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Motivation

Enzymatic Reactions in Cells:

1 proteins produced:

∅
λ`

GA X`

2 proteins processed by Enzyme:

X` + E
µ`

GA E

3 dilution:

X`
γ`

GA ∅

Different species of proteins are processed by a shared pool of enzymes

The goal is to study the effect of this shared processing resources on
the correlation between numbers of protein of different species.
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Motivation

Queueing models have been used to study these molecular reactions.
jobs: proteins, servers: enzymes.

Characteristics:

random order of service (ROS)
discipline: proteins do not stand in
lines!

reneging: to models dilution.

Multiclass: to represent different
species of proteins

many-server: there are typically more
than one copy of the enzyme Figure taken from [Mather et

al. 2010] and edited.
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Model: Random Order of Service

Multiclass, many-server queue with reneging under (D)ROS

jobs are of L different classes

jobs are processed by n homogeneous, non-idling servers

each server can process jobs from all classes
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Model: Random Order of Service

Multiclass, many-server queue with reneging under (D)ROS

Jobs of each class `:

arrive according to a renewal process at rate λ`.

have i.i.d. patience times with inverse mean γ`.

have i.i.d. service requirement {v`,j} with inverse mean µ`

Q`(t) is number of queues of class ` waiting in queue at time t.
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Model: Random Order of Service

Multiclass, many-server queue with reneging under (D)ROS

Service policy: Random Order of Service:

upon server availability, a job is randomly selected for service entery
from all jobs waiting in queue

ROS: all job classes are treated equally :

P (a given job is selected) =
1∑L

`=1Q`(t)
=

1

Q(t)

DROS: the random selection is discriminatory:

P (a job is selected from class j) =
pj∑L

`=1 p`Q`(t)
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Prior Work

Most of prior work on queues with ROS assume

Poisson arrivals: [Burke 59], [Kingman 62], [Carter-Cooper 72],

[Balmer 72], [Boxma et al. 15]

Exponential Distribution: [Borst et al. 03], [Rogiest et al. 14]

Exceptions are [Zwart 05], [Kim and Kim 12]

Same holds for multiclass case under DROS

[Kim et al. 11], [Ayesta et al. 11], [Rogiest et al. 14], [Izagirre

et al. 2015]

However, none of the above considers reneging. In fact, ROS with
reneging is only studied in

[Barrer 57]: single class, Poisson arrivals, exponential service time,
deterministic patience time

[Kelly 1979]: multiclass*, exponential everything.

[Mather et al. 10] multiclass, exponential everything.
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Our Goal

It is known that processing times in biological systems are not always
exponentially distributed, “especially when operations such as
binding, folding, transcription and translation are involved”.

Our Goal: Study multiclass, many-server queues

operating under (D)ROS

with reneging,

renewal arrivals

non-exponential service requirements

non-exponential patience times
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Challenges

Challenges:

ROS is non-head-of-the-line policy, and hard to analyze.

For non-exponential patience times, one needs to keep track of
ages (time since arrival) or residual patience times of all jobs

Any Markovian representation will be infinite-dimensional

As this model has not yet been studied even for single server
queues, we start with that case.
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State Representation

A Measure-Valued State Representation.
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State Representation

A Measure-Valued State Representation.

1. Ages in queue:

ν`(t) =
∑
Q`(t)

δw`,j(t)

w`,j(t) : age in queue (time since arrival) of job j of class ` at time t

Q`(t): all jobs of class ` waiting in queue at time t

Queue length of type `: Q` = 〈1, ν`〉
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State Representation

A Measure-Valued State Representation.

2. Job in service:

a(t) : age in service (time since service entry) of the job receiving service.

I(t) : class index of the job receiving service

3. Arrivals:

R`(t) : time since last arrival of class ` at time t
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State Representation

A Measure-Valued State Representation.

Markovian state descriptor:

Y (t) =
(
R`(t), ν`(t); ` = 1, ..., L, a(t), I(t)

)
Remark. Our representation keeps track of “ages”. Alternative
representation may track residual patience and service times.
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Asymptotic Analysis

Like many other complex stochastic network models, this model
is not amenable to exact analysis.

As the first step, we use fluid approximation to study this model.

Fluid Limit Scaling:

Consider a sequence of queueing systems, parameterized by r ∈ N :

speed up arrivals: Er` (t) = E`(rt),

speed up service rates: vr`,j = 1
r
v`,j

patience times unchanged.

Queue lengths and ν`s are scaled:

Q̄r`(t) =
Qr`(t)

r
, ν̄r` (t) =

νr` (t)

r
.

We are interested in the limit ν̄ of ν̄r = (ν̄r` ) as r →∞.
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Dynamics

Dynamics of ν`:

1 Linear growth of ages with time: masses move to the right

2 Arrivals, renegings, and service entries.

〈f, ν`(t)〉 = 〈f, ν`(0)〉+ 〈f ′, ν`(t)〉+ E`(t; f)−R`(t; f)− S`(t; f).

dynamics of ν` for different classes is are coupled through the
service entry term S
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Dynamics

1. Arrivals.

If a new jobs arrives, it only lands in queue if the server is busy, i.e.,
when the total number of jobs X(t) in system is non-zero.

E`(t; f) =

∫ t

0

1(X(s−) ≥ 1)f(0)dE`(s)
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Dynamics

2. Reneging.

Each job j waiting in queue with age in queue wj,`(t) can renege:

There is a martingale MR s.t.

R`(t; f) =

∫ t

0

〈f hR,`, ν`(s)〉ds+MR(t)

where gR,`, GR,`, and hR,` are pdf, cdf, and hazard rate of patience times
for jobs of class `.
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Dynamics

3. Service Entry.

Service entries of jobs in queue happen immediately after departures.

There is a martingale MS such that

S`(t; f) =

∫ t

0

hS,I(s−) (a(s))
p`〈f, ν`(t)〉∑L
`′=1 p`′Q`′(s−)

ds+MS(t)

where gS,`, GS` , and hS` are pdf, cdf, and hazard rate of service times of
jobs of class `.
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Fluid Limit

Theorem (Fluid Limit)

Under the assumption that hR,`s are bounded, (ν̄r1 , ..., ν̄
r
L) is tight in

DLMF
[0,∞), and each subsequential limit (ν̄1, ..., ν̄L) satisfies

〈f, ν̄`(t)〉 = 〈f, ν̄`(0)〉+

∫ t

0

〈f ′ − fhR,`, ν̄`(s)〉ds+ λ`f(0)

∫ t

0

1(q̄(s) > 0)ds

−
∫ t

0

1(q̄(s) > 0)
p`〈f, ν̄`(s)〉∑L
j=1

pj
µj
〈1, ν̄j(s)〉

ds,

for every f ∈ C1
b (R+), where q̄(t) =

∑L
`=1〈1, ν̄`(t)〉.

Proof steps:

1 bounds for fluctuations to get tightness.

2 Theory of point processes + martingale decomposition.

3 subsequential limits: multi-scale analysis.
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About The Proof

Proof: Multi-Scale Analysis

in the fluid scaling regime, service variables (Ir(t), ar(t)) evolve on a
faster time scale, compared to the slower measure-valued processes ν̄r` .

We need to perform a multi-scale analysis to establish
an averaging principle for slow and fast components

On a small interval [s, s+ δ] where ν̄r is approximately constant, Ir

nearly reaches to equilibrium:

β`(s) ≈
p`Q̄

r
`(s)∑L

j=1 pjQ̄
r
j (s)

The limiting expected departure rate is therefore

1∑L
`=1 β`(s)/µ`

=

∑L
`=1 p`Q̄`(s)∑L
`=1

p`
µ`
Q̄`(s)
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Fluid Limit

Theorem (Fluid Limit)

Under the assumption that hR,`s are bounded, (ν̄r1 , ..., ν̄
r
L) is tight in

DLMF
[0,∞), and each subsequential limit (ν̄1, ..., ν̄L) satisfies

〈f, ν̄`(t)〉 = 〈f, ν̄`(0)〉+

∫ t

0

〈f ′ − fhR,`, ν̄`(s)〉ds+ λ`f(0)
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0

1(q̄(s) > 0)ds

−
∫ t

0

1(q̄(s) > 0)
p`〈f, ν̄`(s)〉∑L
j=1

pj
µj
〈1, ν̄j(s)〉

ds,

for every f ∈ C1
b (R+), where q̄(t) =

∑L
`=1〈1, ν̄`(t)〉.

The fluid limit equation is

1 a system of measure-valued equations

2 the equations are coupled through the non-linear term in the last
integrand, hard yo analyze.

3 interested in uniqueness and long-time behavior.
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Single-Class Case:

Consider a simplified model where

there is a single class (L = 1); only one measure-valued process ν̄.

overloaded cases: λ > µ (interesting case)

set µ = 1.

The equation reduces the single equation

〈f, ν̄(t)〉 = 〈f, ν̄(0)〉+
∫ t

0

〈f ′− fhR, ν̄(s)〉ds+λf(0)t−µ
∫ t

0

〈f, ν̄(s)〉
〈1, ν̄(s)〉

ds

One is often interested in limiting queue length q̄(t) = 〈1, ν̄(t)〉
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Fluid PDE

Observation. The fluid limit equation is closed under one-parameter
family of functions {fx;x ≥ 0}:{

fx(u) =
GR(u+ x)

GR(u)
;x ≥ 0

}
(GR = 1−GR)

Note that 1 = f0. ([A.-Xi-Ramanan 17, A.-Ramanan 15])

We define

Z̄(t, x) = 〈fx, ν̄(t)〉

plugging fx in fluid limit equation, Z̄ satisfies the “fluid PDE”

∂tZ̄(t, x)− ∂xZ̄(t, x) = λGR(x)− Z̄(t, x)

Z̄(t, 0)
(1)

which is a non-linear transport equation, with boundary
condition Z̄(t, 0) = 〈1, ν(t)〉 = q̄(t).
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Fluid PDE

About the Fluid PDE

∂tZ̄(t, x)− ∂xZ̄(t, x) = λGR(x)− Z̄(t, x)

Z̄(t, 0)
(2)

This reduced fluid model Z̄ is function-valued and characterized
by a PDE.

This generalized the so-called ODE method for finite-dimensional
Markov Processes, we can call it the PDE method.

PDE is non-standard: b.c. appears as external force
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Fluid PDE

Conjecture (Uniqueness)

When ρ > 1 and hR is bounded, for every initial condition
Z(0, ·) = z(·) ≥ 0, the PDE

∂tZ̄(t, x)− ∂xZ̄(t, x) = λGR(x)− Z̄(t, x)

q̄(t)

has a unique solution.

proved when the initial condition satisfies Z̄(0, ·) > 0.

for zero i.c., an argument similar to [Puha-Stolyar-Williams

06] for Processor sharing is expected to work.

Proof sketch.

partially solve transport equation

show the resulting fixed point equation for q̄(·) has a unique solution

a key challenge is the appearance of q̄(t) in denominators.
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Fluid PDE

Theorem (Steady-State Solution)

When ρ > 1, the PDE (2) has a unique steady state solution z∗ given by

z∗(x) = λ

∫ ∞
x

GR(u)e
x−u

q du (3)

with q is the unique solution to

q = λĜR(
1

q
),

where ĜR is the Laplace transform of GR.

Proof Sketch.

1 fixed point characterization is by Laplace analysis of the PDE.

2 write the pde for Z(t, x)− z∗(x), then partially solve

3 the equation gives a Gronwall-type bound for |q(t)− q|
4 show q(t)→ q, and then Z(t, ·)→ z∗
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Multiclass PDE

Challenge: Analysis of multiclass fluid equations

Similar to the single-class case, we can write fluid PDEs for multiclass
case:

∂tZk(t, x)− ∂xZk(t, x) = λkGR,k(x)− pkZk(t, x)∑K
`=1

p`
µ`
Z`(t, 0)

. (4)

above is a system of coupled, non-linear PDEs.

because of the non-linear coupling, these equations are harder to
analyze

stationary solution is identified, and shown to be unique.

Uniqueness of the equation is ongoing.
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Summary

We analyzed a multiclass queue with Random Order of Service policy
and reneging, under the non-exponential service and patience time
assumptions, using the framework of measure-valued processes. Our
motivation is two fold:

1 better understanding of intracellular molecular reactions, using a
model with more realistic assumptions, i.e., non-exponential
times.

2 advance the theory of measure-valued processes and their scaling
limits in the context of queueing networks.

use of measure-valued processes for different queueing model leads
to new infinite-dimensional deterministic and stochastic evolution
equations.
in the absence of a general theory, new challenges introduced by
each model need to be addressed in a case-by-case basis.
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Ongoing and Future Work

1 The PDE analysis of multiclass case is ongoing.

2 Diffusion Approximation

diffusion approximation is needed for the analysis of correlations
between job classes
stability analysis of fluid limit is a key step

3 Many-Server Queues

many-server queue is the more relevant model for our application;
there are typically more than one copy of an enzyme
same framework can be employed; the dynamics will be more
complicated.
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