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Background
General setup

Definition (Random Matrix)
A random matrix is a matrix with random variables as the entries of the matrix. For
example, Mn = (mij)k×l with mij

i.i.d∼ N (0, 1) is a rectangular random matrix.



Background
General setup

Let λ1, . . . , λn be the eigenvalues of an n× n random matrix Mn. Define the
empirical spectral distribution

µn :=
n∑

i=1

δλi
.

Note that µn defines a random measure on the complex plane.
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Questions

I What is the asymptotic behavior of µn, as n → ∞?

I Fluctuation of µn.
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Three different matrix models

Definition (Wigner ensemble; symmetric)
Class of random matrices of the form M = (mij)n×n such that mij = mji for all i, j
and {mij : 1 ≤ i ≤ j ≤ n} is a set of independent random variables.

Definition (Sample covariance ensemble)
Class of random matrices of the form Mk×k = XX∗, where Xk×l is a random matrix
with a set of independent random variables.

Definition (Ginibre ensemble; all iid entries)
Class of random matrices of the form M = (mij)n×n, where mijs are independently
and identically distributed (iid) random variables.
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Wigner ensemble
The semicircle law

I Let Mn = 1√
n
Xn = 1√

n
(xij)n×n be a symmetric random matrix with

independent entries such that E[xij ] = 0, E[x2
ij ] = 1. Then the empirical spectral

distribution of Mn converges almost surely to ρsc, where ρsc is the semicircle law
whose pdf is given by

ρsc(x) =
1

2π

√
(4− x2)+.
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Figure: A MATLAB simulation done with a 4000 × 4000 Wigner matrix
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√
(4− x2)+.

I Originally, this result was proved by using moment method (Wigner, 1955). It
can be shown that the 2kth moment of µn∫

x2k dµn(x) =
1

n

n∑
j=1

λ2k
j =

1

n
tr
[(

1
√
n
Xn

)2k
]
→

1

k + 1

(2k
k

)
=

∫
x2kρsc(x) dx.

And the odd moments vanishes.

I It can be shown that the Stieltjes transform of µn

sn(z) =

∫
R

dµn(λ)

λ− z
=

1

n
tr
(

1
√
n
Xn − z

)−1

→
−z +

√
z2 − 4

2
=

∫
R

ρsc(x) dx

x− z
,

for any z ∈ {z ∈ C : =(z) > 0}.
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Sample covariance ensemble
Marchenko-Pastur law

Let M = 1
n
XX∗, where X be an m× n random matrix with i.i.d. entries with mean

0 and variance σ2. Suppose m/n → γ as m,n → ∞, then the empirical spectral
distribution of M converges to the Marchenko-Pastur law. The probability density
function is given by

µMP (x) =

{
f(x) if 0 ≤ γ ≤ 1(
1− 1

γ

)
δ0 + f(x) if γ > 1,

where

f(x) =
1

2πσ2

√
(γ+ − x)(x− γ−)

γx
1[γ−,γ+](x), γ± = σ2(1±√

γ)2.

This was proved by Vladimir Marchenko, and Leonid Pastur in 1967.
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Figure: Done with a 400 × 700 random matrix with i.i.d. Gaussian entries
Downloaded from Mathworks.com



Ginibre ensemble
The circular law

I Let Mn be an n× n matrix. If Mn = 1√
n
Xn, where xij , the entries of Xn, are

iid complex normal variables with unit variance, then the joint density of
λ1, . . . , λn is given by

f(λ1, . . . , λn) = cn
∏
i<j

|λi − λj |2
n∏

i=1

e−n|λi|2 ,

where cn is the normalizing constant.

I Mehta (1967) Proved that, as n → ∞, the eigenvalues of such matrices are
uniformly distributed in the unit disk on the complex plane (Circular law).
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Figure: The circular law. Notice the inconsistency.



Random Band Matrices



Background
Definitions

Definition (Periodic band matrix)
An n× n matrix M = (mij)n×n is called a periodic band matrix of bandwidth bn if
mij = 0 whenever bn < |i− j| < n− bn.

Definition (Non-periodic band matrix)
M is called a non-periodic band matrix of bandwidth bn if mij = 0 whenever
bn < |i− j|.



a11 a12 a13 0 0 0 0 0 a19 a1,10
a21 a22 a23 a24 0 0 0 0 a2,10
a31 a32 a33 a34 a35 0 0 0 0 0
0 a42 a43 a44 a45 a46 0 0 0 0

...
0 0 0 0 0 a86 a87 a88 a89 a8,10

a91 0 0 0 0 0 a97 a98 a99 a9,10
a10,1 a10,2 0 0 0 0 0 a10,8 a10,9 a10,10


.

The above is a 10× 10 periodic band matrix of bandwidth 2
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Wigner ensemble | band matrices
The semicircle law for symmetric band matrices

I In 1991, the Semicircle Law for random band matrices was conjectured by G.
Casati et al.

I In 1992, Molchanov et. al. proved it when bn
n

→ 0 and bn → ∞ as n → ∞.
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Main result
General setup

Let X = (xij)n×n be an n× n periodic band matrix of bandwidth bn, where bn → ∞
as n → ∞. Let R be a sequence of n× n deterministic periodic band matrices of
bandwidth bn. Let us denote cn = 2bn + 1 and µM be the ESD of M . Assume that

(a) µ 1
cn

RR∗ → H, for some non random probability distribution H

(b) {xjk : k ∈ Ij , 1 ≤ j ≤ n} is an iid set of random variables,

(c) E[x11] = 0,E[|x11|2] = 1,

and define (d) Y =
1

√
cn

(R+ σX), where σ > 0 is fixed.

(1)

Definition (Poincaré inequality)
Let X be a Rk valued random variable with probability measure µ. The probability
measure µ is said to satisfy the Poincaré inequality with constant m > 0, if for all
continuously differentiable functions f : Rk → R,

Var(f(X)) ≤
1

m
E(|∇f(X)|2).

I For example, the uniform distribution on [0, 1], the standard Gaussian distribution
satisfy the Poincaré inequality.
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Main Result
without Poincaré assumption

Theorem (without Poincaré)

Let Y be the band matrix as defined in (1). In addition to the existing assump-
tion, assume that

(i)
n

c2n
→ 0,

(ii) H is compactly supported
(iii) E[|x11|2p] < ∞, for some p ∈ N.

Then E|mn(z)−m(z)|p → 0 uniformly for all z ∈ {z : =(z) > η} for any fixed
η > 0, where mn(z) = 1

n

∑n
i=1(λi(Y Y ∗) − z)−1 is the empirical Stieltjes

transform of Y Y ∗, and m(z) =
∫
R

dµ(x)
x−z

. In particular, the expected ESD of
Y Y ∗ converges. In addition, the Stieltjes transform of µ satisfies

m(z) =

∫
R

dH(t)
t

1+σ2m(z)
− (1 + σ2m(z))z

for any z ∈ C+.

Remark
If R = 0 and σ = 1, then the above integral equation becomes
m(z)(1 +m(z))z + 1 = 0 which yields the Stieltjes transform of the
Marchenko-Pastur law.
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Main Result
under Poincaré assumption

Theorem (under Poincaré assumption)

Let Y be the same as (1). In addition to the existing assumption, assume that

(i) logn = O(cn)

(ii) H is compactly supported
(iii) Both <(xij) and =(xij) satisfy Poincaré inequality with constant m.

Then E|mn(z)−m(z)| → 0 uniformly for all z ∈ {z : =(z) > η} for any fixed
η > 0, and m(z) satisfies

m(z) =

∫
R

dH(t)
t

1+σ2m(z)
− (1 + σ2m(z))z
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Possible application
Circular law | Failure of moment method and Stieltjes transform

I Eigenvalues are sensitive to small changes of the matrix entries

M =

 0 1 0
0 0 1
0 0 0

 , Mε =

 0 1 0
0 0 1
ε 0 0


Eigenvalues of M are all zero and those of Mε is λk = ε1/3e2kπi/3, k = 0, 1, 2.

I If we take εn = 1/n, then λ
(n)
k = n−1/ne2kπi/n, k = 0, . . . , n− 1. Observation;

|λ(n)
k | → 1.
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Possible application
Circular law | Failure of moment method and Stieltjes transform

I By Cauchy integral formula, E[Zk] = 0 for any random variable Z which is
uniformly distributed over any bounded simply connected region. So proving
1
n

tr(Xn/
√
n)k → 0 does not prove the circular law.

I The Stieltjes transform sn(z) =
1
n

tr(Xn/
√
n− zI)−1 should satisfy

sn(z) → −1/z as n → ∞. But again this does not uniquely identify the uniform
distribution over unit disk.
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Possible application
Circular law | A useful bit of Stieltjes transform

I Let z = s+ it. The real part of the Stieltjes transform can be written as

mnr(z) := <(mn(z))

=
1

n

n∑
i=1

<(λi − z)

|λi − z|2

= −
1

2

∂

∂s

∫ ∞

0
logxνn(dx, z),

where νn(·, z) is the ESD of ( 1√
n
Xn − zI)( 1√

n
Xn − zI)∗.

I Lemma (Girko): Let λ1, . . . , λn be the eigenvalues of an n× n random matrix
Mn and

µn(x, y) :=
1

n
#{λi, 1 ≤ i ≤ n : <(λi) ≤ x,=(λi) ≤ y}

be the empirical spectral distribution (ESD) of Mn.∫ ∫
ei(ux+vy)µn(dx, dy) =

u2 + v2

i4πu

∫ ∫
∂

∂s

[∫ ∞

0
logxνn(dx, z)

]
ei(us+vt) dtds,
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Possible application
Circular law | A useful bit of Stieltjes transform

I Girko’s lemma leads a way to prove the Circular law.

I Bai, Silverstein (1995) proved the limiting ESD of ( 1√
n
Xn − zI)( 1√

n
Xn − zI)∗

type of matrices, and proved the Circular law for random matrices which have
bounded (2 + δ) moments of the entries. More recently, Tao, Vu (2007) proved it
only under the second moment assumption.

I Controlling the smallest eigenvalue of ( 1√
n
Xn − zI)( 1√

n
Xn − zI)∗ is nontrivial.

I It is believed that the circular law should hold for random band matrices of
bandwidth bn >>

√
n.

¡Thank you for your attention!
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Sketch of the proof
Some notations

The following notations are introduced for convenience of writing the proof.

A =
RR∗

cn(1 + σ2mn)
− σ2zmnI

B = A− zI

C = Y Y ∗ − zI

Cj = C − yjy
∗
j ,

where pj is the jth column of the matrix P .

Remark

The eigenvalues of A− zI are given by λi
1+σ2mn

− (1 + σ2mn)z, where λis are

eigenvalue of 1
cn

RR∗. Therefore
∫
R

dH(t)
t

1+σ2m
−(1+σ2m)z

can be thought of as
1
n

tr(A− zI)−1 for large n. So heuristically, proving the theorem is same as showing
that 1

n
tr(A− zI)−1 −mn → 0 as n → ∞.
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Sketch of the proof
Sherman-Morrison formula

Lemma (Sherman-Morrison formula)

Let Pn×n and (P + vv∗) be invertible matrices, where v ∈ Cn. Then we have

(P + vv∗)−1 = P−1 −
P−1vv∗P−1

1 + v∗P−1v
.

In particular,

v∗(P + vv∗)−1 =
v∗P−1

1 + v∗P−1v
.

Using the Sherman-Morrison formula we have

I + zC−1 = Y Y ∗C−1 =
n∑

j=1

yj
y∗jC

−1
j

1 + yjC
−1
j y∗j

.

Taking trace and dividing by n on the both sides we obtain

zmn =
1

n

n∑
j=1

y∗jC
−1
j yj

1 + yjC
−1
j y∗j

− 1 = −
1

n

n∑
j=1

1

1 + y∗jC
−1
j yj

. (3)
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Sketch of the proof
The resolvent identity

Using the resolvent identity,

B−1 − C−1 = B−1(Y Y ∗ −A)C−1

=
1

cn
B−1

[
RR∗ + σRX∗ + σXR∗ + σ2XX∗ −

1

1 + σ2mn
RR∗ + cnσ

2zmn

]
C−1

=
1

cn

n∑
j=1

B−1

[
σ2mn

1 + σ2mn
rjr

∗
j + σrjx

∗
j + σxjr

∗
j + σ2xjx

∗
j −

cn

n

1

1 + y∗jC
−1
j yj

σ2

]
C−1.

Taking the trace, dividing by n, and using (3), we have

1

n
trB−1 −mn

=
1

n

n∑
j=1

[
σ2mn

1 + σ2mn

1

cn
r∗jC

−1B−1rj +
1

cn
σx∗

jC
−1B−1rj +

1

cn
σr∗jC

−1B−1xj

+
1

cn
σ2x∗

jC
−1B−1xj −

1

1 + y∗jC
−1
j yj

1

n
σ2trC−1B−1

]

≡
1

n

n∑
j=1

[T1,j + T2,j + T3,j + T4,j + T5,j ] . (4)
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Sketch of the proof
Simplification of T1,j

We introduce the following notations for convenience

ρj =
1

cn
r∗jC

−1
j rj , ωj =

1

cn
σ2x∗

jC
−1
j xj ,

βj =
1

cn
σr∗jC

−1
j xj , γj =

1

cn
σx∗

jC
−1
j rj ,

ρ̂j =
1

cn
r∗jC

−1
j B−1rj , ω̂j =

1

cn
σ2x∗

jC
−1
j B−1xj ,

β̂j =
1

cn
σr∗jC

−1
j B−1xj , γ̂j =

1

cn
σx∗

jC
−1
j B−1rj ,

αj = 1 +
1

cn
(rj + σxj)

∗C−1
j (rj + σxj) = 1 + ρj + βj + γj + ωj .

(5)

Using the Sherman-Morrison formula, (4) can be written as

1

n
trB−1 −mn =

1

n

n∑
i=1

1

αj

[
1

1 + σ2mn
(σ2mn − γj − ωj)ρ̂j

+
1

1 + σ2mn
(1 + ρj + βj + σ2mn)γ̂j + β̂j + ω̂j −

1

n
σ2trC−1B−1

]
.

(6)
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Sketch of the proof
A Hoeffding type inequality

Lemma (Effect of rank one perturbation on the partial trace of resolvent)

Let P and Q be n× n Hermition matrices, and I ⊂ {1, 2, . . . , n}, then∣∣∣∣∣∣
∑
k∈I

(P − zI)−1
kk −

∑
k∈I

(Q− zI)−1
kk

∣∣∣∣∣∣ ≤ 2

=(z)
rank(P −Q).

The above and Hoeffding’s inequality together yield the following tail bounds

P

∣∣∣∣∣∣
∑
k∈Ij

Mkk − E
∑
k∈Ij

Mkk

∣∣∣∣∣∣ > t

 ≤ 2 exp
{
−
=(z)2t2

32n

}
,

for M = C−1
j , C−1

j B−1
j , C−1

j rjr
∗
jC

−1∗
j , and C−1

j B−1
j rjr

∗
jB

−1∗
j C−1∗

j .

I Applying these tail estimates on (6), we have the result.

¡Thanks Again!
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