Particle representations for SPDEs with boundary conditions: An example.

Chris Janjigian

University of Utah

March 2018 (based on joint work with Dan Crisan and Tom Kurtz)

Let D denote the open unit ball in \mathbb{R}^d and consider the SPDE

$$\begin{array}{l} \partial_t v = \Delta v + v - v^3 + \dot{W}_{\epsilon} \\ v(0,x) = h(x), \qquad x \in D \\ v(t,x) = g(x), \qquad x \in \partial D, t > 0 \end{array}$$

where g is continuous, h is bounded and

$$W_{\epsilon}(t,x) = \int_{(0,t] \times \mathbb{R}^d} \psi_{\epsilon}(x-u) W(ds \otimes du)$$

is a spatially mollified space-time white noise.

SAC on the disk - weak form

Denote by π the normalized Lebesgue measure on D and β is the surface measure with the same prefactor, and η the unit inward normal. v should solve

$$\begin{split} \int_{D} \varphi(t,x) v(t,x) \pi(dx) &= \int_{D} \varphi(0,x) h(x) \pi(dx) \\ &+ \int_{0}^{t} \int_{D} (\partial_{t} \varphi(s,x) + \Delta \varphi(s,x)) v(s,x) \pi(dx) ds \\ &+ \int_{0}^{t} \int_{D} \varphi(s,x) (v(s,x) - v(s,x)^{3}) \pi(dx) ds \\ &+ \int_{(0,t] \times \mathbb{R}^{d}} \int_{D} \varphi(s,x) \psi_{\epsilon}(x-u) \pi(dx) W(ds \otimes du) \\ &+ \int_{0}^{t} \int_{\partial D} g(x) \nabla \varphi(s,x) \cdot \eta(x) \beta(dx) ds \end{split}$$

for all $\varphi \in C_b^2(\mathbb{R}_+ \times \overline{D})$ with $\varphi|_{\mathbb{R}_+ \times \partial D} = 0$.

Suppose that X_i are i.i.d. (and independent of W) stationary reflected diffusions on D with stationary distribution π and we introduce integrable weights A_i so that $\{A_i, X_i\}_{i=1}^{\infty}$ forms an exchangeable sequence. By de Finetti's theorem, a signed measure valued process V(t) exists satisfying

$$\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n A_i(t)\delta_{X_i(t)}=V(t)$$

and one can check that for φ compactly supported in D, a process of densities exists:

$$\int_D \varphi(x) V(t)(dx) = \int_D \varphi(x) v(t,x) \pi(dx).$$

A particle representation is a family $\{X_i, A_i\}_{i=1}^{\infty}$ with the property that the process of densities v(t, x) above is a weak solution to the SPDE.

Suppose that $\{X_i\}_{i=1}^{\infty}$ are stationary normally reflected (rate 2) Brownian motions in D and let $\varphi \in C_b^2(\mathbb{R}_+ \times \overline{D})$. Then

$$\begin{split} \varphi(t, X_i(t)) &= \varphi(0, X_i(0)) + \int_0^t (\partial_t + \Delta)\varphi(s, X_i(s)) ds \\ &+ \int_0^t \nabla \varphi(s, X_i(s)) \cdot \eta(X_i(s)) dL_i^X(s) \\ &+ \int_0^t \nabla \varphi(s, X_i(s)) \cdot dB_i(s) \end{split}$$

One can check that π is the stationary distribution for this process and β is the boundary measure.

Weights - first idea: ignore the boundary condition

Suppose that

$$\begin{aligned} A_i(t) &= h(X_i(0)) + \int_0^t (1 - v(s, X_i(s))^2) A_i(s) ds \\ &+ \int_{(0,t] \times \mathbb{R}^d} \psi_{\epsilon}(X_i(s) - u) W(ds \otimes du). \end{aligned}$$

Then for $\varphi \in C^2_c(D)$,

$$\begin{split} \varphi(t, X_i(t))A_i(t) &= \varphi(0, X_i(0))h(X_i(0)) \\ &+ \int_0^t (1 - v(s, X_i(s))^2)\varphi(s, X_i(s))A_i(s)ds \\ &+ \int_{(0,t] \times \mathbb{R}^d} \varphi(s, X_i(s))\psi_\epsilon(X_i(s) - u)W(ds \otimes du) \\ &+ \int_0^t (\partial_t + \Delta)\varphi(s, X_i(s))A_i(s)ds \\ &+ \int_0^t A_i(s)\nabla\varphi(s, X_i(s)) \cdot dB_i(s) \end{split}$$

Chris Janjigian

Weights - first idea: ignore the boundary condition

Averaging yields

$$\begin{split} \int_{D} \varphi(x) v(t,x) \pi(dx) &= \int_{D} \varphi(x) h(x) \pi(dx) \\ &+ \int_{0}^{t} \int_{D} (1 - v(s,x)^{2}) \varphi(x) v(s,x) \pi(dx) ds \\ &+ \int_{(0,t] \times \mathbb{R}^{d}} \int \varphi(x) \psi_{\epsilon}(x-u) \pi(dx) W(ds \otimes du) \\ &+ \int_{0}^{t} \int_{D} (\partial_{t} + \Delta) \varphi(x) v(s,x) \pi(dx) ds. \end{split}$$

ヨト イヨト

Weights - second idea: how to include the boundary term

Let $\tau_i(t) = \sup\{s \leq t : X_i(s) \in \partial D\} \lor 0$ and suppose that

$$\begin{split} A_{i}(t) &= g(X_{i}(\tau_{i}(t))) \mathbb{1}_{\{\tau_{i}(t) > 0\}} + h(X_{i}(0)) \mathbb{1}_{\{\tau_{i}(t) = 0\}} \\ &+ \int_{\tau_{i}(t)}^{t} (1 - v(s, X_{i}(s))^{2}) A_{i}(s) ds \\ &+ \int_{(\tau_{i}(t), t] \times \mathbb{R}^{d}} \psi_{\epsilon}(X_{i}(s) - u) W(ds \otimes du) \end{split}$$

- Intuitively: Whenever $X_i(t) \in \partial D$, the value of $A_i(t)$ resets to $g(X_i(t))$ and then the process starts evolving again.
- ② $A_i(t)$ is a difference of the previous expression for A_i and a process that only changes when $\tau_i(t)$ changes; i.e. when $X_i(t) \in \partial D$.

•
$$A_i(t)$$
 is not a semi-martingale.

"Ito's formula"

We cannot directly apply Ito's formula, but for $\varphi \in C_b^2(\mathbb{R}_+ \times \overline{D})$ with $\varphi|_{\mathbb{R}_+ \times \partial D} = 0$, we can show that for A_i as above

$$\begin{split} \varphi(t, X_i(t))A_i(t) &= \varphi(0, X_i(0))h(X_i(0)) \\ &+ \int_0^t (1 - v(s, X_i(s))^2)\varphi(s, X_i(s))A_i(s)ds \\ &+ \int_{(0,t] \times \mathbb{R}^d} \varphi(s, X_i(s))\psi_\epsilon(X_i(s) - u)W(ds \otimes du) \\ &+ \int_0^t (\partial_t + \Delta)\varphi(s, X_i(s))A_i(s)ds \\ &+ \int_0^t g(X_i(s))\nabla\varphi(s, X_i(s)) \cdot \eta(X_i(s))dL_i^X(s) \\ &+ \int_0^t A_i(s)\nabla\varphi(s, X_i(s)) \cdot dB_i(s) \end{split}$$

Intuitively, this works because we only run into issues is when $\tau_i(t)$ is changing. This occurs when $X_i(t) \in \partial D$, in which case $\varphi(X_i(t)) = 0$.

Chris Janjigian

3

Theorem (Crisan, J., Kurtz)

There exists a unique solution $\{A_i\}_{i=1}^{\infty}$ to the system of equations

$$egin{aligned} \mathcal{A}_i(t) &= g(X_i(au_i(t))) \mathbb{1}_{\{ au_i(t) > 0\}} + h(X_i(0)) \mathbb{1}_{\{ au_i(t) = 0\}} \ &+ \int_{ au_i(t)}^t (1 - v(s, X_i(s))^2) \mathcal{A}_i(s) ds \ &+ \int_{(au_i(t), t] imes \mathbb{R}^d} \psi_\epsilon(X_i(s) - u) \mathcal{W}(ds \otimes du) \end{aligned}$$

where v(t, x) is given by the process of densities for the measures

$$\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n A_i(t)\delta_{X_i(t)} := v(t,x)\pi(dx).$$

v(t,x) is the unique weak solution to the SPDE which satisfies $\sup_{t \leq T} \mathbb{E}[\int_D e^{\epsilon |v(t,x)|^2 \pi(dx)}] < \infty$ and is compatible with the driving noise W. Suppose that U is an \mathcal{F}^W_t adapted process and

$$egin{aligned} \mathcal{A}_{i}^{U}(t) &= g(X_{i}(au_{i}(t))) \mathbb{1}_{\{ au_{i}(t)>0\}} + h(X_{i}(0)) \mathbb{1}_{\{ au_{i}(t)=0\}} \ &+ \int_{ au_{i}(t)}^{t} (1 - U(s, X_{i}(s))^{2}) \mathcal{A}_{i}(s) ds \ &+ \int_{(au_{i}(t), t] imes \mathbb{R}^{d}} \psi_{\epsilon}(X_{i}(s) - u) W(ds \otimes du). \end{aligned}$$

Let ΦU to be the process of densities satisfying

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} A_i^U(t) \varphi(X_i(t)) = \int_D \Phi U(t, x) \varphi(x) \pi(dx)$$

We are looking for a fixed point of this map.

Some key ideas: density representation

If U is \mathcal{F}_t^W adapted, then by the ergodic theorem we also have

$$\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n A_i^U(t)\varphi(X_i(t)) = \mathbb{E}[A_i^U(t)\varphi(X_i(t))|\sigma(W)].$$

Take test functions φ and F. Then, since ΦU will be a $\sigma(W)$ measurable process,

$$\mathbb{E}[\varphi(X_i(t))A_i^U(t)F(W)] = \mathbb{E}\left[\int_D \varphi(x)\Phi U(t,x)\pi(dx)F(W)\right]$$
$$= \mathbb{E}\left[\varphi(X_i(t))\Phi U(t,X_i(t))F(W)\right].$$

This gives a representation:

$$\Phi U(t, X_i(t)) = \mathbb{E}[A_i^U(t)|\sigma(X_i(t)) \vee \sigma(W)],$$

A Gronwall argument leads to the *a priori* bound for $t \leq T$,

$$|A_i^U(t)| \leq \left(\|g\|_{\infty} \vee \|h\|_{\infty} + 2 \sup_{0 \leq t \leq T} \left| \int_{(0,t] \times \mathbb{R}^d} \psi_{\epsilon}(X_i(s) - u) W(ds \otimes du) \right| \right) e^T.$$

This combined with Jensen's inequality implies that there is $\epsilon_T > 0$ such that for all $t \leq T$,

$$\mathbb{E}\left[\int_{D} e^{\epsilon_{T} \Phi U(t,x)^{2}} \pi(dx)\right] = \mathbb{E}\left[e^{\epsilon_{T} \Phi U(t,X_{i}(t)^{2})}\right]$$
$$= \mathbb{E}\left[e^{\epsilon_{T} \mathbb{E}[A_{i}^{U}(t)|\sigma(X_{i}(t)) \vee \sigma(W)]^{2}}\right] < \infty.$$

This bound is a key ingredient to showing that an iterative scheme $\Phi^{(n)}U$ converges to a unique fixed point of the particle map.

Uniqueness of the non-linear SPDE

First, suppose that we consider the weak SPDE that is represented by $\{A_i^U, X_i\}$ when U is fixed.

$$\begin{split} \int_{D} \varphi(t, x) \Phi U(t, x) \pi(dx) &= \int_{D} \varphi(0, x) h(x) \pi(dx) \\ &+ \int_{0}^{t} \int_{D} (\partial_{t} \varphi(s, x) + \Delta \varphi(s, x)) \Phi U(s, x) \pi(dx) ds \\ &+ \int_{0}^{t} \int_{D} \varphi(s, x) (1 - U(s, x)^{2}) \Phi U(s, x) \pi(dx) ds \\ &+ \int_{(0,t] \times \mathbb{R}^{d}} \int_{D} \varphi(s, x) \psi_{\epsilon}(x - u) \pi(dx) W(ds \otimes du) \\ &+ \int_{0}^{t} \int_{\partial D} g(x) \nabla \varphi(s, x) \cdot \eta(x) \beta(dx) ds \end{split}$$

The difference between two solutions $\Phi U^{(1)}$ and $\Phi U^{(2)}$ solves a linear PDE for which we can show uniqueness so long as U has subgaussian tails.

Suppose that V is the fixed point of the particle system we constructed. This solves the SPDE in the weak sense. Let U be any other weak solution with a density which satisfies

$$\mathbb{E}\left[\int_D e^{\epsilon_T U(t,x)^2} \pi(dx)\right] < \infty$$

for some $\epsilon_T > 0$ and $t \leq T$ and which is compatible with W. Take U as the input in A_i^U and define ΦU via

$$\Phi U(t,x)\pi(dx) = \lim_{n\to\infty} \frac{1}{n} \sum_{i=1}^n A_i^U(t) \delta_{X_i(t)}.$$

Then ΦU solves the same weak linear SPDE as U and so $U = \Phi U$. But there is only one process which satisfies $V = \Phi V$ and therefore we have U = V.

A more general picture

The same construction works to give representations to (unique) weak-form solutions to

$$\partial_t v = \mathcal{L}^* v + vG(v, x) + b(x, t) + \dot{W}_{\epsilon}$$

$$v(0, x) = h(x), \qquad x \in D$$

$$v(t, x) = g(x), \qquad x \in \partial D, t > 0.$$

Conditions:

- D should be to be open, bounded, connected, and sufficiently smooth (C² is sufficient).
- 2 L is a uniformly elliptic differential operator with bounded continuous coefficients associated to a reflecting diffusion with stationary distribution π and associated boundary measure β, L* is the adjoint with respect to π.

$$\|h\|_{\infty}, \|g\|_{\infty}, \|b\|_{\infty} < \infty, \ G(v, x) \leq C$$

$$\sup_{v, x} \frac{|G(v, x)|}{1 + |v|^2} < \infty, \qquad \sup_{v, x} \frac{|G(v_1, x) - G(v_2, x)|}{|v_1 - v_2|(1 + |v_1| + |v_2|)} < \infty$$

Thanks!

Chris Janjigian

Particle representations for SPDEs with boundary conditions: An example.

2

<ロ> (日) (日) (日) (日) (日)