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Definition (Random Matrix)
A random matrix is a matrix with random variables as the entries of the matrix. For
example, My = (mij)kxi with mg; g4 N(0,1) is a rectangular random matrix.



Background

General setup

Let A1,..., An be the eigenvalues of an n X n random matrix M,,. Define the
empirical spectral distribution

n
Un = Z Ox, -
i=1

Note that p, defines a random measure on the complex plane.
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General setup

Let A1,..., An be the eigenvalues of an n X n random matrix M,,. Define the
empirical spectral distribution

n
Pn = Z(SM'
i=1

Note that p,, defines a random measure on the complex plane.

Questions

» What is the asymptotic behavior of uy,, as n — co?

> Fluctuation of pin.
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Three different matrix models

Definition (Wigner ensemble; symmetric)

Class of random matrices of the form M = (m;j)nxn such that m;; = mj; for all i, j
and {m;; : 1 <i < j <n} is a set of independent random variables.

Definition (Sample covariance ensemble)

Class of random matrices of the form My« = X X™*, where X« is a random matrix
with a set of independent random variables.

Definition (Ginibre ensemble; all iid entries)

Class of random matrices of the form M = (m;;)nxn, where m;;s are independently
and identically distributed (iid) random variables.



Wigner ensemble

The semicircle law

> Let M, = =X, = ﬁ(ﬂcij)nxn be a symmetric random matrix with

v
independent entries such that E[z;;] =0, IE[ZCZQJ] = 1. Then the empirical spectral
distribution of M,;, converges almost surely to psc, where ps. is the semicircle law

whose pdf is given by
1
psc(x) = on V (4—a2)4.
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Figure: A MATLAB simulation done with a 4000 x 4000 Wigner matrix



Wigner ensemble

The semicircle law

> Let M, = -LX,, = %(xij)nxn be a symmetric random matrix with

vn
independent entries such that E[z;;] =0, ]E[:cf]] = 1. Then the empirical spectral
distribution of M,, converges almost surely to psc, where ps. is the semicircle law

whose pdf is given by
1
psc(x) = on V (4—a2)4.

> Originally, this result was proved by using moment method (Wigner, 1955). It
can be shown that the 2kth moment of u,

18 1 1 2k 1 2k
2k -1 2% _ L - 4 — [ 2k
/x dun(x) = nj:1)\] ntl’ [(ﬁxn) :| k+1(k> /CE ,Dsc(x) dx.

And the odd moments vanishes.



Wigner ensemble

The semicircle law

> Let M,, = ﬁXn = %(Z‘ij)nxn be a symmetric random matrix with
independent entries such that E[z;;] =0, ]E[:c ] = 1. Then the empirical spectral

distribution of M,, converges almost surely to psc, where p;. is the semicircle law
whose pdf is given by

Psc(m) = i (4—:22)+.

> Originally, this result was proved by using moment method (Wigner, 1955). It
can be shown that the 2kth moment of u,

18 1 1 2k 1 2k
2k _ 1 2k _ L 2k
/x dpn (z) = anIA] St [(\/ﬁxn) } = 1(k> /x psc(x) dz.

And the odd moments vanishes.

> It can be shown that the Stieltjes transform of

sn(z):/]Rdi‘ni_(z):%tr(%xn_z)—l_> _z+\/7 /pe;i)zdz

for any z € {z € C: (z) > 0}.




Sample covariance ensemble

Marchenko-Pastur law

Let M = %XX*, where X be an m X n random matrix with i.i.d. entries with mean

0 and variance 2. Suppose m/n — 7y as m,n — oo, then the empirical spectral
distribution of M converges to the Marchenko-Pastur law. The probability density
function is given by

f(z) ifo<~y<1

uMp@c)—{ (1-2) b0+ @) iFy>1,

where

1 \/(’H—x)(x—’Y—)l[%,%r](I)’ vi = 02(1 £ )2

2mo? yT

f(@) =

This was proved by Vladimir Marchenko, and Leonid Pastur in 1967.



Sample covariance ensemble

Marchenko-Pastur law

Let M = %XX*, where X be an m X n random matrix with i.i.d. entries with mean

0 and variance 2. Suppose m/n — 7y as m,n — oo, then the empirical spectral
distribution of M converges to the Marchenko-Pastur law. The probability density
function is given by

f(z) if0<~y<1

pyp(z) = { (1 _ %> So+ f(x) ify>1.

Marchenko—Pastur distribution
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Figure: Done with a 400 X 700 random matrix with i.i.d. Gaussian entries
Downloaded from Mathworks.com



Ginibre ensemble

The circular law

> Let M, be an n X n matrix. If M,, = ﬁ

iid complex normal variables with unit variance, then the joint density of
A1, ..., An is given by

Xn, where z;;, the entries of X,,, are

n
FOL e An) = en [T N = 22 T e ™™,
=1

i<j

where ¢, is the normalizing constant.



Ginibre ensemble

The circular law

> Let M, be an n X n matrix. If M,, = ﬁ

iid complex normal variables with unit variance, then the joint density of
A1, ..., An is given by

Xn, where z;;, the entries of X,,, are

n
FOL e An) = en [T N = 22 T e ™™,
i=1

i<j

where ¢, is the normalizing constant.

> Mehta (1967) Proved that, as n — oo, the eigenvalues of such matrices are
uniformly distributed in the unit disk on the complex plane (Circular law).



Ginibre Ensemble

The circular law

» Let M,, be an n X n matrix. If M,, = %Xn, where x;;, the entries of Xy, are

iid complex normal variables with unit variance, then the joint density of
Al,y...,An is given by

n
F,.. ) =cn H [Xi — )\j\Q H e_"D"L‘z’
1<j =1

where ¢y, is the normalizing constant.

25

Figure: The circular law. Notice the inconsistency.




Random Band Matrices



Background

Definitions

Definition (Periodic band matrix)

Ann x n matrix M = (mjj)nxn is called a periodic band matrix of bandwidth by, if
m;; = 0 whenever by, < |i — j| <n — bp.

Definition (Non-periodic band matrix)

M is called a non-periodic band matrix of bandwidth by, if m;; = 0 whenever

bn < i —j|.

[ a1 a2 a3 0 0 0 0 0 alg ai,10
a1 a2 a3 a24 0 0 0 0 a2,10
asl as2 as33 a4 ass 0 0 0 0 0
0 a42 a43 Q44 Q45 Q46 0 0 0 0
0 0 0 0 0 asg asr ass asg as,10
ag1 0 0 0 0 0 ag7y  ags agg a9,10

L ai0,1 Q10,2 0 0 0 0 0 a1o,8 @10,9 @10,10 J

The above is a 10 x 10 periodic band matrix of bandwidth 2
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Background

Definitions

Definition (Periodic band matrix)
Ann x n matrix M = (mjj)nxn is called a periodic band matrix of bandwidth by, if
m;; = 0 whenever by, < |i — j| <n — bp.

Definition (Non-periodic band matrix)
M is called a non-periodic band matrix of bandwidth by, if m;; = 0 whenever
bn < i —j|.

» What is the joint density function of the eigen values of a random band matrix?

» What if we assume that the entries are standard Gaussian?



> In 1991, the Semicircle Law for random band matrices was conjectured by G.
Casati et al.



> In 1991, the Semicircle Law for random band matrices was conjectured by G.
Casati et al.

> In 1992, Molchanov et. al. proved it when an — 0 and b, — 00 as n — oco.



Main result

General setup

Let X = (x;j)nxn be an n X n periodic band matrix of bandwidth b, where b, — oo
as n — oo. Let R be a sequence of n X n deterministic periodic band matrices of
bandwidth b,,. Let us denote ¢, = 2b,, + 1 and pjp; be the ESD of M. Assume that

(a) p 1 pr« — H,for some non random probability distribution H

(0) {zjr : k€I, 1 <j<n}isan iid set of random variables,
(¢) Elen1] = 0,EfJe11 2] = 1, ()

and define (d) Y = (R+ 0X), where 0 > 0 is fixed.

Cn



Main result

General setup

Let X = (x;j)nxn be an n X n periodic band matrix of bandwidth b, where b, — oo
as n — oo. Let R be a sequence of n X n deterministic periodic band matrices of
bandwidth b,,. Let us denote ¢, = 2b,, + 1 and pjp; be the ESD of M. Assume that

(a) p 1 pr« — H,for some non random probability distribution H
(0) {zjr : k€I, 1 <j<n}isan iid set of random variables,
(0) Blon1] = 0,Eflen|?] = 1, )

and define (d) Y = (R+ 0X), where 0 > 0 is fixed.

Cn

Definition (Poincaré inequality)

Let X be a R* valued random variable with probability measure 1. The probability
measure p is said to satisfy the Poincaré inequality with constant m > 0, if for all
continuously differentiable functions f : R¥ — R,

Var(f(X)) < —E(|VF(X)|?).

1
m



Main result

General setup

Let X = (x;j)nxn be an n X n periodic band matrix of bandwidth b, where b, — oo
as n — oo. Let R be a sequence of n X n deterministic periodic band matrices of
bandwidth b,,. Let us denote ¢, = 2b,, + 1 and pjp; be the ESD of M. Assume that

(a) p 1 pr« — H,for some non random probability distribution H
(0) {zjr : k€I, 1 <j<n}isan iid set of random variables,
(0) Elz11] = 0,E[len|?] = 1, @)

and define (d) Y = (R+ 0X), where 0 > 0 is fixed.

Cn

Definition (Poincaré inequality)

Let X be a R* valued random variable with probability measure 1. The probability
measure p is said to satisfy the Poincaré inequality with constant m > 0, if for all
continuously differentiable functions f : R¥ — R,

Var(f(X)) < —E(|VF(X)|?).

1
m

> For example, the uniform distribution on [0, 1], the standard Gaussian distribution
satisfy the Poincaré inequality.



Main Result

without Poincaré assumption

Theorem (without Poincaré)

Let Y be the band matrix as defined in (1). In addition to the existing assump-
tion, assume that

(@) & =0,
Cn
(it) H is compactly supported
(#i1) E[|z11|?P] < oo, for some p € N.

Then E|my (2) —m(z)|P — 0 uniformly for all z € {z : (z) > n} for any fixed
n > 0, where my(z) = %Z?:l()\i(YY*) — 2)~1 is the empirical Stieltjes
transform of YY™*, and m(z) = [ dw“f(z). In particular, the expected ESD of
YY™ converges. In addition, the Stieltjes transform of p satisfies

m(z) = / = aH () = for any z € CT.
R T52m(z) — (1+02m(z))z




Main Result

without Poincaré assumption

Theorem (without Poincaré)

Let Y be the band matrix as defined in (1). In addition to the existing assump-
tion, assume that

(@) & =0,
Cn
(it) H is compactly supported
(#i1) E[|z11|?P] < oo, for some p € N.

Then E|my (2) —m(z)|P — 0 uniformly for all z € {z : (z) > n} for any fixed
n > 0, where my(z) = %Z?:l()\i(YY*) — 2)~1 is the empirical Stieltjes
transform of YY™*, and m(z) = [ d:f(z). In particular, the expected ESD of
YY™ converges. In addition, the Stieltjes transform of p satisfies

m(z) = / = aH () = for any z € CT.
R T52m(z) — (1+02m(z))z

Remark

If R=0 and o = 1, then the above integral equation becomes
m(z)(1 4 m(z))z + 1 = 0 which yields the Stieltjes transform of the
Marchenko-Pastur law.



Main Result

under Poincaré assumption

Theorem (under Poincaré assumption)

Let Y be the same as (1). In addition to the existing assumption, assume that
(i) logm = O(cn)
(it) H is compactly supported

(434) Both R(x;;) and I(x4;) satisfy Poincaré inequality with constant m.

Then E|my(2) — m(z)| — 0 uniformly for all z € {z : S(z) > n} for any fixed
n > 0, and m(z) satisfies

m(z) = /R dH(?) for any z € Ct. (2)

m — (1+02m(2))z




» Eigenvalues are sensitive to small changes of the matrix entries

0 1 0 0 1 0
M= 0 0 1|, Mc=| 0 0 1
0 0 O e 0 O

Eigenvalues of M are all zero and those of M, is A\ = el/3e2kmi/3 | =0,1,2.



Possible application

Circular law | Failure of moment method and Stieltjes transform

» Eigenvalues are sensitive to small changes of the matrix entries
0 1 0 0 1 0
M = 0o 0 1 |, Mc=1| 0 0 1
0 0 0 e 0 O
Eigenvalues of M are all zero and those of M, is A\ = el/3e2kmi/3 | =0,1,2.

> If we take e, = 1/n, then )\EC”) =np~1/ne2kmi/n | — (0 .. n—1. Observation;

M1



Possible application

Circular law | Failure of moment method and Stieltjes transform

» By Cauchy integral formula, E[Z*] = 0 for any random variable Z which is
uniformly distributed over any bounded simply connected region. So proving
%tr(Xn/\/ﬁ)’c — 0 does not prove the circular law.



Possible application

Circular law | Failure of moment method and Stieltjes transform

» By Cauchy integral formula, E[Z*] = 0 for any random variable Z which is
uniformly distributed over any bounded simply connected region. So proving
%tr(Xn/\/ﬁ)’c — 0 does not prove the circular law.

> The Stieltjes transform s, (z) = %tr(Xn/\/ﬁf 2I)~! should satisfy
sn(z) = —1/z as n — oco. But again this does not uniquely identify the uniform
distribution over unit disk.



> Let z = s+ it. The real part of the Stieltjes transform can be written as

?R(mn ()
RO — 2)

_Z A —z|2

—% % /0 log zvn, (dz, 2),

Mpr(z) =

where vy, (-, 2) is the ESD of (

1
T

X — zI)(\/lﬁXn —zI)*.



Possible application

Circular law | A useful bit of Stieltjes transform

> Let z = s 4 it. The real part of the Stieltjes transform can be written as

Mpr(z) = S‘E(mn(z))
- *Z |>\ _2\2

= —ig/ log zvp (dz, 2),

where vy, (-, ) is the ESD of (%Xn - zI)(ﬁXn —zI)*.

> Lemma (Girko): Let A1,..., An be the eigenvalues of an n X n random matrix
My, and

() = ~#0 1 <0 <0 RO < 2,300) < v}
n

be the empirical spectral distribution (ESD) of M.

) 2 2 1s] ad ;
//el(“z+”y)un(dz,dy) = u‘ v //— [/ log zvp (dz, 2) gilustot) dtds,
idru ds |Jo
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type of matrices, and proved the Circular law for random matrices which have
bounded (2 + §) moments of the entries. More recently, Tao, Vu (2007) proved it
only under the second moment assumption.
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Possible application

Circular law | A useful bit of Stieltjes transform

> Girko's lemma leads a way to prove the Circular law.

> Bai, Silverstein (1995) proved the limiting ESD of (ﬁXn — zI)(ﬁXn —zI)*
type of matrices, and proved the Circular law for random matrices which have
bounded (2 + §) moments of the entries. More recently, Tao, Vu (2007) proved it
only under the second moment assumption.

» Controlling the smallest eigenvalue of (ﬁXn — zI)(ﬁXn — zI)* is nontrivial.

> It is believed that the circular law should hold for random band matrices of

bandwidth b, >> \/n.

i Thank you for your attention!



The following notations are introduced for convenience of writing the proof.

A= —RR* —oZzmpl
cn(l 4 o2my)

B=A-=zI

C=YY" -zl

Cj =C —y;v;5,

where p; is the jth column of the matrix P.



Sketch of the proof

Some notations

The following notations are introduced for convenience of writing the proof.

RR*
A= ——— — 02zmn1
cn(l+ o2my)
B=A-—=zI
C=YY"* -2l

Cj = C —yjyj,

where p; is the jth column of the matrix P.

Remark
The eigenvalues of A — zI are given by ﬁ — (14 0%my)z, where \;s are
dH(t)

can be thought of as

eigenvalue of %RR*. Therefore [ —

TroZm —(1+02m)z

%tr(A — 2I)7! for large n. So heuristically, proving the theorem is same as showing
that %tr(A — 27! —my = 0asn — oco.



Lemma (Sherman-Morrison formula)

Let P,xn and (P + vv*) be invertible matrices, where v € C™. Then we have

P~ lyp* Pl
P Nl p-1 2 77
(P 1+v*P-1y
In particular,
’U*P_l

*(p *\—1 _ .
VP o) 14+v*P~ly




Sketch of the proof

Sherman-Morrison formula

Lemma (Sherman-Morrison formula)

Let P,xn and (P + vv*) be invertible matrices, where v € C™. Then we have
P~ lyp* Pl
Pto*)y t=pt-—— .
(P 1+v*P-1y
In particular,
*P—l
P ISR o —
T 14+ vP-1ly’

Using the Sherman-Morrison formula we have
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Y5
I+zc 7t =vyy*Cc~! ;i #.
Z Jl-l—yJC



Sketch of the proof

Sherman-Morrison formula

Lemma (Sherman-Morrison formula)

Let P,xn and (P + vv*) be invertible matrices, where v € C™. Then we have
P~ lyp* Pl
P Nl=pt - |
(P +wvv™) 1+v*P-1ly
In particular,
*P—l
P+ = ——
v w)” 1+v P11y’

Using the Sherman-Morrison formula we have

-1

Y5
I+zc 7t =vyy*Cc~! ;i #.
Z J1+yJC

Taking trace and dividing by n on the both sides we obtain

—1 n
1< ¥C Ty 1
2Mp = — —_— = —

11+ yC s j=1 +y*C’ y]

®3)



Using the resolvent identity,

B l-c =B l(yy*—acCc!

1
=_-_B! [RR* +oRX* 4+ 0XR* + 02X X* — RR* + cn02zmn] c1
Cn

1+ o2my
RS 2 1
= — ZB_I %rﬂ‘; +orjx; +oxjry +0'2zjm;f — C—n—7102 cL
Cn 53 14 c2mnp n1+yrCrly;




Sketch of the proof

The resolvent identity

Using the resolvent identity,

—c =B Yyvy*-A)C!

1 1
=—B! {RR* +0RX*+0XR*+02XX* — —— —RR* + cna2zmn:| c!
Cn 1 +0'2mn
I & 1| o?mg 2 Cn 1 2 1
= B | ——————rir +orjztl +oxiri otz — ——n—— 0| O
P D e A A R S wwvrey
Taking the trace, dividing by n, and using (3), we have
1 -1
ftrB — Mn
1 & o‘m 1 1
n * 1 * v—1p—1 *v—1 p—
= — C B~ r-+—aac~C B 'ri4+ —or:C "B
n;{l—i—cﬂm cn cn 7 T,
1 1 1
+—0 x*C ip—1 xj 770 2y~ 1B !
Cn 1+y]*C’ Yy; n

S

n
ST+ Toy+Tsj+Taj+Ts 5. (4)
j=1



We introduce the following notations for convenience

2

1 1
_ *ev—1, L = 2 ko=l
—C—er’j T, wj_c o a:jCj Tj,
n n

1 1
— ko ~y—1_ L *~—1
—_O'chj xj, 'y]_—c a'szj T,
n

Cn
-—lr*c_lB—l ) *4_i 2 x07ig=1,. 5
=G rj, w]_caxjj xj, (5)
n n

1 1
_ *v—1p—1 2 —1p-—1
j = —or;C; B w;, q;= —ax;-‘Cj B~ 'ry,

Cn Cn

1 _
j =1+ —(rj +025)"C; Yrj+ o) =14 pj+ B85+ +wjy.
n



Sketch of the proof

Simplification of T 5

We introduce the following notations for convenience
1, .1 1
S - X L - 2 k=1
pj = C—TjCj ri, W= - o ijj xj,
n n

1 1
_ ko ~y—1_ . ko ~—1
B; = —Uerj Tj, v = —U:EjCj T,
Cn, Cn,

1 1
P x=lp—1_ o~ _ 2 x—lp—1_
pJ—cner’j B~ ry, wj—cno mJC]. B xj,
1 1
o so-lp—1.  + _ so—1g—1,._
ijcna'r]Cj B xj, 'y]fcncr:c]Cj B~ ry,

1
oy =14 —(rj +02;)"CyH (ry + omy) =1+ pj + B + 7 +wj.
n

Using the Sherman-Morrison formula, (4) can be written as

)

1 11 1
B — == | (52 e — VB
” Mn n = a; [1+02mn (05 mp —v5 — wj)p;
+ ————(14pj+ 85 +*m )A-+B-+w-—102tr(f13*1
1+ o2m,, Pj Jj n)Yj j LA :

(6)



Lemma (Effect of rank one perturbation on the partial trace of resolvent)

Let P and Q be n X n Hermition matrices, and I C {1,2,...,n}, then

SN (P—zDit = Q2D _(\()rank(P Q).

kel kel




Sketch of the proof

A Hoeffding type inequality

Lemma (Effect of rank one perturbation on the partial trace of resolvent)

Let P and @ be n X n Hermition matrices, and I C {1,2,...,n}, then

D P —2Di =D Q- 2Dy gﬁrank(P—Q).

kel kel

The above and Hoeffding's inequality together yield the following tail bounds

I(2)%t?
P ZMkkaZMkk >t ] <2exp o [

keI, kET;

for M =C; ' C7'By Y, CtryrrCo Y and OB ey B T
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A Hoeffding type inequality

Lemma (Effect of rank one perturbation on the partial trace of resolvent)

Let P and @ be n X n Hermition matrices, and I C {1,2,...,n}, then

D P —2Di =D Q- 2Dy S%Z)rank(P—Q).

kel kel

The above and Hoeffding's inequality together yield the following tail bounds

I(2)%t?
P ZMkkaZMkk >t ] <2exp o [

kel kel

for M =C; ' C7'By Y, CtryrrCo Y and OB ey B T

> Applying these tail estimates on (6), we have the result.



Sketch of the proof

A Hoeffding type inequality

Lemma (Effect of rank one perturbation on the partial trace of resolvent)

Let P and @ be n X n Hermition matrices, and I C {1,2,...,n}, then

D P —2Di =D Q- 2Dy g%z)rank(P—Q).

kel kel

The above and Hoeffding's inequality together yield the following tail bounds

ex
E kk E kk > P 321 )
kel kel;

for M =C; ' C7'By Y, CtryrrCo Y and OB ey B T

> Applying these tail estimates on (6), we have the result.

i Thanks Again!



