$S_t \circ c(h)(a_s)_{ti}c(s) + \mathfrak{S}_e m^i n(a_r)$ Department of Mathematics, University of Utah

On pathwise limit theorems

Siegfried Hörmann

University of Utah

Time and Place: Friday February 22, 2008; 3:00–4:00 p.m.; LCB 219

Assume that Z_1, Z_2, \ldots are real random variables, which converge weakly to some limit. In this talk we pursue the question of the pathwise behavior of the sequence (Z_k) . For example, let $Z_k = (X_1 + X_2 + \cdots + X_k)/s_k$, where X_1, X_2, \ldots are independent with $EX_k = 0$ and $Var(X_1 + \cdots + X_k) = s_k^2$. Under mild assumptions we get by the central limit theorem that Z_k is asymptotically standard normal. However, the pathwise behavior of such processes is different. If the X_k are identically distributed we get by Lévy's classical arc-sine law that

$$\frac{1}{n}\sum_{k=1}^{n}I\{Z_k \le x\}\tag{1}$$

converges weakly to the arc-sine distribution if x = 0. On the other hand, if e.g. $s_k^2 = \exp((\log k)^{1+\varepsilon})$ ($\varepsilon > 0$), we show that (1) converges almost surely to $\Phi(x)$, the standard normal distribution function. By considering weighted averages

$$\frac{1}{D_n} \sum_{k=1}^n d_k I\{Z_k \le x\}, \quad d_k \ge 0, \ D_n = \sum_{k=1}^n d_k, \tag{2}$$

instead of the ordinary mean in (1), we can also obtain the almost sure convergence to $\Phi(x)$ in the i.i.d. case. This is the so-called *almost* sure central limit theorem. The main purpose of the talk is to study the pathwise behavior of weakly convergent sequences under the aspect of different averaging methods in (2).