$S_t \circ c(h)(a_s)_{ti}c(s) + \mathfrak{S}_e m^i n(a_r)$ Department of Mathematics, University of Utah

Asymptotic behavior of optimal reward on a tree with Gaussian random weights

Shang-Yuan Shiu

University of Utah

Time and Place: Friday April 3, 2009; 3:00–4:00 p.m.; LCB 219

We assign independent and identically distributed Gaussian random variables X_e 's to each edge of a tree T. Then we define $S_n^{\rho} = \sum_{e \in \rho, |e| \leq n} X_e$ where $\rho \in \partial T$ and ∂T is a collection of infinite paths from the root and going through no vertex more than once. For convenience we write $M_n := \sup_{\rho \in \partial T} S_n^{\rho}$ through out. We want to find an appropriate positive sequence $\{a_n\}$ such that $0 < \limsup_{n \to \infty} M_n/a_n < \infty$. Suppose that a tree does not branch slowly $(\liminf_{n \to \infty} \log A_n/\log n > 0$, where A_n is denoted by the number of vertices in the *n*-th level), then we can choose a_n to be EM_n . If a tree branches slowly, then we should put more weights on a_n . Moreover if $\liminf_{n \to \infty} \log A_n/\log n > 0$ fails, then there exists a tree T for which $\limsup_{n \to \infty} M_n/EM_n = \infty$.