microtubule



Frozen Cargo Approximation

With the attachment point z⊥ + ρc r̂⊥ = y fixed, the mean time to
attachment is:

T ◦(y) ∼
`2MT

2πDm

[
ln

(
`d
ρMT

)
+

1

Ka

]
exp

(
κ|y|2

kBT

)
if microtubule centered at 0 is closest.
Much longer search time if the microtubules are far from
attachment point, relative to root-mean-square tether length√

kBT/κ.
Formally valid for attachment point near enough to microtubule

|y| �
√

kBT

κ

{
ln

[
γc
γm

kBT

κ`2MT

]
+ ln ln

[(
`d
ρMT

)
+

1

Ka

]}



Cargo-Aware Thin Microtubule Approximation

For other starting locations:

express mean time to attachment T ◦ under frozen cargo
approximation as function of attachment point location
y(z⊥, θ⊥)

determine region
D◦ = {(z⊥, θ⊥) ∈ D × [0, 2π) : T ◦(y(z⊥, θ⊥)) ≤ kBT

κDc
} where

frozen cargo approximation is good

compute mean time for (Z⊥(t),Θ⊥(t)) to reach D◦ under
motor-averaged dynamics (roughly `2MT/Dc)

transition zone between domains of validity thin

Simpler version of self-induced stochastic resonance work by
DeVille and Vanden-Eijnden 2007.



Detached Longitudinal Dynamics



Longitudinal Transverse Dynamics

Motor:

γmdX‖(t) = −κ(X‖(t)− (Z‖(t) + ρc R̂‖(t)))dt

+
√

2kBTγm dWx ,‖(t).

Cargo:

γcdZ‖(t) = −κ(Z‖(t) + ρc R̂‖(t)− X‖(t))dt

+
√

2kBTγc dWz,‖(t),

γrdR̂‖(t) = −κρc(Z‖(t) + ρc R̂‖(t)− X‖(t)) · Θ̂‖(t)Θ̂‖(t) dt

+
√

2kBTγr dWθ,‖(t)

where R̂‖(t) =
[
cos Θ‖(t), sin Θ‖(t)

]T
,

Θ̂‖(t) =
[
− sin Θ‖(t), cos Θ‖(t)

]T
.



Longitudinal Displacements During Detached Phase and
Transitions

Uniform approximation for longitudinal displacement during
detached phase based on fast detached motor relative to slow
cargo:

assume motor-cargo configuration (Z‖ − X
‖
1 ê1,Θ

‖) in
stationary distribution upon conclusion of attached phase
(neglecting attached diffusivity Da)

p(a)(y, θ) = C exp

{
− κ

kBT

[
(y1 + ρc cos θ)2 + (y2 + ρc sin θ)2

2

]
−γcva
kBT

y1

}
frozen cargo for short detachment durations

stochastically averaged motor for long detachment durations



Longitudinal Displacements During Detached Phase and
Transitions

E[X
‖
1 (t)− X

‖
1 (0)]

= Ep(a) [Y1 + ρce
−Dr t cos(Θ‖)](1− e

− κ
γm

t),

Var[X
‖
1 (t)− X

‖
1 (0)]

= (1− e
− κ

γm
t)2 Varp(a) [Y1 + ρce

−Dr t cos Θ‖] + 2Dct

+
kBT

κ

(
1− e

−2 κ
γm

t)
+

(
1− e−4Dr t

2
+ (e−4Dr t − e−2Dr t)Ep(a) [cos2 Θ‖]

)



Renewal-Reward Framework

View motor attachment/detachment as renewal process starting at
detachment time, with motor displacement along microtubule
(whether attached/detached) as ‘reward”

reward while detached ∆dX1(Ta)

reward while attached given by vaTd +
√

2DaW (Td) where
Da is effective diffusivity of attached motor, and Td is
exponentially distributed attachment time

Can compute effective drift and diffusivity of motor (and therefore
cargo), both longitudinally and transversely.

adapt calculation of (Hughes, Hancock, Fricks 2011) from
other molecular motor models

see also (Miles, Lawley, Keener 2017)



Summary of Motor Attachment Model

Analytically computable framework for representing motor
attachment to microtubule

spatial search; similar to search of motor head for binding site
in (Hughes, Hancock, Fricks 2011)

thin microtubule asymptotics to approximate solution to
complicated PDE for first passage time

couple to renewal-reward framework to track impact on
longitudinal transport

Quasi-two-dimensional approximations can be relaxed
straightforwardly in the transverse direction.

Main deficit is absence of steric effects on cargo
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