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A Lévy Process (Xt) is characterized by its Lévy exponent.

φ(0) = 0 E(e−iuX1) = e−φ(iu)

Examples

Standard Brownian motion : φ(iu) = u2

2 .

Symmetric α-stable process, φ(iu) = c .|u|α, 0 < α ≤ 2, c > 0.

A Lévy process with non decreasing paths is a subordinator.
Its Lévy exponent, φ, is a continuous function on {λ;<(λ) ≥ 0},
holomorphic on the open right half plane.

Other important example : The Gamma process (γt), γ1 is a
standard exponential r.v. and φ(λ) = Ln(1 + λ).
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Simple facts

• A Lévy process (with exponent φ) whose paths are locally with
bounded variations can be expressed as the difference of two
independent subordinators (with exponents ψ+ and ψ−).

• A Lévy process can be written as the difference of two
independent Lévy processes that have no negative jumps.
This decomposition is unique up to the addition of a Brownian
motion and a drift.

• The killing formalism:

φ(0) + c (c > 0) is the exponent of a (still called) Lévy process
killed at an exponential independent time with rate c .
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• A Lévy process can be written as the difference of two
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independent Lévy processes that have no negative jumps.
This decomposition is unique up to the addition of a Brownian
motion and a drift.

• The killing formalism:

φ(0) + c (c > 0) is the exponent of a (still called) Lévy process
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The Wiener-Hopf factorization for Lévy Processes

A LONG STORY. Starts with random walks (in the 70’s and early
80’) : Actors : Bingham, Spitzer, Feller, Fristedt, Pitman, and

Priscilla Greenwood

Followers (non-exhaustive list) : .L.Alili, J. Bertoin, L. Chaumont,
R. Doney, T.Duquesne, A.Kyprianou, A. Kuznetsov, J.C Prado, V.
Rivero, V.Vigon, and S.Asmussen, M.Pistorius, E. Eberlein (with
financial applications).

Undoubtly a central result for fluctuations of Lévy processes.
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What does WH Factorisation say ?

Concisely,

1) Every exponent of a (possibly killed) Lévy process is the
product of the exponent of a subordinator and of the opposite of
a subordinator: there exists two exponents κ and κ̂ of
subordinators such that

φ(iu) = κ(iu)κ̂(iu)

[iu ∈ iR, at least ]. This decomposition is unique up to a positive
multiplicative constant.

2) The exponent κ is the exponent of the Ladder Process (Ht)
which is a subordinator whose range is the same as

St := sup{Xs , s ≤ t}.

3) If X is a killed process with death time ζ, or if Xt goes to −∞,
for t → +∞, then the r.v. Hζ = sup{Xs ; s ≤ ζ} has Laplace

transform κ(0)
κ(λ) .
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product of the exponent of a subordinator and of the opposite of
a subordinator: there exists two exponents κ and κ̂ of
subordinators such that

φ(iu) = κ(iu)κ̂(iu)

[iu ∈ iR, at least ]. This decomposition is unique up to a positive
multiplicative constant.

2) The exponent κ is the exponent of the Ladder Process (Ht)
which is a subordinator whose range is the same as

St := sup{Xs , s ≤ t}.

3) If X is a killed process with death time ζ, or if Xt goes to −∞,
for t → +∞, then the r.v. Hζ = sup{Xs ; s ≤ ζ} has Laplace

transform κ(0)
κ(λ) .



Examples of explicit Wiener-Hopf factorizations
• Symmetric stable processes (−iu)

α
2 (iu)

α
2 = |u|α

• Brownian motion (possibly with a drift a and/or killed at rate
c > 0 :

(−iu + h−(a, c))(iu + h+(a, c)) =
u2

2
+ aiu + c

h−(a, c) ∈ R+ and −h+(a, c) ∈ R+ are the 2 solutions of the

equation : − z2

2 + az + c = 0

• If φ has only positive jumps (but is not a subordinator)

φ(iu) = (−iu + b)ψ(iu)

ψ is the exponent of a subordinator, b the single solution of
φ(b) = 0, with <(b) ≥ 0, (in fact b ∈ [0,+∞[).

• If φ has a meromorphic continuation on the right half plan (a
fortiori in the whole complex plane), we obtain closed formulas.
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Ideas of the proofs

1) The path proof

2) The pair (κ, κ̂) can be identified as a solution of a
Riemann-Hilbert Problem :
If φ(iu) is given, define

f (λ) := κ(λ)1<(λ)>0 +
1

κ̌(λ)
1<(λ)<0

a) f is holomorphic on the two half-planes
{<(λ) > 0} ∪ {<(λ) < 0},

lim
ε→0+

f (iu + ε)

f (iu − ε)
= κ(iu)κ̌(iu) = φ(iu)

b) (|f (λ)|+ | 1
f (λ) |). inf(|λ|, 1

|λ|) is bounded on C.

=⇒ A complete characterization of f (thus of κ and κ̌), up to a
multiplicative constant.
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Connection with the additive decomposition

Put φ(0) = 1, then Ln φ is the exponent of the subordinate
process Xγt , where:

I (γt) a gamma-Process and X is the non killed Lévy process
with exponent φ(iu)− φ(0)

I (Xγt ) is a Lévy process which does not die, has no drift and is
with bounded variations,

Ln (
κ(iu)

κ(0)
) + Ln (

κ̂(iu)

κ̂(0)
) = Ln φ(iu)

is the additive decomposition of φ.



The second step : the bilateral problem

The problem : Assuming that the Lévy process dies, what is the
joint distribution of the maximum value (M) and minimum value
(m) ? What is the distribution of the amplitude (M −m) ? What
is the distribution of the first exit from a bounded interval ?

Define for x > 0, λ ∈ C

M−1,2(x , λ) = M+
1,1(x , λ) = P(e−λM ;M −m ≤ x)

M−2,2(x , λ) = M+
2,1(x , λ) = P(e−λm;M −m ≤ x)

then

d

dx

(
M+

1,1

M+
2,1

)
=

(
e−λx v(x)
v̂(x) eλx

)(
M+

1,1

M+
2,1

)
(1)

(v(x), v̂(x)) is the potential.
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Auxilliary solutions

Let , for <(λ) > 0, (
M+

12(x , λ)
M+

22(x , λ)

)
and for <(λ) < 0, (

M−11(x , λ)
M−21(x , λ)

)
be solutions of the equation (1), holomorphic in λ, on their own
half-planes.



Finally, the 2x2 matrices :

M+(x , λ) for <(λ) > 0

M−(x , λ) for <(λ) < 0

satisfy the differential equation :

d

dx
M+/−(x , λ) =

(
e−λx v(x)
v̂(x) eλx

)
M+/−(x , λ)



To switch from the exponent φ to the solution of
the bilateral problem is again a Riemann-Hilbert
problem.

Theorem
For all x > 0, the matrices M+(x , .) and M−(x , .) satisfy for all
iu ∈ iR,

[M−(x , iu)]−1.M+(x , iu) =

(
0 −e−iux

e iux φ(iu)

)

and the additionnal boundary properties :
a) λ→ M+(x , λ) (resp. λ→ M−(x , λ)) is holomorphic on
{<(λ) > 0} (resp. on {<(λ) < 0}), continuous on the closed
half-plane {<(λ) ≥ 0} (resp. on {<(λ) ≤ 0}).

b) M+(x , λ) ∼ M+(y , λ) for λ→ +∞, M−(x , λ) ∼ M−(y , λ) for
λ→ −∞ and detM−(x , λ) = detM+(x , λ) = 1.
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Starting from the Scattering matrix(
0 −1
1 φ(iu)

)
,

the preceding properties entirely characterize the two holomorphic
functions λ→ M+(x , λ) and λ→ M−(x , λ) for all x ∈]0,+∞[ (up
to a constant of x and λ) and the potential (v(x), v̂(x)).

Explicit Solutions
• Levitan et Marchenko in the 50’s or 60’s have solved the case
that corresponds to the Brownian motion.

• Explicit solutions can be obtained when φ is a meromorphic
function, on one half-plane and a fortiori on the two half-planes,
and this corresponds to the so called ”Bargmann equations” in
Scattering Theory.
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Some words on Scattering Theory

Scattering Theory : To a potential [the two functions
(v(x), v̂(x))], we associate two parametrized differential equations :

M ′(x , λ) =

(
e−λx v(x)
v̂(x) eλx

)
M(x , λ)

The wronskian identity gives

[M−(x , iu)]−1M+(x , iu) =

(
0 −e−iux

e iux φ(iu)

)
The matrix Φ =

(
0 −1
1 φ(iu)

)
is called the Scattering Matrix.

The mapping (v(x), v̂(x))→ Φ is injective. To start from φ in
order to determine the potential is called the inverse scattering
problem.
Thus computing the distributions related to the bilateral problem
when starting from the Lévy exponent is part of that physics
problem.
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process. Applications to the pricing of double barrier
options.Stochastic Processes and their applications. Volume 122,
Issue 3, March 2012, Pages 1034-1067.
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