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Fundamental forces

I The four fundamental forces:

I The electromagnetic force. Interaction of light and matter.
I The weak force. Interactions between sub-atomic particles.
I The strong force. Force that holds together quarks that form

protons and neutrons.
I Gravity.

I Physical theories:
I Electromagnetic force: Quantum electrodynamics (QED).

Dirac, Feynman, Tomonaga, Schwinger, Dyson, ...
I Weak force: Electroweak theory. Glashow, Salam, Weinberg, ...
I Strong force: Quantum chromodynamics (QCD). Yang, Mills,

Gross, Politzer, Wilczek, Wilson, ...
I Gravity: General relativity (GR). Einstein.

Sourav Chatterjee Yang–Mills for probabilists



Fundamental forces

I The four fundamental forces:
I The electromagnetic force. Interaction of light and matter.

I The weak force. Interactions between sub-atomic particles.
I The strong force. Force that holds together quarks that form

protons and neutrons.
I Gravity.

I Physical theories:
I Electromagnetic force: Quantum electrodynamics (QED).

Dirac, Feynman, Tomonaga, Schwinger, Dyson, ...
I Weak force: Electroweak theory. Glashow, Salam, Weinberg, ...
I Strong force: Quantum chromodynamics (QCD). Yang, Mills,

Gross, Politzer, Wilczek, Wilson, ...
I Gravity: General relativity (GR). Einstein.

Sourav Chatterjee Yang–Mills for probabilists



Fundamental forces

I The four fundamental forces:
I The electromagnetic force. Interaction of light and matter.
I The weak force. Interactions between sub-atomic particles.

I The strong force. Force that holds together quarks that form
protons and neutrons.

I Gravity.

I Physical theories:
I Electromagnetic force: Quantum electrodynamics (QED).

Dirac, Feynman, Tomonaga, Schwinger, Dyson, ...
I Weak force: Electroweak theory. Glashow, Salam, Weinberg, ...
I Strong force: Quantum chromodynamics (QCD). Yang, Mills,

Gross, Politzer, Wilczek, Wilson, ...
I Gravity: General relativity (GR). Einstein.

Sourav Chatterjee Yang–Mills for probabilists



Fundamental forces

I The four fundamental forces:
I The electromagnetic force. Interaction of light and matter.
I The weak force. Interactions between sub-atomic particles.
I The strong force. Force that holds together quarks that form

protons and neutrons.

I Gravity.

I Physical theories:
I Electromagnetic force: Quantum electrodynamics (QED).

Dirac, Feynman, Tomonaga, Schwinger, Dyson, ...
I Weak force: Electroweak theory. Glashow, Salam, Weinberg, ...
I Strong force: Quantum chromodynamics (QCD). Yang, Mills,

Gross, Politzer, Wilczek, Wilson, ...
I Gravity: General relativity (GR). Einstein.

Sourav Chatterjee Yang–Mills for probabilists



Fundamental forces

I The four fundamental forces:
I The electromagnetic force. Interaction of light and matter.
I The weak force. Interactions between sub-atomic particles.
I The strong force. Force that holds together quarks that form

protons and neutrons.
I Gravity.

I Physical theories:
I Electromagnetic force: Quantum electrodynamics (QED).

Dirac, Feynman, Tomonaga, Schwinger, Dyson, ...
I Weak force: Electroweak theory. Glashow, Salam, Weinberg, ...
I Strong force: Quantum chromodynamics (QCD). Yang, Mills,

Gross, Politzer, Wilczek, Wilson, ...
I Gravity: General relativity (GR). Einstein.

Sourav Chatterjee Yang–Mills for probabilists



Fundamental forces

I The four fundamental forces:
I The electromagnetic force. Interaction of light and matter.
I The weak force. Interactions between sub-atomic particles.
I The strong force. Force that holds together quarks that form

protons and neutrons.
I Gravity.

I Physical theories:

I Electromagnetic force: Quantum electrodynamics (QED).
Dirac, Feynman, Tomonaga, Schwinger, Dyson, ...

I Weak force: Electroweak theory. Glashow, Salam, Weinberg, ...
I Strong force: Quantum chromodynamics (QCD). Yang, Mills,

Gross, Politzer, Wilczek, Wilson, ...
I Gravity: General relativity (GR). Einstein.

Sourav Chatterjee Yang–Mills for probabilists



Fundamental forces

I The four fundamental forces:
I The electromagnetic force. Interaction of light and matter.
I The weak force. Interactions between sub-atomic particles.
I The strong force. Force that holds together quarks that form

protons and neutrons.
I Gravity.

I Physical theories:
I Electromagnetic force: Quantum electrodynamics (QED).

Dirac, Feynman, Tomonaga, Schwinger, Dyson, ...

I Weak force: Electroweak theory. Glashow, Salam, Weinberg, ...
I Strong force: Quantum chromodynamics (QCD). Yang, Mills,

Gross, Politzer, Wilczek, Wilson, ...
I Gravity: General relativity (GR). Einstein.

Sourav Chatterjee Yang–Mills for probabilists



Fundamental forces

I The four fundamental forces:
I The electromagnetic force. Interaction of light and matter.
I The weak force. Interactions between sub-atomic particles.
I The strong force. Force that holds together quarks that form

protons and neutrons.
I Gravity.

I Physical theories:
I Electromagnetic force: Quantum electrodynamics (QED).

Dirac, Feynman, Tomonaga, Schwinger, Dyson, ...
I Weak force: Electroweak theory. Glashow, Salam, Weinberg, ...

I Strong force: Quantum chromodynamics (QCD). Yang, Mills,
Gross, Politzer, Wilczek, Wilson, ...

I Gravity: General relativity (GR). Einstein.

Sourav Chatterjee Yang–Mills for probabilists



Fundamental forces

I The four fundamental forces:
I The electromagnetic force. Interaction of light and matter.
I The weak force. Interactions between sub-atomic particles.
I The strong force. Force that holds together quarks that form

protons and neutrons.
I Gravity.

I Physical theories:
I Electromagnetic force: Quantum electrodynamics (QED).

Dirac, Feynman, Tomonaga, Schwinger, Dyson, ...
I Weak force: Electroweak theory. Glashow, Salam, Weinberg, ...
I Strong force: Quantum chromodynamics (QCD). Yang, Mills,

Gross, Politzer, Wilczek, Wilson, ...

I Gravity: General relativity (GR). Einstein.

Sourav Chatterjee Yang–Mills for probabilists



Fundamental forces

I The four fundamental forces:
I The electromagnetic force. Interaction of light and matter.
I The weak force. Interactions between sub-atomic particles.
I The strong force. Force that holds together quarks that form

protons and neutrons.
I Gravity.

I Physical theories:
I Electromagnetic force: Quantum electrodynamics (QED).

Dirac, Feynman, Tomonaga, Schwinger, Dyson, ...
I Weak force: Electroweak theory. Glashow, Salam, Weinberg, ...
I Strong force: Quantum chromodynamics (QCD). Yang, Mills,

Gross, Politzer, Wilczek, Wilson, ...
I Gravity: General relativity (GR). Einstein.

Sourav Chatterjee Yang–Mills for probabilists



Quantum field theories

I The theories explaining the first three forces are known as
quantum field theories.

I The various quantum field theories are unified into one body
known as the Standard Model.

I The first quantum field theory was quantum electrodynamics.

I Gave astonishingly accurate predictions, matching up to 10
decimal places with experimental data!

I The other theories have similar success stories.

I However, there is no rigorous mathematical foundation for
these theories. (Clay millennium problem of Yang–Mills
existence.)

I Even from the point of view of theoretical physicists, there are
very important unsolved theoretical problems — quark
confinement, mass gap, etc.
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Quantum gravity

I There is no quantum theory of gravity. Finding such a theory
is the holy grail of modern physics.

I Quantum effects are important at very small distances, where
gravity is unimportant.

I Gravity is felt at large distances, between very massive bodies,
where quantum effects are negligible.

I So, the unification seems like only an academic goal, except
that...

I Both gravity and quantum effects manifest themselves in
black holes. Small black holes can potentially form when
particles collide with each other at very high speeds, as in
particle accelerators.
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More about quantum gravity

I In classical physics, particles move along deterministic
trajectories.

I In quantum physics, the trajectories are probabilistic
(although the notion of probability is replaced by complex
probability amplitudes).

I General relativity is a classical theory, in the sense that the
structure of curved spacetime is deterministic.

I A quantum theory of gravity would replace the fixed
spacetime by a randomly fluctuating spacetime (random
Riemannian manifold).

I The most promising approach: String theory.

I Roughly speaking, strings moving randomly trace out random
surfaces. Higher dimensional strings, known as branes, trace
out higher dimensional random manifolds.
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Gauge-string duality

I There is a theoretical result of Weinberg and Witten (1980)
that it is impossible to generate gravity using quantum field
theories in the traditional sense (hard to explain without going
into details).

I However, Weinberg and Witten have the unstated assumption
that one is looking for both theories in the same dimension.

I In 1997, Maldacena made the remarkable discovery that
certain quantum field theories are ‘dual’ to certain string
theories in one dimension higher!

I Duality means that any calculation in one theory corresponds
to some calculation in the other theory.

I Maldacena’s discovery is known as AdS-CFT duality or
gauge-string duality.

I The principle of going to one dimension higher is known as
the holographic principle.
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Plan for the remainder of the talk

I This concludes the presentation of the physics background.

I In the remaining part of the talk, I will present some concrete
mathematical problem for probabilists.

I The physics connections will not be discussed in any great
depth due to time constraints. I will only say one or two
sentences for each problem, connecting the math problems
with the physics problems mentioned before.
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Quantum Yang–Mills theories

I The quantum field theories describing the electromagnetic,
weak and strong forces are known as quantum Yang–Mills
theories.

I Quantum Yang–Mills theories are defined in Minkowski
spacetime. Euclidean Yang–Mills theories are ‘Wick-rotated’
quantum Yang–Mills theories that are defined in Euclidean
spacetime.

I They are formally probability measures on spaces of
connections on certain principal bundles.

I They have lattice analogs, known as lattice gauge theories,
that are rigorously defined probabilistic models.

I Euclidean Yang–Mills theories are supposed to be scaling
limits of lattice gauge theories.
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Constructive field theory

I The problem of rigorously constructing Euclidean Yang–Mills
theories, and then using them to construct quantum
Yang–Mills theories, is the problem of Yang–Mills existence.

I A standard approach is via the program of constructive
quantum field theory.

I The plan there is to first define Euclidean Yang–Mills theories
as probability measures on appropriate spaces of generalized
functions; then show that these probability measures satisfy
certain axioms (the Osterwalder–Schrader axioms); this would
then imply that the theory can be ‘quantized’ to obtain the
desired quantum Yang–Mills theories.

I The constructive field theory program waged a valiant battle
for more than thirty years (1960–1990), making sense of
various quantum field theories in two and three dimensions,
but never quite reached its ultimate goal of constructing 4D
quantum Yang–Mills theories. May be revival possible?

Sourav Chatterjee Yang–Mills for probabilists



Constructive field theory

I The problem of rigorously constructing Euclidean Yang–Mills
theories, and then using them to construct quantum
Yang–Mills theories, is the problem of Yang–Mills existence.

I A standard approach is via the program of constructive
quantum field theory.

I The plan there is to first define Euclidean Yang–Mills theories
as probability measures on appropriate spaces of generalized
functions; then show that these probability measures satisfy
certain axioms (the Osterwalder–Schrader axioms); this would
then imply that the theory can be ‘quantized’ to obtain the
desired quantum Yang–Mills theories.

I The constructive field theory program waged a valiant battle
for more than thirty years (1960–1990), making sense of
various quantum field theories in two and three dimensions,
but never quite reached its ultimate goal of constructing 4D
quantum Yang–Mills theories. May be revival possible?

Sourav Chatterjee Yang–Mills for probabilists



Constructive field theory

I The problem of rigorously constructing Euclidean Yang–Mills
theories, and then using them to construct quantum
Yang–Mills theories, is the problem of Yang–Mills existence.

I A standard approach is via the program of constructive
quantum field theory.

I The plan there is to first define Euclidean Yang–Mills theories
as probability measures on appropriate spaces of generalized
functions;

then show that these probability measures satisfy
certain axioms (the Osterwalder–Schrader axioms); this would
then imply that the theory can be ‘quantized’ to obtain the
desired quantum Yang–Mills theories.

I The constructive field theory program waged a valiant battle
for more than thirty years (1960–1990), making sense of
various quantum field theories in two and three dimensions,
but never quite reached its ultimate goal of constructing 4D
quantum Yang–Mills theories. May be revival possible?

Sourav Chatterjee Yang–Mills for probabilists



Constructive field theory

I The problem of rigorously constructing Euclidean Yang–Mills
theories, and then using them to construct quantum
Yang–Mills theories, is the problem of Yang–Mills existence.

I A standard approach is via the program of constructive
quantum field theory.

I The plan there is to first define Euclidean Yang–Mills theories
as probability measures on appropriate spaces of generalized
functions; then show that these probability measures satisfy
certain axioms (the Osterwalder–Schrader axioms);

this would
then imply that the theory can be ‘quantized’ to obtain the
desired quantum Yang–Mills theories.

I The constructive field theory program waged a valiant battle
for more than thirty years (1960–1990), making sense of
various quantum field theories in two and three dimensions,
but never quite reached its ultimate goal of constructing 4D
quantum Yang–Mills theories. May be revival possible?

Sourav Chatterjee Yang–Mills for probabilists



Constructive field theory

I The problem of rigorously constructing Euclidean Yang–Mills
theories, and then using them to construct quantum
Yang–Mills theories, is the problem of Yang–Mills existence.

I A standard approach is via the program of constructive
quantum field theory.

I The plan there is to first define Euclidean Yang–Mills theories
as probability measures on appropriate spaces of generalized
functions; then show that these probability measures satisfy
certain axioms (the Osterwalder–Schrader axioms); this would
then imply that the theory can be ‘quantized’ to obtain the
desired quantum Yang–Mills theories.

I The constructive field theory program waged a valiant battle
for more than thirty years (1960–1990), making sense of
various quantum field theories in two and three dimensions,
but never quite reached its ultimate goal of constructing 4D
quantum Yang–Mills theories. May be revival possible?
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Towards the formal definition of Euclidean YM theories

I Ingredients: dimension n and gauge group G .

I Assume that G is a closed subgroup of U(N) for some N.
I Examples (all in n = 4):

I Quantum electrodynamics: G = U(1).
I Electroweak theory: G = SU(2).
I Quantum chromodynamics: G = SU(3).

I Let g be the Lie algebra of G .

I Then g is a subspace of the space of all N × N
skew-Hermitian matrices.
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Connections and curvature

I A smooth G connection form on Rn is a smooth map from Rn

into gn.

I If A is a G connection form, its value A(x) at x is an n-tuple
(A1(x), . . . ,An(x)) of skew-Hermitian matrices. In the
language of differential forms,

A =
n∑

j=1

Ajdxj .

I The curvature form F of A is the g-valued 2-form

F = dA + A ∧ A .

I This means that at each x , F (x) is an n × n array of
skew-Hermitian matrices of order N, whose (j , k)th entry is
the matrix

Fjk(x) =
∂Ak

∂xj
−
∂Aj

∂xk
+ [Aj(x),Ak(x)].
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The Yang–Mills action

I Let A be the space of all smooth G connection forms on Rn.
The Yang–Mills action on this space is the function

SYM(A) := −
∫
Rn

Tr(F ∧ ∗F ),

where F is the curvature form of A and ∗ denotes the Hodge
star operator, assuming that this integral is finite.

I Explicitly, this is

SYM(A) = −
∫
Rn

n∑
j ,k=1

Tr(Fjk(x)2)dx .
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Formal definition of Euclidean YM theories

I The Euclidean Yang–Mills theory with gauge group G on Rn

is formally described as the probability measure

dµ(A) =
1

Z
exp

(
− 1

4g2
SYM(A)

)
dA ,

where:

I A ∈ A, the space of all smooth G connection forms on Rn,
I SYM is the Yang–Mills action,
I

dA =
n∏

j=1

∏
x∈Rn

d(Aj(x))

is ‘infinite-dimensional Lebesgue measure’ on A,
I g is a parameter called the coupling strength, and
I Z is the normalizing constant that makes this a probability

measure.
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Problem

I The above description of Euclidean Yang–Mills theory with
gauge group G is not directly mathematically meaningful
because of the problems associated with the definition
Lebesgue measure on A.

I While it has been possible to give rigorous meanings to similar
descriptions of Brownian motion and various quantum field
theories in dimensions two and three, 4D Euclidean
Yang–Mills theories have so far remained largely intractable.
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Lattice gauge theories

I Wilson (1974) proposed a discretization of Euclidean
Yang–Mills theories, now known as lattice gauge theories.

I The lattice gauge theory with gauge group G on a finite set
Λ ⊆ Zn is defined as follows.

I Suppose that for any two adjacent vertices x , y ∈ Λ, we have
a group element U(x , y) ∈ G , with U(y , x) = U(x , y)−1.

I Let G (Λ) denote the set of all such configurations.
I A square bounded by four edges is called a plaquette. Let

P(Λ) denote the set of all plaquettes in Λ.
I For a plaquette p ∈ P(Λ) with vertices x1, x2, x3, x4 in

anti-clockwise order, and a configuration U ∈ G (Λ), define

Up := U(x1, x2)U(x2, x3)U(x3, x4)U(x4, x1).

I The Wilson action of U is defined as

SW(U) :=
∑

p∈P(Λ)

Re(Tr(I − Up)).
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Definition of lattice gauge theory

I Let σΛ be the product Haar measure on G (Λ).

I Given β > 0, let µΛ,β be the probability measure on G (Λ)
defined as

dµΛ,β(U) :=
1

Z
e−βSW(U)dσΛ(U),

where Z is the normalizing constant.

I This probability measure is called the lattice gauge theory on
Λ for the gauge group G , with inverse coupling strength β.

I An infinite volume limit of the theory is a weak limit of the
above probability measures as Λ ↑ Zn.

I The infinite volume limit may or may not be unique.

I The uniqueness (or non-uniqueness) is in general unknown for
lattice gauge theories in dimension four when β is large.
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From LGT to Euclidean YM theory: Wilson’s heuristic

I Discretize Rn as εZn for some small ε.

I Take a G connection form A =
∑n

j=1 Ajdxj .

I Let e1, . . . , en denote the standard basis vectors of Rn.

I For a directed edge (x , x + εej) of εZn, define

U(x , x + εej) := eεAj (x),

and let U(x + εej , x) := U(x , x + εej)
−1.

I This defines a configuration of unitary matrices assigned to
directed edges of εZn.
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Wilson’s heuristic, continued

I By the Baker–Campbell–Hausdorff formula for products of
matrix exponentials, one can derive the formal approximation

SW(U) ≈ −ε
4−n

4
SYM(A).

I The above heuristic was used by Wilson to justify the
approximation of Euclidean Yang–Mills theory by lattice gauge
theory, scaling the inverse coupling strength β like ε4−n as the
lattice spacing ε→ 0.
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Scaling in dimension four

I The most important dimension is n = 4, because spacetime is
four-dimensional.

I In the above formulation, β does not scale with ε at all when
n = 4.

I Currently, however, the general belief in the physics
community is that β should scale like some multiple of
log(1/ε) in dimension four.

Sourav Chatterjee Yang–Mills for probabilists



Scaling in dimension four

I The most important dimension is n = 4, because spacetime is
four-dimensional.

I In the above formulation, β does not scale with ε at all when
n = 4.

I Currently, however, the general belief in the physics
community is that β should scale like some multiple of
log(1/ε) in dimension four.

Sourav Chatterjee Yang–Mills for probabilists



Scaling in dimension four

I The most important dimension is n = 4, because spacetime is
four-dimensional.

I In the above formulation, β does not scale with ε at all when
n = 4.

I Currently, however, the general belief in the physics
community is that β should scale like some multiple of
log(1/ε) in dimension four.

Sourav Chatterjee Yang–Mills for probabilists



Wilson loops

I Suppose that we have a lattice gauge theory on Λ ⊆ Zn with
gauge group G .

I Given a loop γ with directed edges e1, . . . , em, the Wilson
loop variable Wγ is defined as

Wγ := Tr(U(e1)U(e2) · · ·U(em)).
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Open problem #1: Yang–Mills existence

I The problem has many parts.

I But the main step is to show that 4D non-Abelian lattice
gauge theories have nontrivial continuum limits.

I The description of the limit is part of the problem.

I The most important groups are SU(2) and SU(3).

I Large body of work in 2D. Less in 3D. Almost none in 4D,
except for a very long series of papers by Ba laban that people
find very difficult to understand. May be someone can take off
from where Ba laban stopped? Or revive the project using
different ideas?
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Open problem #2: Yang–Mills mass gap

I Again, the problem has many parts, but the main step is to
show that 4D non-Abelian lattice gauge theories have
exponential decay of correlations at any β.

I There are standard techniques for showing exponential decay
of correlations at small β (e.g. by Dobrushin’s condition).
Showing exponential decay at large β is conjectured for many
models in statistical physics, but most of these problems,
including the YM mass gap, are open.

I Even physicists do not think they have a proof of mass gap.

I A solution of this problem will explain, roughly speaking, why
mass exists in the universe.
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Open problem #3: Quark confinement

I Suppose that we are given a 4D non-Abelian lattice gauge
theory.

I Show that for any β, there are constants C (β) and c(β) such
that for any loop γ,

|〈Wγ〉| ≤ C (β)e−c(β)area(γ),

where 〈Wγ〉 is the expected value of the Wilson loop variable
Wγ and area(γ) is the minimal surface area enclosed by γ.

I Showing for rectangles is good enough.
I There is a proof at small β by Osterwalder & Seiler (1978).
I Proof at large β for 3D U(1) theory by Göpfert and Mack

(1982).
I Disproof at large β for 4D U(1) theory by Guth (1980) and

Fröhlich & Spencer (1982).
I Proof of this conjecture will explain why we do not observe

free quarks in nature. This is one of the biggest mysteries of
particle physics.
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Fröhlich & Spencer (1982).

I Proof of this conjecture will explain why we do not observe
free quarks in nature. This is one of the biggest mysteries of
particle physics.

Sourav Chatterjee Yang–Mills for probabilists



Open problem #3: Quark confinement

I Suppose that we are given a 4D non-Abelian lattice gauge
theory.

I Show that for any β, there are constants C (β) and c(β) such
that for any loop γ,

|〈Wγ〉| ≤ C (β)e−c(β)area(γ),

where 〈Wγ〉 is the expected value of the Wilson loop variable
Wγ and area(γ) is the minimal surface area enclosed by γ.

I Showing for rectangles is good enough.
I There is a proof at small β by Osterwalder & Seiler (1978).
I Proof at large β for 3D U(1) theory by Göpfert and Mack
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Open problem #4: Gauge-string duality

I Recall that gauge-string duality is an attempt to unify
quantum field theories and gravity.

I Technically speaking, this problem can be discussed only after
solving the problem of YM existence.

I The main step is to show that Wilson loop expectations in a
continuum Yang–Mills theory can be expressed as integrals
over trajectories of strings in a string theory, where the
trajectories are in one dimension higher.
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Some results about gauge-string duality

I Consider SO(N) lattice gauge theory on Zn, n arbitrary.

I In recent work (C., 2015 and C. & Jafarov, 2016), we gave a
formula for Wilson loop expectations in this theory as
asymptotic series expansions in 1/N, where each coefficient in
the series arises as a sum over trajectories in a certain lattice
string theory, where the trajectories are in Zn+1.

I This proves a version of gauge-string duality and the
holographic principle. Possibly the first rigorous result.

I The expansion was proved only at small β (strong coupling).
Will be a very important breakthrough to prove something
similar at large β.

I In 2D, the terms were explicitly evaluated by Basu & Ganguly
(2016) using combinatorial techniques. May be the techniques
can extend to higher dimensions?
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The master loop equation

The following is a generalization of what are called Makeenko–Migdal
equations or master loop equations. They hold at all β, and give the starting
point for the proof of the 1/N expansion and gauge-string duality.

Theorem (C., 2015)
Consider SO(N) LGT on Zn. For a collection of loops s = (`1, . . . , `m), define

φ(s) :=
〈W`1W`2 · · ·W`m 〉

Nm
.

Let |s| be the total number of edges in s. Then

(N − 1)|s|φ(s) =
∑

s′∈T−(s)

φ(s ′)−
∑

s′∈T+(s)

φ(s ′) + N
∑

s′∈S−(s)

φ(s ′)

− N
∑

s′∈S+(s)

φ(s ′) +
1

N

∑
s′∈M−(s)

φ(s ′)− 1

N

∑
s′∈M+(s)

φ(s ′)

+ Nβ
∑

s′∈D−(s)

φ(s ′)− Nβ
∑

s′∈D+(s)

φ(s ′),

where T±, S±, M± and D± are certain operations that produce new collections
of loops from old.
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Final remarks

I I have a very recent preprint on arXiv, with the same title as
this talk, that contains most of this talk in greater detail.

I The preprint also has an extensive review of the mathematical
literature on these topics, which I did not cover in this talk.

I Special thanks to David Brydges, Erhard Seiler and Steve
Shenker for teaching me most of what I know about
Yang–Mills theories, lattice gauge theories and quantum field
theories.

Sourav Chatterjee Yang–Mills for probabilists



Final remarks

I I have a very recent preprint on arXiv, with the same title as
this talk, that contains most of this talk in greater detail.

I The preprint also has an extensive review of the mathematical
literature on these topics, which I did not cover in this talk.

I Special thanks to David Brydges, Erhard Seiler and Steve
Shenker for teaching me most of what I know about
Yang–Mills theories, lattice gauge theories and quantum field
theories.

Sourav Chatterjee Yang–Mills for probabilists



Final remarks

I I have a very recent preprint on arXiv, with the same title as
this talk, that contains most of this talk in greater detail.

I The preprint also has an extensive review of the mathematical
literature on these topics, which I did not cover in this talk.

I Special thanks to David Brydges, Erhard Seiler and Steve
Shenker for teaching me most of what I know about
Yang–Mills theories, lattice gauge theories and quantum field
theories.

Sourav Chatterjee Yang–Mills for probabilists


