The Mirror Model

on the Square Lattice

Yan Dai

University of Arizona

March 30, 2018

Background

- Lorentz lattice gas model
- Ehrenfest wind-tree model

Figure: A trajectory of a light beam [1].

Walk Model on Square Lattice

- Left and right turns only
- No bound is crossed twice
- No site is visited more than twice

Mirror Model on Square Lattice

▷ North-west mirror or north-east mirror

A special case of Lorentz and Ehrenfest models

Mirror Model on Square Lattice

Kinetic growing trail on oriented square lattice
 Never get trapped, except at the origin

Mirror Model on Square Lattice

- ▷ All trajectories are localized w.p.1
- Size distribution of the orbits follows

 $P(n) \sim a_1 n^{1-\tau}$

for $n \to \infty$, where $\tau = 15/7$, a_1 is a constant

First Theorem

Localization Property

Theorem

The walk trajectory of the mirror model on the square lattice \mathbb{L}^2 is almost surely localized.

Idea of proof by Grimmett [1]: embedded critical bond percolation

Bond Percolation on $\boldsymbol{\mathcal{L}}$

Figure: The half dual lattice \mathcal{L} [1].

Bond Percolation on ${\cal L}$

- ▷ NE mirror on vertex $(m, n) \Rightarrow$ open edge from (m 1/2, n 1/2) to (m + 1/2, n + 1/2)
- ▷ NW mirror on vertex $(m, n) \Rightarrow$ open edge from (m 1/2, n + 1/2) to (m + 1/2, n 1/2)

Remark:

The resulting process is bond percolation on \mathcal{L} with density of open edges 1/2.

Properties of Bond Percolation

- The critical probability of bond percolation on square lattice equals 1/2.
- There exits almost surely no infinite open cluster at the critical point.
- The origin is contained in the interior of a closed circuit of the dual lattice.

Theorem

The walk trajectory of the mirror model on the square lattice \mathbb{L}^2 is almost surely localized.

Remark:

- $\to\,$ The origin of \mathbb{L}^2 is contained a.s. in the interior of some open circuit of $\mathcal{L}.$
- $\rightarrow\,$ The circuit corresponds a enclosure of mirrors surrounding the origin.

Walk with Boundary Condition

Boundary condition ω_a :

an infinite staircase walk of mirror model ending at *a*.

Figure: A walk with a boundary condition ω_a .

Walk with Boundary Condition

Properties:

- → The walk trajectory of mirror model with boundary condition ω_a on \mathbb{L}^2 is infinite.
- \rightarrow The walk hits the boundary ω_a infinitely many times.

Theorem

Consider the staircase boundary condition ω_a . Let the walk starts at the endpoint of ω_a . Then the walk hits the boundary ω_a infinitely many times.

Idea of proof: Almost open circuits around *a*

Almost open circuit around *a*:

a circuit on $\ensuremath{\mathcal{L}}$ that is consistent with the boundary condition.

Lemma *The endpoint of boundary condition* ω_a *is contained a.s. in the interior of almost open circuit of* \mathcal{L} .

Lemma

Let (Ω, \mathcal{F}, P) be the probability space for the mirror model, and $(\Omega', \mathcal{F}', P_b)$ be the probability space for the mirror model with boundary condition. Let $\phi : \Omega \to \Omega'$ be a function mapping a mirror configuration in Ω to Ω' satisfying the boundary condition. Then for any $E \in \mathcal{F}'$,

$$P(\phi^{-1}(E)) = P_b(E).$$

Figure: ϕ map.

Proof of Lemma.

Sample spaces: $\Omega = \prod_{e \in \mathbb{E}^d} \{0, 1\}$, $\Omega' = \prod_{e \in \mathbb{E}^d \setminus B} \{0, 1\}$ Configurations: $\omega = (\omega(e) : e \in \mathbb{E}^d)$ $\omega(e) = 0 \Leftrightarrow e \text{ is closed}$, $\omega(e) = 1 \Leftrightarrow e \text{ is open}$ Open cylinders:

$$C_i(a) = \{\omega : \omega(e_i) = a\}$$

Let $E = C_i(a)$.

- ▷ If $e_i \notin B$, then E and $\phi^{-1}(E)$ are the same set. Hence $P_b(E) = P(\phi^{-1}(E)) = 1/2$.
- ▷ If $e_i \in B$ and a is consistent with $\omega(e_i)$, then $P_b(E) = 1$. Since $\phi^{-1}(E) = \Omega$, then $P(\phi^{-1}(E)) = 1$.
- ▷ If $e_i \in B$ and a is not consistent with $w(e_i)$, then $P_b(E) = 0$, and $\phi^{-1}(E) = \emptyset$, $P(\phi^{-1}(E)) = 0$.

Bond Percolation on ${\cal L}$

Theorem

For bond percolation on \mathcal{L} , infinitely many annuli contain open circuits around the origin w.p.1.

Idea of proof: RSW theorem - left and right crossing

Theorem

Consider the staircase boundary condition ω_a . Let the walk starts at the endpoint of ω_a . Then the walk hits the boundary ω_a infinitely many times.

Model with Bond Percolation

Figure: The barriers of a typical walk trajectory [2].

- ▷ Connected component of mirrors ⇔ bond percolation clusters
- > Walk trajectory is the perimeter of the cluster

Model with SLE₆

Figure: Mirror model in the chordal case.

Model with SLE₆

Conjecture

The chordal mirror model on the square lattice converges in distribution to the chordal SLE₆, as the lattice spacing goes to zero.

Numerical Results

Theorem (Schramm, 2001)

Let $z_0 = x_0 + iy_0 \in \mathbb{H}$, *E* be the event that the trace γ of chordal SLE₆ passes to the left of z_0 . Then

$$P(E) = \frac{1}{2} + \frac{\Gamma(2/3)}{\sqrt{\pi}\Gamma(1/6)} \frac{\mathbf{x}_0}{\mathbf{y}_0} \mathbf{F}_{2,1} \left(\frac{1}{2}, \frac{2}{3}, \frac{3}{2}, -\frac{\mathbf{x}_0^2}{\mathbf{y}_0^2}\right).$$

Data information:

- Domain: stair-shaped square
- Lattice: square lattice
- Lattice spacing: defined with respect to the scaled domain
- ▷ Samples: 100K

Figure: The difference of passing left probability between mirror model and SLE₆.

Theorem (Lawler, 2001) Suppose γ is a chordal SLE₆, and $t_* = \inf\{t : \gamma(t) \in [1, \infty)\}$. Then

$$P(\gamma(t_*) < 1 + x) = \frac{\Gamma(2/3)}{\Gamma^2(1/3)} \int_0^{\frac{x}{1+x}} (u - u^2)^{-2/3} du.$$

Data information:

- Domain: stair-shaped square
- Lattice: square lattice
- Lattice spacing: defined with respect to the scaled domain
- ▷ Samples: 100K

Figure: The difference of x probability between mirror model and SLE₆.

Figure: The scaled difference of x probability between mirror model and SLE₆.

Figure: The scaled difference of x probability between mirror model and SLE₆.

The Mirror Model on the Triangular Lattice

Walk Model on Triangular Lattice

Figure: A 10-step walk on triangular lattice.

- Left and right turns only
- No bound is crossed twice
- No site is visited more than three times

Mirror Model on Triangular Lattice

Figure: The corresponding mirrors on the 10-step walk.

- ▷ Left mirror or right mirror
- A generalization of mirror model on triangular lattice

Mirror Model on Triangular Lattice

- Underlying oriented triangular lattice
- Never get trapped, except at the origin

Model with SLE₆

Figure: Mirror model in the chordal case.

Model with SLE₆

Conjecture

The chordal mirror model on the triangular lattice converges in distribution to the chordal SLE₆, as the lattice spacing goes to zero.

Numerical Results

Theorem ([5])

Let $z_0 = x_0 + iy_0 \in \mathbb{H}$, *E* be the event that the trace γ of chordal SLE₆ passes to the left of z_0 . Then

$$P(E) = \frac{1}{2} + \frac{\Gamma(2/3)}{\sqrt{\pi}\Gamma(1/6)} \frac{\mathbf{x}_0}{\mathbf{y}_0} \mathbf{F}_{2,1} \left(\frac{1}{2}, \frac{2}{3}, \frac{3}{2}, -\frac{\mathbf{x}_0^2}{\mathbf{y}_0^2}\right).$$

Data information:

- Domain: rhombus
- Lattice: triangular lattice
- Lattice spacing: defined with respect to the scaled domain
- ▷ Samples: 100K

Figure: The difference of passing left probability between mirror model and SLE₆.

Figure: The rescaled difference of passing left probability between mirror model and SLE₆.

Theorem ([3]) Suppose γ is a chordal SLE₆, and $t_* = \inf\{t : \gamma(t) \in [1, \infty)\}$. Then

$$P(\gamma(t_*) < 1 + x) = \frac{\Gamma(2/3)}{\Gamma^2(1/3)} \int_0^{\frac{x}{1+x}} (u - u^2)^{-2/3} du.$$

Data information:

- Domain: rhombus
- Lattice: triangular lattice
- Lattice spacing: defined with respect to the scaled domain
- ▷ Samples: 100K

Figure: The difference of x probability between mirror model and SLE₆.

Figure: The scaled difference of x probability between mirror model and SLE₆.

Reference

[1] G.R. Grimmett, Percolation, Springer, New York, 1999. [2] J.M.F. Gunn and M. Ortuno, Percolation and motion in a simple random environment. *J. Phys. A: Math. Gen.* **18** L1095 (1985).

[3] G. F. Lawler, Conformally invariant processes in the plane. Providence, R.I: American Mathematical Society, 2005.

[4] S.S. Manna and A.J. Guttmann, Kinetic growth walks and trails on oriented square lattices: hull percolation and percolation hulls. *J. Phys. A: Math. Gen.* 22 3113-3122 (1989).
[5] O. Schramm, A Percolation Formula. Electron. *Elect. Comm. in Probab.* 6 (2001) 115 - 120
[6] R.M. Ziff, X.P.Kong and E.G.D.Cohen, Lorentz lattice-gas and kinetic-walk model. *Phys. Review A*, 44-4 (1991).

Thank you! Question?