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COALESCENCE AND TOTAL-VARIATION DISTANCE

OF SEMI-INFINITE INVERSE-GAMMA POLYMERS

FIRAS RASSOUL-AGHA, TIMO SEPPÄLÄINEN, AND XIAO SHEN

Abstract. We show that two semi-infinite positive temperature polymers coalesce on the scale
predicted by KPZ (Kardar-Parisi-Zhang) universality. The two polymer paths have the same
asymptotic direction and evolve in the same environment, independently until coalescence. If
they start at distance k apart, their coalescence occurs on the scale k3/2. It follows that the total
variation distance of two semi-infinite polymer measures decays on this same scale. Our results
are upper and lower bounds on probabilities and expectations that match, up to constant factors
and occasional logarithmic corrections. Our proofs are done in the context of the solvable inverse-
gamma polymer model, but without appeal to integrable probability. With minor modifications,
our proofs give also bounds on transversal fluctuations of the polymer path. Since the free energy of
a directed polymer is a discretization of a stochastically forced viscous Hamilton-Jacobi equation,
our results suggest that the hyperbolicity phenomenon of such equations obeys the KPZ exponent.
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1. Introduction

This paper focuses on a probability model for nearest-neighbor up-right random walk paths on
the two-dimensional square lattice. The lattice vertices are assigned independent and identically
distributed random variables called weights, and the energy of a path is defined as the sum of the
weights along the path. The point-to-point quenched polymer measures are probability measures
on admissible paths connecting pairs of sites. The probability of a path is proportional to the
exponential of its energy.

This model is known as the two-dimensional directed lattice polymer with bulk disorder and
was introduced in the statistical physics literature by Huse and Henley [22] in 1985 to represent
the domain wall in the ferromagnetic Ising model with random impurities. This model is expected
to be a member of the Kardar-Parisi-Zhang (KPZ) universality class and has been extensively
studied over the past three decades, becoming a paradigmatic model in the field of nonequilibrium
statistical mechanics. See the surveys [11–14, 20, 21, 31, 32, 38].

The directed last-passage percolation model (LPP) on the square lattice is a zero-temperature

version of the random polymer model. In LPP, we consider the ground states, which are admissible
paths that maximize the energy, and are referred to as geodesics. This particular LPP model with
up-right nearest-neighbor lattice paths is also called the corner growth model.

In LPP, a path that starts from a given lattice vertex and only moves up or right is called
a semi-infinite geodesic if each finite piece of the path is a geodesic between its endpoints. The
existence, directedness, and uniqueness or non-uniqueness of semi-infinite geodesics have been well
studied and understood (see [16, 17, 27] for details). Notably, it has been demonstrated in [16] that
these semi-infinite geodesics can be obtained as limits of finite geodesics, as the endpoint moves
off towards infinity in a particular direction. Furthermore, it has been shown in the same paper
that semi-infinite geodesics starting at different vertices but having the same asymptotic direction
eventually coalesce, i.e., they intersect and then move together.

The study of semi-infinite polymer measures in the case of random directed lattice polymers
was carried out in [18, 25]. Similar to LPP, [25] established that semi-infinite polymer measures
that start from different vertices and share the same asymptotic velocity can be coupled in such
a way that their paths coalesce with probability one. As a consequence, the marginals of any two
semi-infinite polymer measures that correspond to the same asymptotic velocity are asymptotic
to each other. This phenomenon, known as hyperbolicity, has been found to be linked to various
phenomena such as stochastic synchronization and the one force–one solution principle (see, for
example, [1, 26]). In this work, our focus is on providing precise quantitative bounds on the
convergence rates, showcasing how this hyperbolicity obeys the KPZ exponents. Currently, such
sharp estimates are only available in the so-called solvable cases, where the weight distribution is
chosen in a specific way, allowing for explicit analytic computations.

The only known solvable LPP models are the ones with either exponential or geometric weight
distribution. In the only known solvable directed polymer model, the weights have a negative
log-gamma distribution. This solvable directed polymer model was first introduced by the second
author in [33] and has since been referred to as the inverse-gamma or log-gamma polymer.
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Our main contributions in this paper are sharp quantitative bounds on the rates of coalescence
of the coupled paths and convergence of the marginals in the inverse-gamma polymer model. The
corresponding estimates for LPP with exponential weights were obtained in [5] using integrable
probability methods, and in [35] using coupling with stationary versions of the model, which relies
less on the solvability of the model. In this paper, we adopt the latter approach and further
develop it to handle the additional layer of randomness that arises in the case of semi-infinite
polymer measures, where the random environment only determines the path measures. Along the
way, we provide various new estimates on the exit point of stationary polymers and we improve
one existing estimate, namely the last inequality in (4.1).

Organization of the paper. In Section 2, we present the setting and our main results concerning
the coalescence point, total variation distance, and transversal fluctuations. The connection to
hyperbolicity in stochastic Hamilton-Jacobi equations is addressed briefly in Remark 2.10. Exit
time estimates in the stationary inverse-gamma polymer are a crucial tool in our proofs. We
introduce the stationary polymer in Section 3 and provide the exit time estimates in Section 4.
The proofs of the coalescence results are presented in Section 5, while the proofs of the total
variation distance estimates can be found in Section 6. The proofs of the transversal fluctuations
results are provided in Section 7. Various auxiliary results are gathered in the appendixes.

Notation and conventions. Subscripts indicate restricted subsets of the reals and integers: for
example, Z>0 = {1, 2, 3, . . . } and Z

2
>0 = (Z>0)

2 is the strictly positive first quadrant of the planar
integer lattice.

On R
2 we have the following conventions for points x = (x1, x2) and y = (y1, y2). Coordinatewise

order: x ≤ y iff x1 ≤ y1 and x2 ≤ y2. The ℓ
1 norm is |x|1 = |x1|+ |x2|. The origin of R2 is denoted

by both 0 and (0, 0). The two standard basis vectors are e1 = (1, 0) and e2 = (0, 1).
For integers m ≤ n, the integer interval is denoted by Jm,nK = {m,m + 1, . . . , n}. For planar

points a ≤ b in Z
2, Ja, bK = {x ∈ Z

2 : a ≤ x ≤ b} is the rectangle in Z
2 with corners a and b. The

northeast boundary of a rectangle [[a, b]], denoted by ∂NE[[a, b]], is the set of vertices v ∈ [[a, b]] such
that v · e1 = b · e1 or v · e2 = b · e2. Ja, bK is an integer line segment in Z

2 if a and b are on the same
horizontal or vertical line. In particular, Ja− e1, aK and Ja− e2, aK denote unit edges.

The total variation distance between two probability measures µ and ν on (Ω,F) is dTV(µ, ν) =
supA∈F |µ(A) − ν(A)|. For a probability measure µ, X ∼ µ means the random variable X has
distribution µ.

2. Main results

2.1. Directed polymer model. Let {Yz}z∈Z2 be a collection of positive weights on the sites of
the planar integer square lattice. For vertices u ≤ v in Z

2, Xu,v denotes the collection of up-right
paths x• = {xi}0≤i≤n where n = |u−v|1, x0 = u, xn = v and xi+1−xi ∈ {e1, e2} for all i ∈ J0, n−1K.
Define the point-to-point polymer partition function between the two vertices u ≤ v by

Zu,v =
∑

x•∈Xu,v

|u−v|1∏

i=0

Yxi .

We use the convention Zu,v = 0 if u ≤ v fails. The quenched polymer measure is a probability
measure on the set Xu,v and is defined by

Qu,v{x•} =
1

Zu,v

|u−v|1∏

i=0

Yxi .

In general, the positive weights {Yz}z∈Z2 can be seen as a random environment if they are chosen
as i.i.d. positive random variables defined on some probability space (Ω,F ,P). Under the moment
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assumption

E[| log Yx|p] < ∞ for some p > 2,

there exists a concave, positively homogeneous, nonrandom continuous function Λ : R2
≥0 → R that

satisfies the shape theorem (see [25, Section 2.3]):

(2.1) lim
n→∞

sup
z∈Z2

≥0:|z|1≥n

| logZ0,z − Λ(z)|
|z|1

= 0 P-almost surely.

Λ is called the (limiting) free energy density or, by analogy with stochastic growth models, the shape
function. Regularity properties of Λ such as strict convexity or differentiability are not known in
general.

Fix a base point v ∈ Z
2 and let xN ≥ v in Z

2 be a sequence of lattice points going to infinity
in a deterministic direction ξ, i.e. xN/|xN |1 −−−−→

N→∞
ξ/|ξ|1. The ξ-directed semi-infinite polymer

measure is obtained as the weak limit

(2.2) Qv,xN
−−−−⇀
N→∞

Πξ
v,

provided this weak limit exists P-a.s. The probability measure Πξ
v is the quenched path measure of

a random walk in a random environment (RWRE) on Z
2 started at v. An RWRE is Markov chain

whose transition probability depends on the environment in a translation-covariant way. In the
polymer case these transition probabilities are given by limiting ratios of partition functions. If the
shape function Λ (as a function of directions) has sufficient local regularity around the direction ξ,

then the limiting measure Πξ
v exists [25, Theorem 3.8].

2.2. Inverse-gamma polymer. This paper focuses exclusively on the inverse-gamma polymer.
A real random variable X has the inverse-gamma distribution with shape parameter µ ∈ (0,∞),
abbreviated as X ∼ Ga−1(µ), if its reciprocal X−1 has the gamma distribution with shape
parameter a. Equivalently, X has probability density function

fX(x) =
1

Γ(µ)
x−1−µe−x−1

1(0,∞)(x)

where Γ(a) =
∫∞
0 sa−1e−sds is the gamma function. The inverse-gamma polymer is defined by

letting {Yz}z∈Z2 be i.i.d. inverse-gamma distributed random variables. We will fix the shape
parameter µ in the rest of the paper. While many of the constants in the proofs depend on µ,
we will not explicitly mention this fact.

In the current state of the subject, Λ in (2.1) can be written down explicitly only in the inverse-
gamma case. Then the regularity of Λ required for (2.2) can be verified explicitly. Hence for each

given direction ξ in the open first quadrant and each initial vertex v ∈ Z
2, the measure Πξ

v exists
almost surely [18, Theorem 7.1]. Its transition probability is given in equation (5.2) below.

Let Ψ0 and Ψ1 be the digamma and trigamma functions, defined by Ψ0(z) = d
dz log Γ(z) and

Ψ1(z) = Ψ′
0(z) =

d2

dz2
log Γ(z). In the study of the inverse-gamma polymer, it is convenient to index

the spatial directions ξ by the parameter ρ ∈ (0, µ) through

(2.3) ξ[ρ] =
(

Ψ1(ρ)
Ψ1(ρ)+Ψ1(µ−ρ) ,

Ψ1(µ−ρ)
Ψ1(ρ)+Ψ1(µ−ρ)

)
.

We call ξ[ρ] the characteristic direction associated to the parameter ρ. This notion acquires its full
meaning when we discuss the stationary inverse-gamma polymer in Section 3. The formula for the
shape function Λ is cleanest in terms of the characteristic direction: from (2.16) in [33]

Λ(ξ[ρ]) = − Ψ1(ρ)
Ψ1(ρ)+Ψ1(µ−ρ) ·Ψ0(µ− ρ)− Ψ1(µ−ρ)

Ψ1(ρ)+Ψ1(µ−ρ)Ψ0(ρ).
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(0, 0)

vN

(0, 0)

vN

rN2/3

rN2/3

δN2/3

δN2/3

Figure 2.1. These pictures illustrate the likely events which are the complements of
the rare events bounded in Theorems 2.1 and 2.3. The open circle marks the coalescence
point of two ξ[ρ]-directed semi-infinite polymer paths. On the left r is large and the
initial points are far apart on the scale N2/3. Consequently the two paths are unlikely
to coalesce before exiting the rectangle. On the right δ is small and coalescence inside
the rectangle is likely.

Throughout the paper, N is a scaling parameter that goes to infinity. We define the particular
sequence of lattice points

(2.4) vN =
(
⌊Nξ[ρ] · e1⌋, ⌊Nξ[ρ] · e2⌋

)
∈ Z

2
≥0

that go to infinity in the characteristic direction ξ[ρ]. We simplify the notation for the semi-infinite

polymer distribution to Πρ
v = Π

ξ[ρ]
v .

2.3. Coalescence bounds. For two initial vertices a, b ∈ Z
2, let Hρ

a,b denote the classical coupling

measure of the Markov chains Πρ
a and Πρ

b , as defined by Thorisson [36, Chapter 2]. Under the
distribution Hρ

a,b, the two paths evolve jointly as a Markov chain on Z
2 × Z

2 with marginal

distributions Πρ
a and Πρ

b . The joint transition probability is defined on Z
2 × Z

2 so that the two
paths move independently until they meet, after which they move together. When this meeting
happens we say that the two paths coalesced. By [25, Theorem A.1], for a given ρ, coalescence
happens Hρ

a,b-almost surely, for almost every environment.

We quantify the speed of coalescence by specifying the lattice subset in which the coalescence
first happens. For A ⊂ Z

2, let ΓA denote the collection of pairs of semi-infinite up-right paths in Z
2

that first meet at a vertex inside the set A. Then, Hρ
a,b

(
Γ[[0,vN ]]

)
is the quenched probability that

the coalescence of the paths from a and b happens inside the set [[0, vN ]]. Similarly, Hρ
a,b

(
ΓZ

2\[[0,vN ]]
)

is the quenched probability that the coalescence happens outside [[0, vN ]]. The two theorems below
give upper and lower bounds on the expectations of these quenched probabilities in two distinct
cases: when the initial points are close together and when they are far apart on the scale N2/3.

Theorem 2.1. Let ε ∈ (0, µ/2). There exist positive constants C1, C2, N0, δ0 depending only on ε

such that for each ρ ∈ [ε, µ − ε], N ≥ N0 and N−2/3 ≤ δ ≤ δ0, we have

C1δ ≤ E

[
Hρ

⌊δN2/3⌋e1,⌊δN2/3⌋e2

(
ΓZ

2\[[0,vN ]]
)]

≤ C2| log δ|10δ.

Remark 2.2. The restriction δ ≥ N−2/3 is needed only for the lower bound of the theorem and only
for the trivial reason that the expectation vanishes when δ < N−2/3 because then the two paths
start together at the origin.
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Theorem 2.3. Let ε ∈ (0, µ/2). There exist positive constants C1, C2, r0, c0, N0 that depend only

on ε such that for each ρ ∈ [ε, µ − ε], N ≥ N0 and r0 ≤ r ≤ c0N
1/3, we have

e−C1r3 ≤ E

[
Hρ

⌊rN2/3⌋e1,⌊rN2/3⌋e2

(
Γ[[0,vN ]]

)]
≤ e−C2r3 .

Remark 2.4. Again, the upper bound r ≤ c0N
1/3 is only needed for the lower bound in the theorem.

The estimates above do not depend on starting the paths on an antidiagonal. The following
corollary gives two of the four additional estimates. The other two follow from the theorems. Also,
e1 and e2 are interchangeable by symmetry.

Corollary 2.5. Let ε ∈ (0, µ/2). There exist positive constants C,N0, δ0, r0 that depend only on ε

such that for each ρ ∈ [ε, µ − ε], N ≥ N0, r ≥ r0 and N−2/3 ≤ δ ≤ δ0, we have

E

[
Hρ

0,⌊rN2/3⌋e1

(
Γ[[0,vN ]]

)]
≤ e−Cr3 and E

[
Hρ

0,⌊δN2/3⌋e1

(
ΓZ2\[[0,vN ]]

)]
≥ Cδ.

By planar monotonicity and a change of variable, our estimates can also be stated for two semi-
infinite polymer paths that start at fixed locations. If the initial points are of order k apart,
then their meeting takes place on the scale k3/2, as captured in the corollary below. We shift the
rectangle with the initial points so that the constants do not depend at all on the initial points.
The coordinatewise minimum of two lattice points a = (a1, a2) and b = (b1, b2) is denoted by
a ∧ b = (a1 ∧ b1, a2 ∧ b2).

Corollary 2.6. Let ε ∈ (0, µ/2) and a 6= b in Z
2. Let k = |a − b|1 ≥ 1. There exist positive

constants C1, C2, r0, c0 that depend only on ε such that for each ρ ∈ [ε, µ − ε], k ≥ 1, r ≥ r0 and
δ ≥ c0k

−1/2 we have

C1r
−2/3 ≤ E

[
Hρ

a,b

(
ΓZ2\{a∧b+[[0,v

rk3/2
]]}
)]

≤ C2(log r)
10r−2/3 and

e−C2δ−2 ≤ E

[
Hρ

a,b

(
Γa∧b+ [[0,v

δk3/2
]]
)]

≤ e−C1δ−2
.

The next result gives tail bounds for the quenched probability of fast coalescence, of optimal
exponential order.

Theorem 2.7. Fix ε ∈ (0, µ/2). There exist positive constants C1, C2, C3, C4, r0, c0, N0 that depend
only on ε such that for each ρ ∈ [ε, µ − ε], N ≥ N0 and r0 ≤ r ≤ c0N

1/3, we have

e−C1r3 ≤ P

(
Hρ

⌊rN2/3⌋e1,⌊rN2/3⌋e2

(
Γ[[0,vN ]]

)
≥ 1− e−C2r2N1/3

)

≤ P

(
Hρ

⌊rN2/3⌋e1,⌊rN2/3⌋e2

(
Γ[[0,vN ]]

)
≥ e−C3r2N1/3

)
≤ e−C4r3 .

2.4. Coupling and total variation distance. Since the quenched non-coalescence probability

Hρ
a,b(Γ

Z
2\(a∧b+ [[0, v

rk3/2
]])) is nonincreasing in r, Corollary 2.6 implies the almost sure convergence

Hρ
a,b(Γ

Z
2\(a∧b+ [[0, v

rk3/2
]])) → 0 as r → ∞. This says that the polymer distributions Πρ

a and Πρ
b

couple almost surely. To state this precisely, let χN = χN (γ) denote the vertex where a semi-
infinite up-right path γ started inside [[0, vN ]] first meets the northeast boundary ∂NE[[0, vN ]]. If
(γa, γb) denote the paths under Hρ

a,b, then for a, b ∈ Z
2
≥0 we have

(2.5) Hρ
a,b{χN (γa) = χN (γb) for large enough N} = 1.

The standard coupling inequality (stated in (6.1) in Section 6) implies that the total variation
distance between the distributions induced on ∂NE[[0, vN ]] converges to zero almost surely:

(2.6) lim
N→∞

dTV

(
Πρ

a{χN ∈ • } , Πρ
b{χN ∈ • }

)
= 0 P-a.s.



COALESCENCE OF SEMI-INFINITE POLYMERS 7

The next two theorems establish bounds on this convergence. In the same spirit as in the earlier
results, when the initial points are close on the scale N2/3, the total variation distance on the
northeast boundary of a rectangle of size N is small. In the opposite case the starting points are
far apart on the scale N2/3 and the total variation distance is close to 1.

Theorem 2.8. Let ε ∈ (0, µ/2). There exist finite strictly positive constants δ0, N0, C that depend
on ε such that, whenever 0 < δ ≤ δ0, N ≥ N0 and ρ ∈ [ε, µ − ε],

E

[
dTV

(
Πρ

⌊δN2/3⌋e1(
χN ∈ •),Πρ

⌊δN2/3⌋e2(
χN ∈ •)

)]
≤ C| log δ|10δ.

Theorem 2.9. Let ε ∈ (0, µ/2). There exist finite positive constants r0, N0, C depending on ε such

that whenever N ≥ N0, r0 ≤ r ≤ N1/3 and ρ ∈ [ε, µ − ε], we have

E

[
dTV

(
Πρ

⌊rN2/3⌋e1
(χN ∈ •),Πρ

⌊rN2/3⌋e2
(χN ∈ •)

)]
≥ 1− e−Cr3 .

The proofs of the two theorems are given in Section 6.

Remark 2.10 (Hyperbolicity in stochastic equations). The free energy of a directed polymer can
be viewed as a discretization of a stochastically forced viscous Hamilton-Jacobi equation. This
connection goes back to [23, 24]. In this vein, semi-infinite polymer measures can be used to
construct stationary eternal solutions to such equations. Article [1] treats a semidiscrete case and
[26] the KPZ equation. In particular, the limit (2.6) is a version of hyperbolicity that appears in
stochastic synchronization (also called the one force–one solution principle) of such equations. This
is the positive temperature analogue of the inviscid phenomenon whereby action minimizers are
asymptotic to each other in the infinite past. See for example Theorem 4.4 of [1]. Our results above
show that, in the case at hand, this form of hyperbolicity obeys the KPZ wandering exponent. On
universality grounds one can predict that this is true in some generality in one space dimension for
stochastically forced viscous Hamilton-Jacobi equations with nonlinear Hamiltonians.

2.5. Transversal fluctuations. Finally, we present a result concerning the transversal fluctuation
of the finite i.i.d. polymer. This result is derived by making a slight modification to the proof of
the upper bound for fast coalescence, as stated in Theorem 2.1. It is expected for the midpoint
of polymer from (0, 0) to (N,N) to fluctuate around the diagonal on the scale N2/3. The upper
bound on the transversal fluctuation was first proved in the work [33], and we provide here the
lower bound, i.e. we show that it is rare for the midpoint of the polymer to be too close to the
diagonal.

To state the result, let us introduce some notation. Let {mid ≤ k} denote the collection of
directed paths between −vN and vN that intersect the ℓ∞ ball of radius k, centered at the origin.

Theorem 2.11. Let ε ∈ (0, µ/2). There exist finite strictly positive constants δ0, N0, C that depend
on ε such that, whenever 0 < δ ≤ δ0, N ≥ N0 and ρ ∈ [ε, µ − ε],

E

[
Q−vN ,vN {mid ≤ δN2/3}

]
≤ C| log δ|10δ.

Remark 2.12. The midpoint transversal fluctuation can be generalized to other positions along the
path, as long as they are order N away from −vN and vN .

Remark 2.13. Our proof technique also yields the following lower bound on the fluctuation of the

endpoint of the point-to-line polymer. Let Qp2l
0,N denote the point-to-line quenched path measure on

the collection of directed paths from (0, 0) to the anti-diagonal line x+ y = 2N . And let {end ≤ k}
denote the sub-collection of these paths that intersect the ℓ∞ ball of radius k, centered at (N,N).
It holds that

(2.7) E

[
Qp2l

0,N{end ≤ δN2/3}
]
≤ C| log δ|10

√
δ.
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We get the weaker
√
δ instead of δ because the antidiagonal version of the independence property

of Busemann increments on horizontal or vertical lines for two different directions is not known.

3. Stationary inverse-gamma polymer

One of the main tools we use in our proofs is a stationary version of the polymer model, which
we now describe.

The stationary inverse-gamma polymer with southwest boundary is defined on a quadrant instead
of the entire Z

2. It requires a parameter parameter ρ ∈ (0, µ) and a base vertex v ∈ Z
2. To each

z ∈ v + Z
2
>0 we attach a weight Yz ∼ Ga−1(µ). On the e1- and e2-boundary of v + Z

2
≥0, we place

(edge) weights

Iρv+ke1
∼ Ga−1(µ − ρ) and Jρ

v+ke2
∼ Ga−1(ρ), k ≥ 1.(3.1)

All these weights in the quadrant are independent. We refer to the Y weights as the bulk weights
and to the Iρ and Jρ weights as the ρ-boundary weights. Section 5.1 below explains the reason
behind thinking of Iρ and Jρ as edge weights instead of vertex weights.

We use the same P to denote the joint distribution of the weights (Y, Iρ, Jρ). For w ∈ v + Z
2
≥0,

we define the partition function of the stationary polymer by

Zρ
v,w =

∑

x•∈Xv,w

|w−v|1∏

i=0

Ỹxi , where for x ∈ v + Z
2
≥0, Ỹx =





1 if x = v,

Iρx−e1,x if x ∈ v + Z>0e1,

Jρ
x−e2,x if x ∈ v + Z>0e2,

Yx for x ∈ v + Z
2
>0.

The corresponding quenched polymer measure is defined as

Qρ
v,w(x•) =

1

Zρ
v,w

|w−v|1∏

i=0

Ỹxi , x• ∈ Xv,w.

Next we state the theorem that explains why the process Zρ is called ratio-stationary, or simply
stationary. For a subset A ⊂ Z

2, let A> = ∪x∈A(x+ Z
2
>0).

Theorem 3.1 ([33, Thm. 3.3] and [18, Eqn. (3.6)]). Fix ρ ∈ (0, µ). For each u ∈ v+ (Z>0 ×Z≥0),
w ∈ v + (Z≥0 × Z>0), and x ∈ v + Z

2
>0 we have

Zρ
v,u

Zρ
v,u−e1

∼ Ga−1(µ− ρ),
Zρ
v,w

Zρ
v,w−e2

∼ Ga−1(ρ), and
1

Zρ
v,x/Z

ρ
v,x−e1 + Zρ

v,x/Z
ρ
v,x−e2

∼ Ga−1(µ).

Translation invariance: the distribution of the process
{

Zρ
v,z+u

Zρ
v,z+u−e1

,
Zρ
v,z+w

Zρ
v,z+w−e2

: u ∈ Z>0 × Z≥0, w ∈ Z≥0 × Z>0

}

does not depend on the translation z ∈ v + Z
2
≥0. Furthermore, let A = {yi}i∈I be any finite or

infinite down-right path in v+Z
2
≥0, indexed by an interval I ⊂ Z. (This means that each increment

satisfies yi+1−yi ∈ {e1,−e2}.) Then, the nearest-neighbor ratios {Zρ
v,yi+1/Z

ρ
v,yi} along the path and

the weights
{(

Zρ
v,x/Z

ρ
v,x−e1 + Zρ

v,x/Z
ρ
v,x−e2

)−1
: x ∈ A>

}
are mutually independent.

A key quantity in the coupling approach to polymers and LPP models is the exit time. For an
up-right path γ, we define τ(γ) ∈ Z \ {0} as the signed number of steps taken before the first turn,
where the plus sign corresponds to e1 steps and the minus sign to e2 steps. For example, τ(γ) = −3
means that the first four steps of γ consist of three consecutive e2 steps followed by an e1 step. For
v,w ∈ Z, when additional clarity is needed, we use the notation τv,w to denote the restriction of
the function τ to the domain Xv,w. When the path γ starts at the base vertex v of the stationary



COALESCENCE OF SEMI-INFINITE POLYMERS 9

polymer process, |τ | equals the number of boundary weights seen by the path before it exits the
boundary. This justifies the term exit time for τ(γ).

With the function τ , we define the restricted partition function Zv,w(a ≤ τ ≤ b) similarly to
Zv,w, except that we sum only over the subset of paths {x• ∈ Xv,w : a ≤ τv,w(x•) ≤ b}.

Because the weights on the boundary are stochastically larger than the bulk weights, the path
prefers to stay on the boundary. For each ρ ∈ (0, µ) the characteristic direction ξ[ρ] is the unique
direction in which the pulls of the e1- and e2-boundaries balance out. The sampled path between
the origin and vN tends to take order N2/3 steps on the boundary. Precise exit time estimates are
stated in in Section 4.

The stationary inverse-gamma polymer with northeast boundary is analogous to the previously
defined model, except that it is defined on a third quadrant and uses boundary edge weights placed
on the northeast boundary. Thus, it also requires a parameter ρ ∈ (0, µ) and a base vertex v ∈ Z

2,
but it is defined on the quadrant v − Z

2
≥0. To each z ∈ v + Z

2
<0 we attach a bulk (vertex) weight

Yz ∼ Ga−1(µ). On the e1- and e2-boundary of v − Z
2
≥0, we place edge weights

Iρ[[v+(k−1)ke1,v+ke1]]
= Iρv+(k−1)ke1,v+ke1

∼ Ga−1(µ− ρ),

Jρ
[[v+(k−1)ke2,v+ke2]]

= Jρ
v+(k−1)ke2,v+ke2

∼ Ga−1(ρ), k ≤ 0.
(3.2)

All these weights in the quadrant are independent. Here too, we use P to denote the joint

distribution of (Y, Iρ, Jρ) and write Zρ,NE
u,v and Qρ,NE

u,v for, respectively, the partition function and
quenched measure for the polymer with northeast boundary. Precisely, for u ∈ v − Z2

≥0, define

Zρ,NE
u,v =

∑

x•∈Xu,v

|v−u|1∏

i=0

Ỹxi , where for x ∈ v − Z
2
≥0, Ỹx =





1 if x = v,

Iρx,x+e1 if x ∈ v − Z>0e1,

Jρ
x,x+e2 if x ∈ v − Z>0e2,

Yx for x ∈ v − Z
2
>0.

The quenched polymer measure is defined by

Qρ,NE
u,v (x•) =

1

Zρ,NE
v,w

|v−u|1∏

i=0

Ỹxi .

Remark 3.2. We work mostly with the stationary model with southwest boundary and, therefore,
we only flesh out the location of the boundary when it is the northeast boundary that is being
used.

By symmetry, the analogous version of Theorem 3.1 holds for the stationary polymer with
northeast boundary.

4. Exit time estimates

In this section, we prove exit time estimates for the stationary polymer model with southwest
boundary, introduced in Section 3. These results will be used to derive the coalescence estimate in
Section 5 and the total variation bounds in Section 6.

The first theorem below concerns the case when the polymer paths have an unusually large exit
time. The upper bound for the annealed measure is proved in [15, 29]. We improve this estimate
into a bound for the quenched tail. The related upper bound in the zero-temperature model is [8,
Theorem 2.4]. The proof in [8] uses a technical result from [7, Theorem 10.5]. We will present a
simpler proof in this paper.
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Theorem 4.1. Fix ε ∈ (0, µ/2). There exist positive constants r0, N0, c0, and Ci, i ∈ [[1, 6]], that

depend only on ε such that for all ρ ∈ [ε, µ − ε], N ≥ N0 and r0 ≤ r ≤ c0N
1/3, we have

e−C1r3 ≤ P

(
min

x 6∈[[0,vN ]]
Qρ

0,x{|τ | > rN2/3} ≥ 1− e−C2r2N1/3
)

≤ P

(
Qρ

0,vN+(1,1){|τ | > rN2/3} ≥ e−C3r2N1/3
)
≤ e−C4r3(4.1)

and

e−C5r3 ≤ E

[
min

x 6∈[[0,vN ]]
Qρ

0,vN
{|τ | > rN2/3}

]
≤ E

[
Qρ

0,vN+(1,1){|τ | > rN2/3}
]
≤ e−C6r3 .

Lemma A.7 allows us to obtain the following corollary from Theorem 4.1. The proof of Corollary
4.2 is by now standard and is summarized in Figure 4.1 and its caption.

Corollary 4.2. Fix ε ∈ (0, µ/2). There exist positive constants C1, C2, C3, r0, N0 that depend only
on ε such that for for all ρ ∈ [ε, µ − ε], N ≥ N0 and r ≥ r0, we have

P
(
Qρ

0,vN−rN2/3e1
{τ ≥ 1} ≥ e−C1r2N1/3) ≤ e−C2r3

and

E

[
Qρ

0,vN−rN2/3e1
{τ ≥ 1}

]
≤ e−C3r3 .

The same result holds when vN − rN2/3e1 is replaced by vN + rN2/3e2.

The next theorem is about the polymer paths having unusually small exit times. The estimate
improves upon the result from [9] where these types of estimates were used to rule out the existence
of non-trivial bi-infinite polymer measures. This technique was first developed for the non-existence
of bi-infinite geodesics in the corner growth model [2] and subsequently applied to coalescence
estimates for semi-infinite geodesics in [35].

Theorem 4.3. Fix ε ∈ (0, µ/2). There exist positive constants C1, C2, N0, δ0 that depend only on

ε such that for all ρ ∈ [ε, µ − ε], N ≥ N0, N
−2/3 < δ ≤ δ0, we have

P

(
max

x 6∈[[0,vN ]]
Qρ

0,x{|τ | ≤ δN2/3} ≥ e−| log δ|2
√
δN1/3

)
≤ C1| log δ|10δ(4.2)

and

C1δ ≤ E

[
max

x 6∈[[0,vN ]]
Qρ

0,x{|τ | ≤ δN2/3}
]
≤ C2| log δ|10δ.(4.3)

We close this section by extending the above estimates to any coupling of stationary polymer

measures. Let Q̃ρ
0,A be any coupling of the measures {Qρ

0,x : x ∈ A}. This is then a probability

measure on the product space
∏

y∈AX0,y. We view the elements of this product space as vectors
and then for x ∈ A, the x-th coordinate of such a vector would be the path that ends at x. For
x ∈ A, define {τ̃0,x = k} ⊂ ∏

y∈AX0,y to be the collection of vectors whose x-th coordinate is in

{τ = k}.
Theorem 4.4. Fix ε ∈ (0, µ/2). There exist positive constants C1, C2, r0, c0, N0 that depend only

on ε such that for each ρ ∈ [ε, µ − ε], N ≥ N0 and r0 ≤ r ≤ c0N
1/3, we have

P

(
Q̃ρ

0,∂NE[[0,vN ]]

( ⋂

x∈∂NE[[0,vN ]]

{|τ̃0,x| ≥ rN2/3}
)
≥ 1− e−C1r2N1/3

)
≥ e−C2r3

and

E

[
Q̃ρ

0,∂NE[[0,vN ]]

( ⋂

x∈∂NE[[0,vN ]]

{|τ̃0,x| ≥ rN2/3}
)]

≥ e−Cr3 .
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ξ[ρ]
ξ[ρ]

rN2/3

vN

rN2/3

(0, 0)
(0, 0)−rN2/3e1

Figure 4.1. Sketch of Corollary 4.2. On the left is a path in the event
τ0,vN−⌊rN2/3⌋e1 ≥ 1. On the right, a second base point is placed at −⌊rN2/3⌋e1
and the edge weights on the e2-axis based at 0 are determined by the ratio variables
of the polymer based at −⌊rN2/3⌋e1. By Lemma A.7, Q0,vN−⌊rN2/3⌋e1{τ ≥ 1} =

Q−⌊rN2/3⌋e1,vN−⌊rN2/3⌋e1{τ ≥ ⌊rN2/3⌋+ 1}, and Theorem 4.1 can be applied.

Theorem 4.5. Fix ε ∈ (0, µ/2). There exist positive constants C,N0, δ0 that depend only on ε
such that for each ρ ∈ [ε, µ − ε], N ≥ N0, K ≥ 1 and 0 < δ ≤ δ0, we have

E

[
Q̃ρ

0,∂NE[[0,vN ]]

( ⋃

x∈∂NE[[0,vN ]]

{|τ̃0,x| ≤ δN2/3}
)]

≤ C| log δ|10δ.

4.1. Proof of Theorem 4.1. The expectation bounds in Theorem 4.1 follow directly from the
tail bounds. We split the proof of the tail bounds into the following two lemmas.

Lemma 4.6. Fix ε ∈ (0, µ/2). There exist positive constants C1, C2, r0, N0 depending only on ε
such that for all ρ ∈ [ε, µ − ε], N ≥ N0 and r ≥ r0, we have

P

(
Qρ

0,vN
{|τ | > rN2/3} ≥ e−C1r2N1/3

)
≤ e−C2r3 .

Lemma 4.7. Fix ε ∈ (0, µ/2). There exist positive constants C1, C2, r0, N0, c0 depending only on
ε such that for all ρ ∈ [ε, µ − ε], N ≥ N0 and r0 ≤ r ≤ c0N

1/3, we have

P

(
min

x 6∈[[0,vN ]]
Qρ

0,x{|τ | > rN2/3} ≥ 1− e−C1r2N1/3
)
≥ e−C2r3

4.1.1. Proof of Lemma 4.6. We start with two calculations for the shape function Λ. Their proofs
use Taylor expansions and are thus postponed to Appendix A.2.

The first proposition below captures the loss of free energy due to curvature.

Proposition 4.8. Fix ε ∈ (0, µ/2). There exist positive constants C1, N0, c0 depending only on ε

such that for each ρ ∈ [ε, µ − ε], N ≥ N0, 1 ≤ s ≤ c0N
1/3, we have

Λ
(
vN − ⌊sN2/3⌋e1 + ⌊sN2/3⌋e2

)
− ⌊sN2/3⌋Ψ0(µ− ρ) + ⌊sN2/3⌋Ψ0(ρ)− Λ(vN ) ≤ −C1s

2N1/3.

The second proposition is essentially a bound on the non-random fluctuation when the endpoint
varies around vN .

Proposition 4.9. Fix ε ∈ (0, µ/2). There exist positive constants C1, N0, c0 depending only on ε
such that for each ρ ∈ [ε, µ − ε], N ≥ N0, 0 ≤ s ≤ 3, we have

∣∣∣Λ
(
vN − ⌊sN2/3⌋e1 + ⌊sN2/3⌋e2

)
− ⌊sN2/3⌋Ψ0(µ − ρ) + ⌊sN2/3⌋Ψ0(ρ)− Λ(vN )

∣∣∣ ≤ C1N
1/3.

With these two propositions, we obtain the following estimate for the maximum free energy.
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−ξ[λ]-directed

0

vN

(−1, rN2/3)

(−1,−1)
Ga−1(µ− λ)

Ga−1(λ)

Figure 4.2. The random walk set up in Proposition 4.10.

Proposition 4.10. For each ε ∈ (0, µ/2), there exist positive constants C1, C2, N0, c0 depending

on ε such that for each N ≥ N0 and 1 ≤ r ≤ c0N
2/3, we have

P

(
max

k∈[[0,3⌊N2/3⌋]]

{
logZ0,vN+(−k,k) − Λ(vN + (−k, k))

}
≥ C1rN

1/3
)
≤ e−C2r3/2 .

Proof. To start, let us separate the probability that we are trying to bound into two parts.

P

(
max

k∈[[0,3⌊N2/3⌋]]

{
logZ0,vN+(−k,k) − Λ(vN + (−k, k))

}
≥ C ′rN1/3

)

≤ P

(
max

k∈[[0,3⌊N2/3⌋]]

{
logZ0,vN+(−k,k) − logZ0,vN − [Λ(vN + (−k, k))− Λ(vN )]

}
≥ C′

2 rN1/3
)

(4.4)

+ P

(
logZ0,vN − Λ(vN ) ≥ C′

2 rN1/3
)

(4.5)

Using Proposition A.1, (4.5) ≤ e−Cr3/2 . To bound (4.4) we reformulate the problem into a bound
for running maxima of random walks. First, by Proposition 4.9, if C ′ ≥ 4C1 and r ≥ 1, then

(4.6) (4.4) ≤ P

(
max

k∈[[0,3⌊N2/3⌋]]

{
logZ0,vN+(−k,k)− logZ0,vN − [−kΨ0(µ− ρ)+ kΨ0(ρ)]

}
≥ C′

4 rN1/3
)
.

Next, we will show that the quantity logZ0,vN+(−k,k) − logZ0,vN can be compared to a random
walk with i.i.d. steps. To do this, we will place boundary weights on the south-west boundary of
(−1,−1) + Z

2
≥0 with parameters λ = ρ− q0

√
rN−1/3 and µ − λ. Here, q0 will be fix large so that

the situation from Figure 4.2 happens. Then the c from the statement of our theorem can be now
fixed sufficiently small so that λ stays between (0, µ). These choices depend only on ε.

Because vN is far away from (−1,−1) on the scale N2/3, by a similar argument to Corollary 4.2,
we have

(4.7) P(Qλ
(−1,−1),vN

{τ ≥ 1} ≥ 1/10) ≤ e−Cr3 .

Let us denote the complement of the event above as

A =
{
Qλ

(−1,−1),vN
{τ ≤ −1} ≥ 9/10

}
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In the calculation below, let Zλ,W
(−1,0),x denote the partition function for up-right paths from (−1, 0)

to x, which uses the same weights as Zλ,
(−1,−1),x does on the west boundary but uses the original

(bulk) weights on Z
2
≥0. For each i = 0, 1, . . . , 3⌊N2/3⌋ − 1, we have

elogZ0,vN+(−i−1,i+1)−logZ0,vN+(−i,i)

=
Z0,vN+(−i−1,i+1)

Z0,vN+(−i,i)

≤
Zλ,W
(−1,0),vN+(−i−1,i+1)

Zλ,west
(−1,0),vN+(−i,i)

=
Zλ,W
(−1,0),vN+(−i−1,i+1)

Zλ,W
(−1,0),vN+(−i,i)

·
Iλ[[(−1,−1),(−1,0)]]

Iλ[[(−1,−1),(−1,0)]]

by Proposition A.3

=
Zλ
(−1,−1),vN+(−i−1,i+1)(τ ≤ −1)

Zλ
(−1,−1),vN+(−i,i)(τ ≤ −1)

=
Qλ

(−1,−1),vN+(−i,i)(τ ≤ −1)

Qλ
(−1,−1),vN+(−i,i)(τ ≤ −1)

·
Zλ
(−1,−1),vN+(−i−1,i+1)

Zλ
(−1,−1),vN+(−i,i)

≤ 10

9

Zλ
(−1,−1),vN+(−i−1,i+1)

Zλ
(−1,−1),vN+(−i,i)

on the event A .

By Theorem 3.1, we can define

Sλ
k =

k−1∑

i=1

log
Zλ
(−1,−1),vN+(−i−1,i+1)

Zλ
(−1,−1),vN+(−i,i)

which is an i.i.d. random walk whose step has the same distribution as logG1 − logG2, where G1

and G2 are independent, respectively, Ga(µ − λ) and Ga(λ) random variables. And we have

(4.8) (4.6) ≤ P

(
max

k∈[[0,3⌊N2/3⌋]]

{
Sλ
k − [kΨ0(µ − ρ)− kΨ0(ρ)]

}
≥ C′

8 rN1/3
)
+ P(Ac),

where P(Ac) ≤ e−Cr3 . Note E[Sλ
k ] = kΨ0(µ − λ) − kΨ0(λ), and using Taylor expansion and the

fact that k ≤ 3N2/3, we have
∣∣∣E[Sλ

k ]− [kΨ0(µ− ρ)− kΨ0(ρ)]
∣∣∣ ≤ C

√
rN1/3.

Finally, taking C ′ ≥ 16C, the probability in (4.8) is bounded as follows

P

(
max

k∈[[0,3⌊N2/3⌋]]

{
Sλ
k − [kΨ0(µ− ρ)− kΨ0(ρ)]

}
≥ C′

8 rN1/3
)

≤ P

(
max

k∈[[0,3⌊N2/3⌋]]

{
Sλ
k − E[Sλ

k ]
}
≥ C′

16 rN
1/3

)
≤ e−C′′r3/2

where the last inequality follows from Theorem A.11. �

With this result, we are ready to prove Lemma 4.6. The proof uses arguments for a stationary
polymer with an antidiagonal boundary instead of a southwest boundary, which we will now define.
Let S(0,0) be the bi-infinite staircase paths (with alternating e1 and −e2 steps) through (0, 0)

(4.9) S(0,0) = {. . . , (−1, 1), (−1, 0), (0, 0), (0,−1), (1,−1), . . . }.
Next, we attach boundary weights along S(0,0), which are all independent. For each horizontal edge

to the left and right of (0, 0), we attach Ga(µ− ρ) and Ga−1(µ− ρ) weights. For each vertical edge
to the left and right of (0, 0), we attach Ga−1(ρ) and Ga(ρ) weights. For k ∈ Z, let Hk denote the
product of the edge weights from S(0,0) between (0, 0) and (k,−k).

The partition function for this polymer with antidiagonal boundary is defined by

Zρ,dia
0,x =

∑

k∈Z
Hk · Z̃(k,−k),x
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where Z̃ is the point-to-point partition but without using the weight at its starting point. The

corresponding polymer measure Qρ,dia
0,x is a probability measure on paths that start at 0, move

along the antidiagonal, taking either only e1 − e2 steps or only e2 − e1 steps, and then enter the
bulk by taking an e1 or e2 step, after which they only take steps in {ei, i = 1, 2}. For such a path
γ, we define τdia(γ) ∈ Z \ {0} as the signed number of steps taken before entering the bulk, where
the plus sign corresponds to e1 − e2 steps and the minus sign to e2 − e1 steps. For k ∈ Z, let us
define the partition function over paths with exit point k as

(4.10) Zρ,dia
0,x (τdia = k) = Hk · Z̃(k,−k),x.

Proof of Lemma 4.6. First, by Lemma A.9, it suffices to prove our estimate for the stationary
polymer with the antidiagonal boundary defined above. By a slight abuse of notation, let us denote
Zρ = Zρ,dia, and Qρ = Qρ,dia. There is no confusion since we will only be working with the
antidiagonal boundary in the remainder of this proof (instead of southwest boundary).

By a union bound, it suffices to prove that there exist positive constants C1, C2, s0, c0 such that
for each N ≥ N0 and s0 ≤ s ≤ c0N

1/3, we have

P

(
max

kN−2/3∈(s,s+1]
Qρ

0,vN
{τdia = k} ≥ e−C1s2N1/3

)
≤ e−C2s3 .

To show this, we rewrite the quenched probability above in terms of the free energies,

P

(
logZρ

0,vN
− max

kN−2/3∈(s,s+1]
logZρ

0,vN
{τdia = k} ≤ C ′s2N1/3

)

≤ P

([
logZρ

0,vN
− Λ(vN )

](4.11)

− max
kN−2/3∈(s,s+1]

[
logZρ

0,vN
{τdia = k} −

(
Λ(vN + (−k, k)) − kΨ0(µ− ρ) + kΨ0(ρ)

)]

≤ C ′s2N1/3 + max
kN−2/3∈(s,s+1]

(
Λ(vN + (−k, k)) − kΨ0(µ − ρ) + kΨ0(ρ)− Λ(vN )

))
.

Applying Proposition 4.8, if we fix C ′ in (4.11) sufficiently small, then, we may replace the right

side of the inequality in (4.11) by −c′s2N1/3 for some small positive constant c′.
Let {Zi}∞i=1 denote a sequence of i.i.d. random variables with the same distribution given by

− logG1 + logG2, where G1 and G2 are independent, respectively, Ga(µ − ρ) and Ga(ρ) random
variables. The Zi’s will play the role of the boundary weight at (i,−i), i ≥ 1. Now continuing with
a union bond, we have

(4.11) ≤ P
(
logZρ

0,vN
− Λ(vN ) ≤ −1

5c
′s2N1/3

)
(4.12)

+ P

(
max

kN−2/3∈(s,s+1]

( k∑

i=1

Zi + kΨ0(µ− ρ)− kΨ0(ρ)
)
≥ 1

5c
′s2N1/3

)
(4.13)

+ P

(
max

kN−2/3∈(s,s+1]

(
log Z̃(−k,k),vN − Λ(vN + (−k, k)

)
≥ 1

5c
′s2N1/3

)
,(4.14)

and (4.12) ≤ e−Cs3 by Proposition A.2, (4.13) ≤ e−Cs3 by Proposition A.12 and Theorem A.11,

(4.14) ≤ e−Cs3 by Proposition 4.10. Finally, we note that even the Z̃ free energy does not use

the first weight, but Proposition 4.10 (which was originally stated for Z instead of Z̃) still applies

since using a union bound we can get P (max0≤k≤3N2/3 log Y(−k,k) ≥ εs2N1/3) ≤ N2/3e−cs2N1/3 ≤
Ce−s2N1/3 ≤ C ′e−c′s3 . Also, we are applying Proposition 4.10 by first shifting the picture to move
the vN in (4.6) to the origin, flipping it about the antidiagonal, and then using, in the proposition,
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a vN that is not exactly the vN in the lemma, but rather vN−sN2/3(1,−1). This is allowed because
the proposition is stated uniformly for a whole interval of characteristic directions. �

4.1.2. Proof of Lemma 4.7. To prove Lemma 4.7, we tilt the probability measure to make the
event likely and pay for this with a bound on the Radon-Nikodym derivative. This argument was
introduced in [3] in the context of the asymmetric simple exclusion process and later adapted to
lower bound proofs of the longitudinal fluctuation exponent [34] and large exit time probability [35]
in the stationary last-passage percolation process. The key idea here is to perturb the parameter
ρ of the stationary polymer model to ρ± rN−1/3. This allows us to control the exit point on the
scale N2/3. The general idea of utilizing perturbations of order N−1/3 goes back to the seminal
paper [10]. We now give the details.

For v ∈ Z
2
≥0 let ∂NE[[0, v]] denote the north-east boundary of the rectangle [[0, v]], i.e. the sites

u ∈ [[0, v]] with u · e1 = v · e1 or u · e2 = v · e2.
Note that it is enough to prove the claimed bound with minx 6∈[[0,vN ]]Q

ρ
0,x{|τ | > rN1/3} replaced

by

min
x∈∂NE[[0,vN ]]

Qρ
0,x{|τ | > rN2/3},

since

min
x 6∈[[0,vN ]]

Qρ
0,x{|τ | > rN2/3}

= min
x 6∈[[0,vN ]]

∑

z∈∂NEJ0,vN K

Qρ
0,x{|τ | > rN2/3 and the path passes through z}

= min
x 6∈[[0,vN ]]

∑

z∈∂NE[[0,vN ]]

Qρ
0,z{|τ | > rN2/3}Qρ

0,x{path passes through z}

≥ min
x 6∈[[0,vN ]]

∑

z∈∂NE[[0,vN ]]

(
min

z′∈∂NEJ0,vN K
Qρ

0,z′{|τ | > rN2/3}
)
Qρ

0,x{passes through z}

= min
z′∈∂NE[[0,vN ]]

Qρ
0,z′{|τ | > rN2/3}.

Take c ∈ (0, ε
4µ2 ∧ 1

2 ], with ε as in the statement of the theorem. Below, we will choose an exact

value for c, which will still only depend on ε (and µ).
Given positive r and N , define the perturbed parameters λ = ρ+ rN−1/3 and η = ρ− rN−1/3.

The choice of c guarantees that if

(4.15) r ≤ c((µ − ρ)2 ∧ ρ2)N1/3,

then η < ρ < λ are all contained in [ε/2, µ − ε/2].

Given positive constants a < b, define a new environment P̃ by changing the original boundary

weights (whose distribution we will denote by P
ρ) on parts of the axes. Precisely, P̃ is the joint

distribution, under Pρ of

ω̃ke1 ∼ Ga−1(µ− λ) for k ∈ [[⌊arN2/3⌋+ 1, ⌊brN2/3⌋]]
ω̃ke2 ∼ Ga−1(η) for k ∈ [[⌊arN2/3⌋+ 1, ⌊brN2/3⌋]]
ω̃z ∼ ωz for all other z ∈ Z

2
≥0.

The ω̃ weights in the first two lines are all independent and independent of the ω weights. The
exact values of a and b will be determined further down and will only depend on ε > 0 (and c).
Essentially, they will be chosen so that, in the picture in the left panel of Figure 4.3, the two thick
dotted lines passing through vN and having slopes ξ[λ] and ξ[η] rest inside the highlighted regions
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vN

arN2/3 brN2/3

arN2/3

brN2/3

ξ[λ]

ξ[η]

(0, 0)

ξ[ρ]

arN2/3 brN2/3

wNL

(0, 0)

vN

D

ξ[ρ]

ξ[λ]

Figure 4.3. Left: Two dotted lines have slopes ξ[λ] and ξ[η]. Right: Decomposition of the north
and east boundaries of J0, vN K into regions L (light gray) and D (dark gray). A small perturbation
of vN to wN keeps the endpoint of the −ξ[λ] ray from wN in the interval [arN2/3, brN2/3].

on the axes. Then, under the new random environment P̃, we will show that there exists some
constant C1 such that for N and r large,

(4.16) P̃

(
min

x∈∂NE[[0,vN ]]
Q0,x{|τ | > arN2/3} ≥ 1− e−C1r2N1/3

)
≥ 1/2.

We finish the proof of the theorem, assuming this inequality. Denote the event inside (4.16) by S

and let f = dP̃
dPρ , where P

ρ is the marginal of P, i.e. a the probability measure with independent
ρ-boundary weights and bulk weights. By the Cauchy-Schwarz inequality, we have

1/2 ≤ P̃(S) = E
ρ[1Sf ] ≤ P

ρ(S)1/2Eρ[f2]1/2 ≤ P
ρ(S)1/2eCr3 ,

where the last bound for the second moment of f follows from Proposition A.10. This implies

(4.17) P

(
min

x∈∂NE[[0,vN ]]
Qρ

0,x{|τ | > arN2/3} ≥ 1− e−C1r2N1/3
)
≥ e−C2r3 .

To recover the statement of our theorem without the constant a in (4.17), just modify C1 and C2.
Next, we will show (4.16) which will finish the proof of the theorem. To do this, we will show

that for r and N large, we have

(4.18) P̃

(
max

x∈∂NE[[0,vN ]]
Q0,x{1 ≤ τ ≤ arN2/3} < e−C′r2N1/3

)
≥ 1− Cr−3.

This and the similar estimate for the event {−1 ≥ τ0,x ≥ −arN2/3} imply (4.16) when r is taken
large. Note that here we will pick the values of a < b and c ∈ (0, ε

4µ2 ∧ 1
2 ] only for the bound (4.18).

When applying the same argument to the other case, we obtain another set of constants a′ < b′

and c′ ∈ (0, ε
4µ2 ∧ 1

2 ] which are possibly different. Then, we replace a and a′ by a ∧ a′, b and b′ by

b ∨ b′, and c and c′ by c ∧ c′.
Recall the perturbed parameter λ = ρ+ rN−1/3. If c ∈ (0, ε

4µ2 ∧ 1
2 ] and r and N satisfy condition

(4.15), then λ satisfies

(4.19) ε/2 < ρ < λ ≤ ρ+ c((µ − ρ)2 ∧ ρ2) ≤ µ− ε/2.

We estimate the difference of the reciprocal slopes (i.e. change of x
change of y ) of the vectors ξ[λ] and ξ[ρ]. By

definition
ξ[λ] · e1
ξ[λ] · e2

− ξ[ρ] · e1
ξ[ρ] · e2

=
Ψ1(ρ+ rN−1/3)

Ψ1(µ− ρ− rN−1/3)
− Ψ1(ρ)

Ψ1(µ − ρ)
.
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ξ[η]

ξ[λ]

vNuN ξ[ρ]

ξ[λ]

(0, 0)

vN
wN

arN2/3 brN2/3
(0, 0)

Figure 4.4. Left: The dotted lines have characteristic slope ξ[λ]. Consequently,
with high probability, the sampled λ polymer from 0 to wN exits through the interval
[[arN2/3e1, brN

2/3e1]]. Right: Illustration of estimate (4.24).

Since Ψ1 is smooth and takes positive values on compact intervals strictly contained inside (0, µ),

we can Taylor expand the quotient g(z) = Ψ1(ρ+z)
Ψ1(µ−ρ−z) around z = 0. This gives

(4.20)
∣∣∣
(ξ[λ] · e1
ξ[λ] · e2

− ξ[ρ] · e1
ξ[ρ] · e2

)
− (−k1rN

−1/3)
∣∣∣ ≤ k2r

2N−2/3,

for all ρ and λ such that ε/2 < ρ < λ < µ− ε/2. Here, k1 and k2 are positives constant depending
only on ρ, µ, and ε. Take c ∈ (0, ε

4µ2 ∧ 1
2 ] to satisfy

(4.21) c ≤ 1

100

k1
k2

.

Then, for r and N satisfying (4.15),

(4.22) k2r
2N−2/3 <

1

10
k1rN

−1/3.

And from (4.20) and (4.22) above, we obtain

(4.23) − 2k1rN
−1/3 ≤ ξ[λ] · e1

ξ[λ] · e2
− ξ[ρ] · e1

ξ[ρ] · e2
≤ −1

2k1rN
−1/3.

Now, start two rays at (0, 0) in the directions ξ[ρ] and ξ[λ] and let uN be the lattice point closest
to the ξ[λ]-directed ray such that uN · e2 = vN · e2. (See the right panel of Figure 4.4.) Then (4.23)
implies that there exist two fixed positive constants l1, l2 depending only on ρ, µ, and ε such that

(4.24) l1rN
2/3 ≤ vN · e1 − uN · e1 ≤ l2rN

2/3.

For now, we define

a = 1
10 l1 and b = 10l2,

and note that the above value of a will be lowered if necessary, later in the argument.
Fix a positive constant q ≤ 1

10 l1, let us define

(4.25) wN = vN − ⌊qrN2/3⌋e1.
As shown on the right of Figure 4.3, the point wN splits ∂NE[[0, vN ]] into the dark region D and the
light region L. We will first work with the dark region and show

(4.26) P̃

(
max
x∈D

Q0,x{1 ≤ τ ≤ arN2/3} ≤ e−C′r2N1/3
)
≥ 1− Cr−3.
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Let us look at another polymer measure R0,x which is restricted to paths that start with an e1
step from the origin, then

R0,x{1 ≤ τ ≤ arN2/3} =
Z0,x(1 ≤ τ ≤ ⌊arN2/3⌋)

Z0,x(1 ≤ τ)
.

From the following three facts,

• Q0,x{1 ≤ τ ≤ arN2/3} ≤ R0,x{1 ≤ τ ≤ arN2/3},
• R0,x{1 ≤ τ ≤ arN2/3}+R0,x{τ > arN2/3} = 1, and

• by Lemma A.4, R0,wN
{τ > arN2/3} ≤ R0,x{τ > arN2/3} for each x ∈ D,

we have

Q0,x{1 ≤ τ ≤ arN2/3} ≤ R0,wN
{1 ≤ τ ≤ arN2/3} for each x ∈ D.

Thus in order to show (4.26), it suffices to show

(4.27) P̃

(
R0,wN

{1 ≤ τ ≤ arN2/3} ≤ e−C′r2N1/3
)
≥ 1− Cr−3.

To show (4.27), we will find a high probability event

A = A1 ∩A2 ∩A3 ∩A4

with P̃(A) ≥ 1− Cr−3 such that on A,

(4.28) Z0,wN
(⌊arN2/3⌋+ 1 ≤ τ ≤ ⌊brN2/3⌋) ≥ eC

′r2N1/3
Z0,wN

(1 ≤ τ ≤ ⌊arN2/3⌋),
as this implies

R0,wN
{τ > arN2/3} ≥ Z0,wN

(⌊arN2/3⌋+ 1 ≤ τ ≤ ⌊brN2/3⌋)
Z0,wN

(1 ≤ τ)

≥ eC
′r2N1/3 Z0,wN

(1 ≤ τ ≤ ⌊arN2/3⌋)
Z0,wN

(1 ≤ τ)

= eC
′r2N1/3

R0,wN
{1 ≤ τ ≤ arN2/3},

which together with

R0,wN
{1 ≤ τ ≤ arN2/3}+R0,wN

{τ > arN2/3} = 1

gives

R0,wN
{1 ≤ τ ≤ arN2/3} ≤ 1

1 + eC′r2N1/3
≤ e−C′r2N1/3

on A.

Next, we define A1, A2, A3 and A4 and their intersection gives A. Let Zλ and Zρ denote the
partition functions with the λ- and ρ-boundary weights, and where all boundary weights are

independent. Then, the e1-boundary weights from P̃ can be seen as a mixture of these λ- and

ρ- weights. The desired inequality (4.28) (under P̃) can be rewritten as

(Zλ
0,wN

Zρ
0,wN

⌊arN2/3⌋∏

i=1

Iρ(i,0)

Iλ(i,0)

)Zλ
0,wN

(⌊arN2/3⌋+ 1 ≤ τ ≤ ⌊brN2/3⌋)
Zλ
0,wN

≥ eC
′r2N1/3 Z

ρ
0,wN

(1 ≤ τ ≤ ⌊arN2/3⌋)
Zρ
0,wN

,

which is implied by the inequality

(Zλ
0,wN

Zρ
0,wN

arN2/3∏

i=1

Iρ(i,0)

Iλ
(i,0)

)Zλ
0,wN

(⌊arN2/3⌋+ 1 ≤ τ ≤ ⌊brN2/3⌋)
Zλ
0,wN

≥ eC
′r2N1/3

.
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Because wN is a point of order rN2/3 units away from uN (recall uN is along the ξ[λ]-characteristic

ray defined above (4.24)), there is an event A1 with P(A1) ≥ 1 − e−Cr3 such that the λ quenched
probability appearing above (i.e. the last ratio of partition functions on the left-hand side) satisfies

Zλ
0,wN

(⌊arN2/3⌋+ 1 ≤ τ ≤ ⌊brN2/3⌋)
Zλ
0,wN

≥ 1/2 on the event A1.

This is proved as Lemma 4.11 at the end of this section, and the idea is illustrated on the right of
Figure 4.4.

Once on the event A1, (4.28) would follow from having

(4.29)
Zλ
0,wN

Zρ
0,wN

arN2/3∏

i=1

Iρ(i,0)

Iλ(i,0)
≥ eC

′r2N1/3
,

with possibly a different C ′. This inequality should hold with a high probability if a > 0 is taken
sufficiently small. We will work with the logarithmic version of (4.29)

logZλ
0,wN

− logZρ
0,wN

−
( arN2/3∑

i=1

log(Iλ(i,0))− log(Iρ(i,0))
)
.

We start by showing that

(4.30) E[logZλ
0,wN

]− E[logZρ
0,wN

] ≥ c1r
2N1/3

for some ε-dependent constant c1, and this constant c1 will be used for the rest of the proof. First,
note the exact values of the expectations are

E[logZλ
0,wN

] = Ψ0(µ − λ)(⌊Ψ1(ρ)N⌋ − ⌊qrN2/3⌋) + Ψ0(λ)⌊Ψ1(µ− ρ)N⌋
E[logZρ

0,wN
] = Ψ0(µ − ρ)(⌊Ψ1(ρ)N⌋ − ⌊qrN2/3⌋) + Ψ0(ρ)⌊Ψ1(µ− ρ)N⌋.

Using a Taylor expansion,

Ψ0(µ − λ) = Ψ0(µ − ρ) + Ψ1(µ − ρ)(−rN−1/3) + 1
2Ψ

′
1(µ− ρ)(−rN−1/3)2 +R1,

Ψ0(λ) = Ψ0(ρ) + Ψ1(ρ)(rN
−1/3) + 1

2Ψ
′
1(ρ)(rN

−1/3)2 +R2.

Due to condition (4.19) we have |Ri| ≤ C(rN−1/3)3 for both i ∈ {1, 2} and with an ε-dependent
constant C > 0. Plugging these two formulas back into the right side of (4.30), the linear terms
from the expansions cancel out. By further lowering the value of c from (4.15) if necessary, R1 and
R2 can be absorbed into the (rN−1/3)2 terms, and there exist two positive constants D1 and D2

depending only on ε, µ and c such that

E[logZλ
0,wN

]− E[logZρ
0,wN

] ≥ D1r
2N1/3 −D2qr

2N1/3,

where the parameter q is from (4.25). By fixing q sufficiently small, we obtain the desired estimate
(4.30).

Next, with the constant c1 from (4.30), we define the two events

A2 =
{
logZλ

0,wN
≥ E[logZρ

0,wN
] +

c1
2
r2N1/3

}
,

A3 =
{
logZρ

0,wN
≤ E[logZρ

0,wN
] +

c1
10

r2N1/3
}
,

and we will show P(A2) ∧ P(A3) ≥ 1− Cr−3.
First, we work with P(A2). For θ, x > 0, let us define L(θ, x) as in (3.17) of [33] ,

L(θ, x) =

∫ x

0
(Ψ0(θ)− log y)x−θyθ−1ex−ydy.
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In the next calculation, the first equality is the statement in Theorem 3.7 from [33],

Var[logZρ
0,wN

] = wN · e2Ψ1(ρ)− wN · e1Ψ1(µ− ρ) + 2E
[
E

Qρ
0,wN

[ 0∨τ∑

i=1

L(µ− ρ, Iρie1)
]]

≤ C
(
rN2/3 + E

[
E

Qρ
0,wN

[
τ1{τ≥1}

]]
+ 1

)
(by Lemma 4.2 of [33])

≤ C
(
rN2/3 + E

[
E

Qρ
0,vN

[
τ1{τ≥1}

]]
+ 1

)
(by Lemma A.5)

≤ CrN2/3 +C ′N2/3 (by (4.32) of [33]).(4.31)

Now, we upper bound the compliment

P(Ac
2) = P

{
logZλ

0,wN
< E[logZρ

0,wN
] +

c1
2
r2N1/3

}

≤ P

{
logZλ

0,wN
< E[logZλ

0,wN
]− c1

2
r2N1/3

}
(by (4.30))

≤ 4

c21r
4N2/3

Var[logZλ
0,wN

]

≤ 4

c21r
4N2/3

(Var[logZρ
0,wN

] + c3rN
2/3) (by Lemma 4.1 of [33])

≤ Cr−3 (by (4.31)).

The fact P(A3) ≥ 1− Cr3 comes from the Markov inequality

P(Ac
3) = P

{
logZρ

0,wN
> E[logZρ

0,wN
] +

c1
10

r2N1/3
}
≤ 100

c21r
4N2/3

Var[logZρ
0,wN

] ≤ Cr−3.

Next, we define another high probability event A4 by

A4 =
{ arN2/3∑

i=1

(
log Iλ(i,0) − log Iρ(i,0)

)
≤ c1

10
r2N1/3

}
.

If a is chosen sufficiently small compared to c1, then by Proposition A.12 and Theorem A.11,

P(A4) ≥ 1− e−Cr3 .

Finally, on the event
A1 ∩A2 ∩A3 ∩A4,

our desired estimate (4.29) (after taking logarithm) will hold

logZλ
0,wN

− logZρ
0,wN

−
( arN2/3∑

i=1

log Iλ(i,0) − log Iρ(i,0)

)
≥ c1

10
r2N1/3 ≥ C ′r2N1/3.

This finishes the argument for the dark region.
For the light region,

P̃

(
max
x∈L

Q0,x{1 ≤ τ ≤ arN2/3} ≤ e−C′r2N1/3
)

≥ P

(
max
x∈L

Qρ
0,x{1 ≤ τ ≤ arN2/3} ≤ e−C′r2N1/3

)

≥ P

(
max
x∈L

Qρ
0,x{1 ≤ τ} ≤ e−C′r2N1/3

)

= P

(
Qρ

0,wN
{1 ≤ τ} ≤ e−C′r2N1/3

)
(by Lemma A.5)

= 1− P

(
Qρ

0,wN
{1 ≤ τ} > e−C′r2N1/3

)
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≥ 1− e−Cr3 (by Corollary 4.2).

The proof of Lemma 4.7 is complete. �

Lemma 4.11 below is an auxiliary estimate for the proof of Lemma 4.7. Recall that λ = ρ+rN−1/3

and satisfies the condition (4.19). As shown on the right of Figure 4.3, uN and vN on the north
boundary satisfies (4.24). Using the parameters l1 and l2 in (4.24), we fix

(4.32) a ≤ 1
10 l1, b ≥ 10l2, q ≤ 1

10 l1.

Recall wN = vN−qrN2/3e1 is a point on the north boundary of [[0, vN ]]. Lemma 4.11 shows that for
small enough a > 0 and large enough b > 0, the sampled polymer path between the origin and wN

exits the e1-axis through the interval [[arN2/3e1, brN
2/3e1]] with high probability under Pλ. This is

illustrated on the left of Figure 4.4.

Lemma 4.11. Fix ρ ∈ (0, µ) and a, b, q as in (4.32). There exist positive constants C1, C2, C3, r0,

and N0 that depend only on ρ such that, for any r > r0, N ≥ N0 with λ = ρ + rN−1/3 satisfying
(4.19), we have

P

(
Qλ

0,wN

{
arN2/3 ≤ τ ≤ brN2/3

}
≤ 1− e−C1r2N1/3

)
≤ e−C2r3

and

E

[
Qλ

0,wN

{
arN2/3 ≤ τ ≤ brN2/3

}]
≥ 1− e−C3r3 .

Proof. First, note we have the following horizontal distance bound between wN and uN , where uN
is defined previously above (4.24)

1
2 l1rN

2/3 ≤ wN · e1 − uN · e1 ≤ l2rN
2/3.

Let zN be the integer point closest to where the −ξ[λ]-directed ray starting at wN crosses the
e1-axis (illustrated as the white dot in Figure 4.4), then the distance between the origin and zN
satisfies the same bound

(4.33) 1
2 l1rN

2/3 ≤ zN · e1 ≤ l2rN
2/3.

In the next part, we will show that sampled polymer path between the origin and wN will exist
on the e1-axis near zN . More precisely, we show for r > r0 and N ≥ N0 such that (4.19) holds,
then

P
(
Qλ

0,wN
{τ < arN2/3

)
≥ e−Cr2N1/3) ≤ e−C′r3 ,(4.34)

P
(
Qλ

0,wN
{τ > brN2/3

)
≥ e−Cr2N1/3) ≤ e−C′r3 .(4.35)

First, we show (4.35). In the estimate below, the first inequality follows from Lemma A.5; the
next equality comes from Moving the base from the origin to zN as a nested polymer; the final
inequality comes from applying Theorem 4.1 to the nested polymer where the starting and end
points are in the ξ[λ] direction),

P
(
Qλ

0,wN
{τ > brN2/3} ≥ e−C1r2N1/3)

≤ P
(
Qλ

0,vN{τ > brN2/3} ≥ e−C1r2N1/3)

= P
(
Qλ

zN ,vN
{τ > brN2/3 − zN · e1} ≥ e−C1r2N1/3)

= P
(
Qλ

zN ,vN
{τ > b

2rN
2/3} ≥ e−C1r2N1/3)

≤ e−C2r3 .

This proves (4.35).
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(0, 0)

(arN2/3,−h)

wN

brN2/3zN

Figure 4.5. The vertex zN is shown as the white dot. Applying Lemma
A.8 in the proof of Lemma 4.11 to assert that Qλ

0,wN
{τ ≤ arN2/3} =

Qλ
(⌊arN2/3⌋,−h),wN

{τ < −h}, which is small.

To prove (4.34) choose h so that (⌊arN2/3⌋,−h) is the closest integer point to the (−ξ[λ])-directed
ray starting at wN (see the right of Figure 4.5). Lemma A.8 gives

P
(
Qλ

0,wN
{τ ≤ arN2/3} ≥ e−C1r2N1/3)

= P
(
Qλ

⌊arN2/3⌋,−h),wN
{τ < −h} ≥ e−C1r2N1/3)

.

Theorem 4.1 states that it is unlikely for the sampled polymer paths from Q(⌊arN2/3⌋,−h),wN
to exit

late in the scale N2/3 from the y-axis because the direction is the characteristic one ξ[λ]. Thus it
suffices to show h is bounded below by some k(ρ)rN2/3.

Using the lower bound from (4.33), the distance between zN and ⌊arN2/3⌋e1 is bounded below

by 4arN2/3. The slope of the line going through wN and zN is roughly ξ[λ], because recall zN is
defined to be the closes integer point to the crossing point between the −ξ[λ]-directed ray from wN

and the e1-axis. Thus its slope is contained inside a compact interval strictly inside (0, µ). Thus,
we have

(4.36) h ≥ k(ρ)rN2/3

which finishes the proof. �

4.2. Proof of Theorem 4.3. First, note that instead of

max
x 6∈[[0,vN ]]

Qρ
0,x{|τ | ≤ δN2/3},

it suffices to work with

max
x∈∂NE[[0,vN ]]

Qρ
0,x{|τ | ≤ δN2/3}
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qrN2/3

w−
N

w+
N

(0, 0)

vN

ξ[ρ]

D

L+

L−

Figure 4.6. The north and east boundaries of J0, vN K are decomposed into L± (light
gray) andD (dark gray). The parameter q is less than some small constant that depends
only on ρ.

since

max
x 6∈[[0,vN ]]

Qρ
0,x{|τ | ≤ δN2/3}

= max
x 6∈[[0,vN ]]

∑

z∈∂NEJ0,vN K

Qρ
0,x{|τ | ≤ δN2/3 and passes through z}

= max
x 6∈[[0,vN ]]

∑

z∈∂NE[[0,vN ]]

Qρ
0,z{|τ | ≤ δN2/3}Q0,x{passes through z}

≤ max
x 6∈[[0,vN ]]

∑

z∈∂NE[[0,vN ]]

(
max

z′∈∂NEJ0,vN K
Qρ

0,z′{|τ | ≤ δN2/3}
)
Qρ

0,x{passes through z}

= max
z′∈∂NE[[0,vN ]]

Qρ
0,z′{|τ | ≤ δN2/3}.

(4.37)

Decompose the northeast boundary ∂NEJ0, vN K into three parts D and L± as in Figure 4.6, with

w+
N = vN − ⌊qrN2/3⌋e1 and w−

N = vN − ⌊qrN2/3⌋e2
where q ≤ 1 is a small positive constant to be chosen later above (4.41), and

r = | log δ|.
The dark gray set D comprises the vertices between w+

N and w−
N on the northeast corner of the

boundary of the rectangle J0, vN K. Recall that we assume in the theorem that

(4.38) N > δ−3/2.

This is natural since otherwise the probability in the statement of the theorem would be zero.
Introduce the perturbed parameters

(4.39) λ = ρ+ rN−1/3 and η = ρ− rN−1/3.

We require the following bounds to hold for these two parameters

(4.40) ρ < λ ≤ ρ+
ρ ∧ (µ − ρ)

2
< µ and 0 < ρ− ρ ∧ (µ− ρ)

2
≤ η < ρ.

The point of the choice ρ± ρ∧(µ−ρ)
2 is only to bound λ and η from above and below by two constants

strictly inside (0, µ) and only depending on ε. The above two requirements can be rewritten as

N ≥
( 2r

ρ ∧ (µ− ρ)

)3
.
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ξ[η]

ξ[λ]
ξ[ρ]

D

w+
N

vN

w−
N

δN2/3 αrN2/3−δN2/3−αrN2/3−rN2/3 0

Figure 4.7. Illustration of the set D, the nested polymer, and three characteristic
directions. The parameters q = α are less than some small constant that depends only
on ρ, δ is a small positive constant in (0, δ0), and r is a large constant with r = | log δ|.

With (4.38), this bound on N is automatically satisfied as soon as δ−3/2 ≥
(

2r
ρ∧(µ−ρ)

)3
. Since

r = | log δ|, we can ensure this by lowering the value of δ0.
Now we show that if one takes q and α small enough, then the ξ[η]- and ξ[λ]-directed rays started

at the points ±⌊αrN2/3⌋e1 will avoid D as shown in Figure 4.7. To this end, recall ξ[ρ] defined in

2.3. Let uN be the point where the ξ[λ]-ray starting from ⌊αrN2/3⌋e1 crosses the north boundary
of [[0, vN ]]. Then the e1-coordinates of w

+
N and uN can be lower bounded by

( Ψ1(λ)

Ψ1(µ− λ)
· Ψ1(µ− ρ)

Ψ1(ρ) + Ψ1(µ − ρ)
− Ψ1(ρ)

Ψ1(ρ) + Ψ1(µ− ρ)

)
N − αrN2/3 − qrN2/3 − 5

=
Ψ1(µ − ρ)

Ψ1(ρ) + Ψ1(µ− ρ)
·
( Ψ1(λ)

Ψ1(µ − λ)
− Ψ1(ρ)

Ψ1(µ− ρ)

)
N − αrN2/3 − qrN2/3 − 5

≥ C1(ε)rN
2/3 − αrN2/3 − qrN2/3 − 5,(4.41)

where the inequality comes from Taylor’s theorem since Ψ1 is a smooth function on a compact
interval inside (0, µ) depending on ε. Here, C1(ε) is a finite positive constant that only depends on
ε. The inequality holds provided rN−1/3 ≤ c(ε) for some positive c(ε) that only depends on ε and
this can be guaranteed to hold by lowering the threshold δ0 since

rN−1/3 ≤ | log δ|δ1/2 ≤ δ
1/3
0 .

Now choosing

(4.42) q = α = C1(ε)/10,

we obtain

(4.43) (4.41) ≥ C2(ε)rN
2/3,

and this gives us the desired picture for ξ[λ] shown in Figure 4.7. The argument for the ξ[η]-directed
ray is similar. For what follows we also want to guarantee that δ < αr = α| log δ|. This can be done
by decreasing the value of δ0 after having fixed α. This completes the setup described in Figure
4.7.

Consider the set D shown in Figure 4.6 in dark gray and also in Figure 4.7. Place the stationary
polymer model on 0 + Z

2
≥0 as a nested polymer inside a larger stationary polymer model on the
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quadrant −⌊rN2/3⌋e1+Z
2
≥0. From the relation between two nested polymers given by Lemma A.7,

we have

P

(
max
z∈D

Qρ
0,z{1 ≤ τ ≤ δN2/3} ≥ e−| log δ|2

√
δN1/3

)
(4.44)

≤ P

(
max
z∈D

Qρ

−⌊rN2/3⌋e1,z{⌊rN
2/3⌋+ 1 ≤ τ ≤ ⌊rN2/3⌋+ δN2/3} ≥ e−| log δ|2

√
δN1/3

)

≤ P

(
max
z∈D

Zρ

−⌊rN2/3⌋e1,z(⌊rN
2/3⌋+ 1 ≤ τ ≤ ⌊rN2/3⌋+ δN2/3)

Zρ

−⌊rN2/3⌋e1,z(⌊rN
2/3⌋ − αrN2/3 + 1 ≤ τ ≤ ⌊rN2/3⌋+ αrN2/3)

≥ e−| log δ|2
√
δN1/3

)

= P

(
min
z∈D

{
logZρ

−⌊rN2/3⌋e1,z(⌊rN
2/3⌋ − αN2/3 + 1 ≤ τ ≤ ⌊rN2/3⌋+ αN2/3)

− logZρ

−⌊rN2/3⌋e1,z(⌊rN
2/3⌋+ 1 ≤ τ ≤ ⌊rN2/3⌋+ δN2/3)

}
≤ | log δ|2

√
δN1/3

)

≤ P

(
min
z∈D

{
max

i∈[[−αN2/3+1,αN2/3]]
logZρ

−⌊rN2/3⌋e1,z(τ = ⌊rN2/3⌋+ i)

− logZρ

−⌊rN2/3⌋e1,z(τ = ⌊rN2/3⌋) + logZρ

−⌊rN2/3⌋e1,z(τ = ⌊rN2/3⌋)

− max
k∈[[1,δN2/3]]

logZρ

−⌊rN2/3⌋e1,z(τ = ⌊rN2/3⌋+ k)
}
≤ 2| log δ|2

√
δN1/3

)
.

≤ P

(
min
z∈D

{
max

i∈[[−αN2/3+1,αN2/3]]
logZρ

−⌊rN2/3⌋e1,z(τ = ⌊rN2/3⌋+ i)

− logZρ

−⌊rN2/3⌋e1,z(τ = ⌊rN2/3⌋)
}
≤ 3| log δ|2

√
δN1/3

)
(4.45)

+ P

(
max
z∈D

{
max

k∈[[1,δN2/3]]
logZρ

−⌊rN2/3⌋e1,z(τ = ⌊rN2/3⌋+ k)

− logZρ

−⌊rN2/3⌋e1,z(τ = ⌊rN2/3⌋)
}
≥ | log δ|2

√
δN1/3

)
.

Before we continue our bound, let us simplify our notation. For z ∈ D and i ∈ [[−⌊αrN2/3⌋ +
1, ⌊αrN2/3⌋]], define horizontal increments

Ĩz(i,1) =
Z(i−1,1),z

Z(i,1),z

which live on the horizontal line y = 1. With these increments, define a two-sided multiplicative
walk {Mz

n}n∈[[−⌊αrN2/3⌋+1,⌊αrN2/3⌋]] by setting Mz
0 = 1 and

(4.46) Mz
n/M

z
n−1 = Iρ(n,0)/Ĩ

z
(n,1)

where Iρ(n,0) are the boundary weights from the stationary polymer in the quadrant −⌊rN2/3⌋e1 +
Z
2
≥0. Note that n = 0 corresponds to τ = ⌊rN2/3⌋, which is exit at the origin. Then, (4.45) can be

upper bounded as

(4.45) = P

(
min
z∈D

max
n∈[[−αrN2/3+1,αrN2/3]]

logMz
n ≤ 3| log δ|2

√
δN1/3

)
(4.47)

+ P

(
max
z∈D

max
n∈[[1,δN2/3]]

logMz
n ≥ | log δ|2

√
δN1/3

)
(4.48)

≤ P

({
min
z∈D

max
n∈[[1,⌊ 1

2
αrN2/3⌋]]

logMz
n ≤ 3| log δ|2

√
δN1/3

}

⋂{
min
z∈D

max
n∈[[−⌊ 1

2
αrN2/3⌋,0]]

logMz
n ≤ 3| log δ|2

√
δN1/3

})(4.49)
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Ĩz, Iλ,NE and Iη,NE

αrN2/3

Iρ

−αrN2/3

Iλ,NE and Iη,NE

Jλ,NE and Jη,NE

−rN2/3 0

vN + e1 + e2

w+
N

w−
N

Figure 4.8. Setup for the stationary polymer with ratios of partition functions.

+ P

(
max
z∈D

max
n∈[[1,⌊δN2/3⌋]]

logMz
n ≥ | log δ|2

√
δN1/3

)
.(4.50)

For any z ∈ D, Lemma A.3 gives

Mz
n ≥ M

w+
N

n for n ≥ 1 and Mz
n ≥ M

w−
N

n for n ≤ 0.

Therefore, we may bound (4.49) and (4.50) by

(4.49) + (4.50) ≤ P

({
max

n∈[[1,⌊ 1
2
αrN2/3⌋]]

logM
w+

N
n ≤ 3| log δ|2

√
δN1/3

}
(4.51)

⋂{
max

n∈[[−⌊ 1
2
αrN2/3⌋,0]]

logM
w−

N
n ≤ 3| log δ|2

√
δN1/3

})

+ P

(
max

n∈[[1,⌊δN2/3⌋]]
logM

w−
N

n ≥ | log δ|2
√
δN1/3

)
(4.52)

Next, to each edge on the north and east sides of the rectangle [[−⌊rN2/3⌋e1, vN + e1 + e2K,
we attach both λ- and η-edge weights, coupled as in Theorem B.4 from [9]. We denote these

weights by Iλ,NE
vn+ke1+e2

, Jλ,NE
vn+e1+ke2

, Iη,NE
vn+ke1+e2

, and Jη,NE
vn+e1+ke2

, k ≤ 1. Together with the bulk

weights in [[−⌊rN2/3⌋e1 + e2, vN K, these define stationary polymers with northeast boundary. Let

us denote their partition functions by Zλ,NE
x,vN+e1+e2 and Zη,NE

x,vN+e1+e2 for x ∈ J(−⌊rN2/3⌋, 1), vN K.

The corresponding polymer measures are denoted by Qλ,NE
x,vN+e1+e2 and Qη,NE

x,vN+e1+e2 , respectively.
This is depicted in Figure 4.8.

On the horizontal line y = 1, let us also define for i ∈ [[−⌊αrN2/3⌋+ 1, ⌊αrN2/3⌋]]

(4.53) Iλ,NE
(i,1) =

Zλ,NE
(i−1,1),vN+e1+e2

Zλ,NE
(i,1),vN+e1+e2

and Iη,NE
(i,1) =

Zη,NE
(i−1,1),vN+e1+e2

Zη,NE
(i,1),vN+e1+e2

.

Lemma 4.12. There exists a positive constant C, depending only on ε, such that for α, r, N as
chosen above, and for any integers a, b ∈ [[−⌊αrN2/3⌋+ 1, ⌊αrN2/3⌋]], the event

(4.54) A =
{

1
2

b∏

i=a

Iη,NE
(i,1) ≤

b∏

i=a

Ĩ
w−

N

(i,1) ≤
b∏

i=a

Ĩ
w+

N

(i,1) ≤ 2

b∏

i=a

Iλ,NE
(i,1)

}

satisfies P(Ac) ≤ e−Cr3 .
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Proof. Due to the relative positions of w±
N and z, Lemma A.3 implies the middle inequality in the

definition of A. We will prove the desired bound for the inequality on the right, i.e.

(4.55) P

( b∏

i=a

Ĩ
w+

N
i ≤ 2

b∏

i=a

Iλ,NE
i

)
≥ 1− e−Cr3 .

The argument for the inequality on the left is similar and will be omitted.
Let τNE be defined similarly to τ , but acting on down-left paths. Namely, it gives the number of

steps the path takes before making its first corner. We will again use the convention that τNE > 0
if the first step of the path is −e1 and τNE < 0 if the first step is −e2.

Our estimate essentially follows from the following two facts. The first fact is that the random
variable

Qλ,NE

⌊αrN2/3⌋e1+e2,vN+e1+e2
{τNE ≥ qrN2/3}

is, almost surely, less than or equal to

Qλ,NE
(a,1),vN+e1+e2

{τNE ≥ qrN2/3} ∀a ∈ [[−⌊αrN2/3⌋+ 1, ⌊αrN2/3⌋]].

This follows directly from Lemma A.5, although note that here we exit from the NE boundary
instead of the SW boundary. The second fact is that there exist positive constants C1 and C2 such
that

(4.56) P

(
Qλ,NE

⌊αrN2/3⌋e1+e2,vN+e1+e2
{τNE ≥ qrN2/3} ≥ 1− e−C1r2N1/3

)
≥ 1− e−C2r3 .

To see this, observe that

P

(
Qλ,NE

⌊αrN2/3⌋e1+e2,vN+e1+e2
{τNE ≤ qrN2/3} ≥ e−C1r2N1/3

)
≤ e−C2r3

is the same as (4.34), except here we rotate the picture by 180◦. The key idea is illustrated in
Figure 4.9. Note the similarities between Figures 4.5 and 4.9. From Figure 4.9, the calculation
zN · e2 − vN · e2 − 1 ≥ CrN2/3 is omitted since it is similar to (4.36).

Let Zλ,N

(b,1),w+
N+e2

denote the partition function for up-right paths from (b, 1) to w+
N+e2, which uses

the same weights as Zλ,NE

(b,1),w+
N+e2

does on the north boundary but uses the original (bulk) weights

on w+
N + Z

2
≤0.

On the high probability event

(4.57)
{
Qλ,NE

⌊αrN2/3⌋e1+e2,vN+e1+e2
{τNE ≥ qrN2/3} ≥ 1− e−C1r2N1/3

}
,

we have

b∏

i=a+1

Ĩ
w+

N

(i,1) =
Z(a,1),w+

N

Z(b,1),w+
N

≤
ZN
(a,1),w+

N+e2

ZN
(b,1),w+

N+e2

(By Lemma A.3)

=
ZN
(a,1),w+

N+e2

∏⌊qrN2/3⌋+1
i=1 Iλ,NE

vN+e1+e2−ie1

ZN
(b,1),w+

N+e2

∏⌊qrN2/3⌋+1
i=1 Iλ,NE

vN+e1+e2−ie1

=
ZNE
(a,1),vN+e1+e2

(τNE ≥ ⌊qrN2/3⌋)
ZNE
(b,1),vN+e1+e2

(τNE ≥ ⌊qrN2/3⌋)
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ξ[λ]

bN = v+N + e1 + e2

w+
N + e2

aN = (αrN2/3, 1)

zN

Figure 4.9. Illustration of (4.56). By Lemma A.8, Qλ,NE
aN ,bN

(τNE ≤ qrN2/3) =

Qλ,NE
aN ,zN (τ

NE < −(zN ·e2−vN ·e2−1)), and this is unlikely because zN ·e2−vN ·e2−1 ≥
CrN2/3.

=
QNE

(a,1),vN+e1+e2
(τNE ≥ ⌊qrN2/3⌋)

QNE
(b,1),vN+e1+e2

(τNE ≥ ⌊qrN2/3⌋)

b∏

i=a+1

Iλ,NE
(i,1)

≤ 1

1− e−C1r2N1/3

b∏

i=a+1

Iλ,NE
(i,1) (on the event (4.57)). �

With the new horizontal increments Iλ,NE and Iη,NE, define two more two-sided multiplicative
random walks Mλ

n and Mη
n with Mλ

0 = Mη
0 = 1,

Mλ
n/M

λ
n−1 = Iρ(n,0)/I

λ,NE
(n,1) , and Mη

n/M
η
n−1 = Iρ(n,0)/I

η,NE
(n,1) .

On the event A from (4.54), we get

1

2
Mλ

n ≤ M
w+

N
n ≤ 2Mη

n for n ≥ 1 and
1

2
Mη

n ≤ M
w−

N
n ≤ 2Mλ

n for n ≤ 0.(4.58)

Now we can bound

P(event in (4.51) ∩A) ≤ P

({
max

n∈[[1,⌊12αrN
2/3⌋]]

logMλ
n ≤ 6| log δ|2

√
δN1/3

}

⋂{
max

n∈[[−⌊12αrN
2/3⌋,0]]

logMη
n ≤ 6| log δ|2

√
δN1/3

})
,

(4.59)

P(event in (4.52) ∩A) ≤ P

(
max

n∈[[1,⌊δN2/3⌋]]
logMη

n ≥ 1
2 | log δ|

2
√
δN1/3

)
.(4.60)

Theorem B.4 from [9] states that the increment variables {Iλ,NE
(i,1) }i≥1 ∪{Iη,NE

(i,1) }i≤0 are independent,

and these are independent of the boundary weights {Iρ(i,0)} by construction. Thus, we get

(4.59) ≤ P

(
max

n∈[[1,⌊12αrN
2/3⌋]]

logMλ
n ≤ 6| log δ|2

√
δN1/3

)

× P

(
max

n∈[[−⌊12αrN
2/3⌋,0]]

logMη
n ≤ 6| log δ|2

√
δN1/3

)
.

(4.61)
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(0, 0)

(δN2/3,−h)

w−
N

vN

qrN2/3

Figure 4.10. We have Q0,w−

N
{τ ≤ δN2/3} = Q(⌊δN2/3⌋,−h),w−

N
{τ < −h} which is

rare because h is lower bounded by CrN2/3. The lower bound on h follows from the
fact the vertical distance between vN and w−

N is of order rN2/3.

The next step is a random walk estimate because the steps of the walks logMλ
n and logMη

n are
given by the difference of two independent log-gamma random variables, which are sub-exponential
random variables. Using Proposition A.13, we see that (4.61) ≤ C| log δ|6δ. Using Theorem A.11,
we also have (4.60) ≤ Cδ.

To summarize, we have shown

P(event in (4.44)) ≤ 2P(Ac) + P(event in (4.51) ∩A) + P(event in (4.52) ∩A)

≤ 2e−C| log δ|3 + C| log δ|6δ
≤ | log δ|10δ.

(4.62)

This completes the proof of the desired bound (4.2) with the maximum taken over the dark region
D ⊂ ∂NEJ0, vN K in Figure 4.6.

For the endpoints in L+, we have the following estimate,

P

(
max
z∈L+

Qρ
0,z{1 ≤ τ ≤ δN2/3} ≥ e−| log δ|2

√
δN1/3

)

≤ P

(
max
z∈L+

Qρ
0,z{1 ≤ τ} ≥ e−| log δ|2

√
δN1/3

)

≤ P

(
Qρ

0,w+
N

{1 ≤ τ} ≥ e−| log δ|2
√
δN1/3

)
(by Lemma A.5)

≤ e−C| log δ|3 (by Corollary 4.2).

Similarly, for the L− region, we have

P

(
max
z∈L−

Qρ
0,z{1 ≤ τ ≤ δN2/3} ≥ e−| log δ|2

√
δN1/3

)
≤ P

(
max
z∈L−

Qρ
0,z{τ ≤ δN2/3} ≥ e−| log δ|2

√
δN1/3

)

≤ P

(
Qρ

0,w−
N

{τ ≤ δN2/3} ≥ e−| log δ|2
√
δN1/3

)

≤ e−C| log δ|3 .
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piN
2/3

r0N
2/3

r0N
2/3

(0, 0)

r0N
2/3

ξ[ρ]

r0N
2/3(0, 0) z

v′N

Figure 4.11. Left: Partition for the collection of paths in (4.63). The origin is not
necessarily a partition point. Right: An illustration for (4.67). The nested polymer

with its quenched measure Q
(0)
z,v′

N
is shown in black.

The idea for the last inequality is illustrated in Figure 4.10, essentially again following from Lemma
A.5 and Corollary 4.2. This finishes the argument for the L− region. The bound (4.2) is thus proved.

The probability bound implies the upper bound in (4.3):

E

[
max

z∈∂NE[[0,vN ]]
Qρ

0,z{|τ | ≤ δN2/3}
]
≤ δ + P

(
max

z∈∂NE[[0,vN ]]
Qρ

0,z{|τ | ≤ δN2/3} ≥ δ
)
≤ C| log δ|10δ.

We turn to the lower bound in (4.3). Utilizing the proof of Lemma 4.7, we will show that we
can fix two constants r0 and N0 (depending on ε) such that, for N ≥ N0,

(4.63) E
[
Qρ

0,vN+e1+e2
{|τ | ≤ r0N

2/3}
]
≥ 1

2
.

Abbreviate v′N = vN + e1 + e2. Given δ ≥ N−2/3, partition [−r0, r0] as

−r0 = p0 < p1 < · · · < p⌊ 2r0
δ

⌋ < p⌊ 2r0
δ

⌋+1
= r0

with mesh size pi+1 − pi ≤ δ. See the left side of Figure 4.11. By (4.63) there exists an integer
i⋆ ∈ [0, ⌊2r0δ ⌋] such that

(4.64) E
[
Qρ

0,v′N
{pi⋆N2/3 ≤ τ ≤ pi⋆+1N

2/3}
]
≥

1
2δ

2r0
= C(ε)δ.

Since we cannot control the exact location of i⋆, we compensate by varying the endpoint around
v′N . Let

AN = Jv′N − r0N
2/3e1, v

′
N K ∪ Jv′N − r0N

2/3e2, v
′
N K

denote the set of lattice points on the boundary of the rectangle J0, v′N K within distance r0N
2/3 of

the upper right corner v′N . We claim that for any integer i ∈ [0, ⌊2r0δ ⌋],

E

[
max
z∈AN

Qρ
0,z{|τ | ≤ δN2/3}

]
≥ E

[
Qρ

0,v′N
{pi⋆N2/3 ≤ τ ≤ pi⋆+1N

2/3}
]
.(4.65)

Then bounds (4.64) and (4.65) imply

(4.66) E

[
max
z∈AN

Qρ
0,z{|τ | ≤ δN2/3}

]
≥ C(ρ)δ,

and the lower bound in (4.3) follows directly from (4.66).
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It remains to prove claim (4.65). If pi⋆ ≤ 0 ≤ pi⋆+1, (4.65) is immediate. We argue the case

pi⋆+1 > pi⋆ > 0, the other one being analogous. Set z = (⌊pi⋆N2/3⌋ − 1)e1 and apply Lemma A.7

to the polymer with the nested quenched measure Q
(0)
z, •. See the right side of Figure 4.11. Then

E
[
Qρ

0,v′N
{pi⋆N2/3 ≤ τ ≤ pi⋆+1N

2/3}
]

≤ E
[
Q

(0)
z,v′N

{1 ≤ τ ≤ δN2/3}
]

(4.67)

= E
[
Qρ

0,v′N−(⌊pi⋆N2/3⌋−1)e1
{1 ≤ τ ≤ δN2/3}

]
] (by shift-invariance)

≤ E

[
max
z∈AN

Qρ
0,z{|τ | ≤ δN2/3}

]
.

Theorem 4.3 is proved. �

4.3. Coupled polymer measures.

Proof of Theorem 4.4. From Theorem 4.1, there exists an event A with probability at least e−C1r3

such that on A, we have

min
x∈∂NE[[0,vN ]]

Qρ
0,x{|τ | > rN2/3} ≥ 1− e−C2r2N1/3

.

By a union bound, on the event A we have

Q̃ρ
0,∂NE[[0,vN ]]

( ⋂

x∈∂NE[[0,vN ]]

{|τ̃0,x| > rN2/3}
)
≥ 1−Ne−C2r2N1/3 ≥ 1− e−C3r2N1/3

provided that r0, N0 are sufficiently large. With this, we have finished the proof of this theorem.
�

Proof of Theorem 4.5. By Theorem 4.3, on the high probability event B with probability at least
1− C1δ| log δ|10, we have

max
x∈∂NE[[0,vN ]]

Qρ
0,x{|τ | ≤ δN2/3} ≤ e−| log δ|2

√
δN1/3

.

With the assumption that
√
δN1/3 ≥ 1, a union bound implies that on B,

Q̃0,∂NE[[0,vN ]]

( ⋃

x∈∂NE[[0,vN ]]

{τ̃0,x ≤ δN2/3}
)
≤ Ne−| log δ|2

√
δN1/3 ≤ δ.

The claim of the theorem follows. �

5. Coalescence of semi-infinite polymers

In this section, we will define the semi-infinite polymer measures and prove Theorems 2.1 and
2.3 about their coalescence. The proof will use a duality between forward and backward polymer
measures, which we describe in Section 5.2.

5.1. Busemann functions and semi-infinite polymers. Following Theorem 4.1 from [18], for
any fixed ρ ∈ (0, µ), P-almost surely, the limits

Bρ(x, y) = lim
N→∞

(
logZx,vN − logZy,vN

)
,(5.1)

exist for any x, y ∈ Z
2 and satisfy

Y −1
z = e−Bρ(z,z+e1) + e−Bρ(z,z+e2)

and

Bρ(x, y) +Bρ(y, z) = Bρ(x, z),
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for all x, y, z ∈ Z
2. Furthermore, for any z ∈ Z

2, Iρz = eB
ρ(z−e1,z) ∼ Ga−1(µ−ρ), Jρ

z = eB
ρ(z−e2,z) ∼

Ga−1(ρ), and if we fix any vertex v ∈ Z
2, then the weights Yz, I

ρ
v−ke1

, Jρ
v−ke2

, z ∈ v−Z
2
>0, k ≥ 0, are

mutually independent and thus define a stationary polymer with northeast boundary on v − Z
2
≥0.

The partition function and quenched polymer measure will be denoted by Zρ,NE
•,v , Qρ,NE

•,v . Similarly,
if we define

qY ρ
z =

1

e−Bρ(z−e1,z) + e−Bρ(z−e2,z)
, z ∈ Z

2 ,

then qY ρ
z ∼ Ga−1(µ) for all z ∈ Z

2, and for any vertex v ∈ Z
2 the weights qY ρ

z , I
ρ
v+ke1

, Jρ
v+ke2

,

z ∈ v + Z
2
>0, k ≥ 1, are mutually independent and defined a stationary polymer with southwest

boundary on v + Z
2
≥0. The partition function and quenched polymer measure will be denoted

by qZρ,SW
v,• , qQρ,SW

v,• . Thus, for any v ∈ Z
2, qQρ

v,• has the same distribution as the generic Qρ
v,• we

introduced in Section 3 and used in Section 4. (This distributional equality is a special feature of
the inverse-gamma polymer.)

The ξ[ρ]-directed (forward) semi-infinite polymer measure starting at z, denoted by Πρ
z , is a

Markov chain on Z
2 with transition probabilities

πρ(x, x+ e1) =
Jρ
x+e2

Iρx+e1 + Jρ
x+e2

= Yx e
−Bρ(x,x+e1),

πρ(x, x+ e2) =
Iρx+e1

Iρx+e1 + Jρ
x+e2

= Yx e
−Bρ(x,x+e2) .

(5.2)

The ξ[ρ]-directed backward semi-infinite polymer measure starting at z, denoted by qΠρ
z, is a

Markov chain on Z
2 with transition probabilities

(5.3) qπρ(x, x−e1) =
Jρ
x

Iρx + Jρ
x
= qY ρ

x e−Bρ(x−e1,x) and qπρ(x, x−e2) =
Iρx

Iρx + Jρ
x
= qY ρ

x e−Bρ(x−e2,x) .

The next proposition relates the semi-infinite polymers to the stationary ones. For u ∈ Z
2 and

v ∈ u + Z
2
>0 let Πρ

u,v be the distribution of the Markov chain that starts at u, has transition
probabilities πρ(x, x+ei), i ∈ {1, 2}, if x ∈ [[u, v−e1−e2]], and when it gets to v−Z>0ei, i ∈ {1, 2},
it takes ei steps to get to v and end there. Similarly, let qΠρ

v,u be the distribution of the Markov
chain that starts at v, has transition probabilities qπρ(x, x − ei), i ∈ {1, 2}, if x ∈ [[u + e1 + e2, v]],
and when it gets to u+ Z>0ei, i ∈ {1, 2}, it takes −ei steps to get to u and end there.

Define, similarly to Xu,v, the set Xv,u of down-left paths starting at v and ending at u. For
x• ∈ Xu,v, respectively ∈ Xv,u, let x̄• ∈ Xv,u, respectively ∈ Xu,v, be the path that traverses x• in
the reverse direction.

Proposition 5.1. We have P-almost surely, for any u ∈ Z
2 and v ∈ u+ Z

2
>0, for any x• ∈ Xu,v,

Πρ
u,v(x•) = Qρ,NE

u,v (x•) and qΠρ
v,u(x̄•) = qQρ,SW

u,v (x•).

Proof. We prove the second claim, the first one being similar. Let ℓ = |v − u|1 and index the path
x• so that x0 = u and xℓ = v. We will consider the case where x1 = e1 and the proof in the other
case is identical. Let k ≥ 1 be such that xk = u+ ke1 and xk+1 = u+ ke1 + e2. Then

qΠρ
v,u(x̄•) =

ℓ−1∏

i=k

qπρ(xi+1, xi) =
ℓ−1∏

i=k

qY ρ
xi+1

e−Bρ(xi,xi+1)

= e−Bρ(xk,v)
ℓ−1∏

i=k

qY ρ
xi+1

= e−Bρ(u,v)
k∏

i=1

Iρu+ie1

ℓ−1∏

i=k

qY ρ
xi+1

.

Adding the above over all paths x• ∈ Xu,v gives

1 = e−Bρ(u,v) qZρ,SW
u,v .



COALESCENCE OF SEMI-INFINITE POLYMERS 33

Consequently,

qΠρ
v,u(x̄•) =

∏k
i=1 I

ρ
u+ie1

∏ℓ−1
i=k

qY ρ
xi+1

qZρ,SW
u,v

= qQρ,SW
u,v (x•). �

5.2. Coupling the forward and backward semi-infinite polymers. We now couple the
polymer measures {Πρ

z : z ∈ Z
2} following the construction in Appendix A of [25]. To this end,

introduce a collection of i.i.d. Uniform[0, 1] random variables {θz}z∈Z2 which are also independent
of the random environment {Yz : z ∈ Z

2}. Let P denote the distribution of θ.
Define a directed random graph gρ on Z

2, according to the following rule

gρ(x) =





e1 if θx ≤ Jρ
x+e2

Iρx+e1
+Jρ

x+e2

,

e2 if θx >
Iρx+e1

Iρx+e1
+Jρ

x+e2

.

From gρ, we can construct a semi-infinite path Xρ,z
• defined by

(5.4) Xρ,z
0 = z and Xρ,z

n+1 = Xρ,z
n + gρ(Xρ,z

n ).

It is clear from the construction that for P-almost every Y•, the distribution of Xρ,z
• under P is

exactly Πρ
z . Namely, we have P-almost surely, for any z ∈ Z

2 and any finite up-right path x• starting
at z,

(5.5) P{Xρ,z
• = x•} = Πρ

z{x•}.
We next couple the backward semi-infinite polymer measures together with the forward ones.

To this end, define another (dual) random graph qgρ by

qgρ(x) =

{
−e1 if gρ(x− e1 − e2) = e1,

−e2 if gρ(x− e1 − e2) = e2.

Define the down-left semi-infinite paths qXρ,z according to

(5.6) qXρ,z
0 = z and qXρ,z

n+1 =
qXρ,z
n + qgρ( qXρ,z

n ).

By construction, for P-almost every Y•, the distribution of qXρ,z
• under P is that of a Markov chain

on Z
2 with steps in {−e1,−e2} and transition probabilities

Jρ
x−e1

Iρx−e2 + Jρ
x−e2

=
eB

ρ(x−e1−e2,x−e1)

eBρ(x−e1−e2,x−e2) + eBρ(x−e1−e2,x−e1)
=

e−Bρ(x−e1,x)

e−Bρ(x−e2,x) + e−Bρ(x−e1,x)

=
eB

ρ(x−e2,x)

eBρ(x−e1,x) + eBρ(x−e2,x)
= qπρ(x, x− e1)

to go from x to x− e1 and, similarly,

Iρx−e2

Iρx−e2 + Jρ
x−e2

= qπρ(x, x− e2)

to go from x to x− e2.

Remark 5.2. Note that the graph gρ and its coupled paths {Xρ,z
• : z ∈ Z

2} are constructed to form
a forest that covers all of Z2. By Theorem A.2 in [25], this forest is in fact a spanning tree, with

probability 1 under P. The paths { qXρ,z
• − (e1 + e2)/2 : z ∈ Z

2} form the dual forest that spans the
dual lattice Z

2 − (e1 + e2)/2. Again, by Theorem A.2 in [25], this dual forest is also a spanning
forest P-almost surely.
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x∗

(0, δN2/3)

(δN2/3, 0)

vN − (12 ,
1
2 )

(− 1
2 ,− 1

2 )

Figure 5.1. The sampled polymers starting (⌊δN2/3⌋, 0) and (0, ⌊δN2/3⌋) (gray
dotted lines) coalesce outside J0, vN K. Equivalently, some dual point x∗ = x−(1/2, 1/2)

outside of J0, vN K − (1/2, 1/2) sends a dual polymer qXρ,x
• − (1/2, 1/2) (black dotted

line) into the rectangle J(0, 0), (⌊δN2/3⌋, ⌊δN2/3⌋)K.

For z ∈ Z2
>0 let X̃ρ,z

• ∈ Xz,0 be the random path that follows qXρ,z
• from z until the first time it

hits the axes Z>0ei, i ∈ {1, 2}, and then goes to 0 taking only −e1 or only −e2 steps. For A ⊂ Z
2
>0

let Q̃ρ
0,A be the distribution under P of the paths {X̃ρ,z

• : z ∈ A}. By Proposition 5.1, this is a

coupling of the measures { qQρ,SW
0,v : v ∈ A} and by their construction, the paths {X̃ρ,z

• : z ∈ A} are

Q̃ρ
0,A-almost surely ordered.

5.3. Proofs of Theorems 2.1, 2.3, and 2.7, and Corollary 2.5. We note that the probability
Hρ

a,b

(
ΓA

)
is the same as the probability under P that the coalescence point of the coupled paths

Xρ,a
• and Xρ,b

• belongs to A.

Proof of Theorem 2.1. As shown in Figure 5.1, the duality mentioned in Remark 5.2 implies that
the sampled polymer paths coalesce outside of the rectangle [[0, vN ]] if and only if there exists some

x on the northeast boundary of [[0, vN ]] such that the polymer X̃ρ,x
• satisfies |τ0,x| ≤ δN2/3.

By this equivalence, the expectation in Theorem 2.1 is equal to the expectation in Theorem 4.5,

E

[
Hρ

⌊δN2/3⌋e1,⌊δN2/3⌋e2

(
ΓZ2\[[0,vN ]]

)]
= E

[
Q̃ρ

0,∂NE[[0,vN ]]

( ⋃

x∈∂NE[[0,vN ]]

{|τ̃0,x| ≤ δN2/3}
)]

.

Finally, for the exit time expectation on the right-hand side, the upper bound follows from Theorem
4.5. The lower bound follows from (4.37) and (4.3) in Theorem 4.3 since the probability of a union
of events is bounded below by the maximum of the probabilities of the individual events. �

Proof of Theorems 2.3 and 2.7. As shown in Figure 5.2, if the two sampled forward polymers
starting at (⌊rN2/3⌋, 0) and (0, ⌊rN2/3⌋) coalesce inside [[0, vN ]], then by duality, this happens

if and only for each x ∈ ∂NE[[0, vN ]] the polymer X̃ρ,x
• satisfies |τ0,x| ≥ rN2/3. Then, we have

Hρ

⌊rN2/3⌋e1,⌊rN2/3⌋e2

(
Γ[[0,vN ]]

)
d
= Q̃ρ

0,∂NE[[0,vN ]]

( ⋂

x∈∂NE[[0,vN ]]

{|τ̃0,x| ≥ rN2/3}
)
.(5.7)

The expectation and the tail probabilities of the right-hand side can be lower bounded using
Theorem 4.4. And they are upper bounded by Theorem 4.1 since the probability of an intersection
of events is bounded above by the minimum of the probabilities of the individual events. �
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vN − (12 ,
1
2 )

rN2/3

rN2/3

(− 1
2
,− 1

2
)

x∗ x∗ + e1

Figure 5.2. None of the backward polymers (black dotted lines) will enter the gray
square because they are shielded away from it by the coalescing forward polymers (gray
dotted lines).

Proof of Corollary 2.5. To prove the first inequality we will lower bound its complement. By
duality, it suffices to show that for some small q depending only on ε,

E

[
Hρ

0,⌊rN2/3⌋e1

(
ΓZ

2\[[0,vN ]]
)]

= E

[
Q̃ρ

0,∂NE[[0,vN ]]

( ⋃

x∈∂NE[[0,vN ]]

{1 ≤ τ̃0,x ≤ rN2/3}
)]

≥ E

[
Qρ

0,vN−qrN2/3e2
{1 ≤ τ ≤ rN2/3}

]

≥ 1− e−Cr3 .(5.8)

The last inequality (5.8) follows from an argument similar to the proof of Lemma 4.11. Here, instead

of perturbing the directional parameter, we simply perturb our end point from vN to vN−qrN2/3e2.
Then, as shown in Figure 5.3, if we fix q sufficiently small, then the −ξ[ρ] directed ray starting at
vN − qrN2/3e2 will hit the e1-axis within [[arN2/3, brN2/3]], for some 0 < a < b < 1. This again just
follows from Taylor’s theorem and we omit the details. Then the rest of the argument is exactly
the same as in Lemma 4.11.

To prove the second inequality in the claim of the corollary we start with the following calculation,
where the first equality comes from duality and the same calculation from (4.37) gives us the
inequality when we switch from “maxx∈∂NE[[0,vN ]] . . . ” to “maxx 6∈[[0,vN ]] . . . ”

E

[
Hρ

0,⌊δN2/3⌋e1

(
ΓZ2\[[0,vN ]]

)]
= E

[
Q̃ρ

0,∂NE[[0,vN ]]

( ⋃

x∈∂NE[[0,vN ]]

{1 ≤ τ0,x ≤ δN2/3}
)]

≥ E

[
max

x∈∂NE[[0,vN ]]
Qρ

0,x{1 ≤ τ0,x ≤ δN2/3}
]

≥ E

[
max

x 6∈[[0,vN ]]
Qρ

0,x{1 ≤ τ0,x ≤ δN2/3}
]
.

The last expectation can be lower bounded by Cδ. The proof is very similar to that of the lower
bound in (4.3). More precisely, by (5.8), we can fix two constants r0 and N0 (depending on ε) such
that, for N ≥ N0,

(5.9) E
[
Qρ

0,vN−qr0N2/3e2+e1
{1 ≤ τ ≤ r0N

2/3}
]
≥ 1

2
.
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(0, 0)

vN

vN − qrN2/3e2

brN2/3arN2/3

ξ[ρ]

Figure 5.3. An illustration for the inequality (5.8). Starting from the

point vN − qrN2/3e2, the −ξ[ρ]-directed ray will hit the e1-axis between

[[arN2/3, brN2/3]] for some 0 < a < b < 1, provided that q is fixed sufficiently
small.

Note that using the endpoint vN − qr0N
2/3e2 + e1 instead of vN − qr0N

2/3e2 does not change the
proof of this lower bound.

Now, (5.9) replaces the input (4.63), and we form our partition {pi} in the range [1, r0] instead
of [−r0, r0]. Then, the rest of the proof is the same as the lower bound proof in (4.3). �

6. Total variation distance bounds.

Proof of Theorem 2.8. The claim follows from the fact that if U and V are two random variables
with distributions µ and ν, respectively, and if P is any coupling of the two random variables, then

(6.1) dTV(µ, ν) ≤ P(U 6= V ).

Consider the paths Xρ,δN2/3ei
• , i ∈ {1, 2}, defined in Section 5.2. Then, χN (Xρ,δN2/3e1

• ) 6=
χN (Xρ,δN2/3e2

• ) implies the two paths did not coalesce inside [[0, vN ]]. Hence, if P is the probability
measure from Section 5.2, then

P
{
χN (Xρ,δN2/3e1

• ) 6= χN (Xρ,δN2/3e2
• )

}
≤ Hρ

⌊δN2/3⌋e1,⌊δN2/3⌋e2

(
ΓZ2\[[0,vN ]]

)
.

Now the upper bound claimed in the theorem follows directly from Theorem 2.1. �

Proof of Theorem 2.9. We will first look at u only in the north boundary of [[0, vN ]], which we
denote as ∂N[[0, vN ]], and we will show that

∑

u∈∂N[[0,vN ]]

|Πρ

⌊rN2/3⌋e1
(χN = u)−Πρ

⌊rN2/3⌋e2
(χN = u)| is close to 1.

A similar argument can be applied to the east boundary to show that sum is also close to 1.
And combining the two calculations for the north and east boundaries would finish the proof.

From Proposition 5.1 and Theorem 4.1,

P

(
Πρ

⌊rN2/3⌋e2(
χN ∈ ∂N [[0, vN ]]) ≥ 1− e−cr2N1/3

)
≥ 1− e−Cr3 ,

P

(
Πρ

⌊rN2/3⌋e1(
χN ∈ ∂N [[0, vN ]]) ≤ e−cr2N1/3

)
≥ 1− e−Cr3 .
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To finish the proof, on the intersection of the two events above, we have
∑

u∈∂N[[0,vN ]]

|Πρ

⌊rN2/3⌋e1
(χN = u)−Πρ

⌊rN2/3⌋e2
(χN = u)|

≥
∑

u∈∂N[[0,vN ]]

(
Πρ

⌊rN2/3⌋e1(
χN = u)−Πρ

⌊rN2/3⌋e2(
χN = u)

)

= Πρ

⌊rN2/3⌋e2(
χN ∈ ∂N [[0, vN ]])−Πρ

⌊rN2/3⌋e1(
χN ∈ ∂N [[0, vN ]])

≥ 1− 2e−cr2N1/3
. �

7. Transversal fluctuation lower bound

In this section, we prove Theorem 2.11, but omit some of the details since the whole proof is
similar to the proof of the upper bound in Theorem 4.3.

First, for i ∈ {1, 2}, let us define {midi ≤ δN2/3} to be the collection of paths between −vN and
vN which crosses the segment between −δN2/3ei and δN2/3ei. Since

{mid ≤ δN2/3} ⊂ {mid1 ≤ δN2/3} ∪ {mid2 ≤ δN2/3},
by a union bound and the symmetry between i = 1 and 2 it suffices to prove that

E

[
Q−vN ,vN {mid1 ≤ δN2/3}

]
≤ C| log δ|10δ.

We prove this by showing that

(7.1) P

(
Q−vN ,vN {mid1 ≤ δN2/3} ≥ e−| log δ|2

√
δN1/3

)
≤ C| log δ|10δ.

Let r = | log δ| and fix α sufficiently small (now depending only on µ) as in the proof of Theorem
4.3. The next calculation follows the same steps as (4.44), except that we now set ρ = µ/2 and
consider the dark region D as a single point vN .

left side of (7.1)

= P

(
logZ−vN ,vN − logZ−vN ,vN {mid1 ≤ δN2/3} ≤ | log δ|2

√
δN1/3

)

≤ P

(
logZ−vN ,vN {mid1 ≤ rN2/3} − logZ−vN ,vN {mid1 ≤ δN2/3} ≤ | log δ|2

√
δN1/3

)

≤ P

(
max

|k|≤⌊rN2/3⌋

[
logZ−vN ,ke1 + logZ(k,1),vN

]

− max
|j|≤⌊δN2/3⌋

[
logZ−vN ,ke1 + logZ(k,1),vN

]
≤ 2| log δ|2

√
δN1/3

)

= P

(
max

|k|≤⌊rN2/3⌋

[
log

Z−vN ,ke1

Z−vN ,(0,0)
+ log

Z(k,1),vN

Ze2,vN

]

− max
1≤j≤⌊δN2/3⌋

[
log

Z−vN ,je1

Z−vN ,(0,0)
+ log

Z(j,1),vN

Ze2,vN

]
≤ 2| log δ|2

√
δN1/3

)

≤ P

(
max

|k|≤⌊rN2/3⌋

[
log

Z−vN ,ke1

Z−vN ,(0,0)
+ log

Z(k,1),vN

Ze2,vN

]
≤ 3| log δ|2

√
δN1/3

)
(7.2)

+ P

(
max

1≤j≤⌊δN2/3⌋

[
log

Z−vN ,je1

Z−vN ,(0,0)
+ log

Z(j,1),vN

Ze2,vN

]
≥ | log δ|2

√
δN1/3

)
.(7.3)

Next, let us define

ĨvN(i,1) =
Z(i−1,1),vN

Z(i,1),vN

, Ĩ−vN
(i,0) =

Z−vN ,(i,1)

Z−vN ,(i−1,1)
,
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and a two-sided multiplicative walk {M ′
n}n∈[[−⌊αrN2/3⌋+1,⌊αrN2/3⌋]] by setting M ′

0 = 1 and

M ′
n/M

′
n−1 = Ĩ−vN

(n,0)/Ĩ
vN
(n,1).

Then, the two probabilities can be rewritten as

(7.4)

(7.2) + (7.3) = P

(
max

n∈[[−αrN2/3+1,αrN2/3]]
logM ′

n ≤ 3| log δ|2
√
δN1/3

)

+ P

(
max

n∈[[1,δN2/3]]
logM ′

n ≥ | log δ|2
√
δN1/3

)
.

Note how the right-hand side is similar to (4.47) + (4.48), except for having M ′
n instead of Mn,

and the region D is reduced to the single vertex vN . Next, we give a sketch of how to carry over
the estimate from the proof of Theorem 4.3 to the random walk in this proof. The essential step is
to upper and lower bound the walk M ′

n by two other walks with i.i.d. steps. This was done for Mn

previously in (4.58). After that, the bound on the two probabilities above comes from the same
estimates as in the proof of Theorem 4.3.

First, let us summarize how the desired random walk bound was obtained in the proof of Theorem

4.3. Recall λ and µ, defined in (4.39). Lemma 4.12 showed that with probability at least 1−e−Cr3 ,

for each a, b ∈ [[−⌊αrN2/3⌋+ 1, ⌊αrN2/3⌋]],

1
2

b∏

i=a

Iη,NE
(i,1) ≤

b∏

i=a

ĨvN(i,1) ≤ 2

b∏

i=a

Iλ,NE
(i,1) ,

where I
• ,NE
(i,1) ∼ Ga−1(•). Furthermore, as stated below (4.60), there is a coupling such that the

random variables

(7.5)
{
Iη,NE
(i,1)

, Iλ,NE
(j,1)

: i ≤ 0, j ≥ 1
}
are independent.

By symmetry (or rotating the picture 180◦), the exact same argument can be applied to Ĩ−vN
(i,0) ,

where now these edge weights are calculated to the point −vN−(e1+e2) instead of to vN+(e1+e2).

We get that with probability at least 1− e−Cr3 , for each a, b ∈ [[−⌊αrN2/3⌋+ 1, ⌊αrN2/3⌋]],

1
2

b∏

i=a

Iη,SW(i,0) ≤
b∏

i=a

Ĩ−vN
(i,0) ≤ 2

b∏

i=a

Iλ,SW(i,0) ,

where I
• ,SW
(i,0) ∼ Ga−1(•) are edge weights that are calculated to −vN − (e1 + e2) and with a

boundary placed on the south-west edges of the quadrant −vN − (e1 + e2) + Z
2
≥0. As above, the

random variables

(7.6)
{
Iλ,SW(i,0) , Iη,SW(j,0) : i ≤ 0, j ≥ 0

}
are independent.

Note how the parameters switched sides, as compared to (7.5).
Next, define two two-sided multiplicative random walks M+

n , M−
n with M±

0 = 1 and

M+
n /M+

n−1 = Iλ,SW(n,0) /I
η,NE
(n,1)

M−
n /M−

n−1 = Iη,SW
(n,0)

/Iλ,NE
(n,1)

We get

1

2
M−

n ≤ M ′
n ≤ 2M+

n for n ≥ 1 and
1

2
M+

n ≤ M ′
n ≤ 2M−

n for n ≤ 0.

These bounds play the role of (4.58). With this, go back to (7.4) and follow the same argument as
the one we used to bound (4.47) + (4.48), but with Mn, M

λ
n , and Mµ

n replaced by M ′
n, M

−
n , and

M+
n , respectively. We should point out that an essential fact that is used in the step analogous to
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(4.61) is the independence of the walks {M−
n : n ≥ 1} and {M+

n : n ≤ 0}, which follows from (7.5)
and (7.6). We omit the rest of the details.

Appendix A. Appendix

A.1. Moderate deviation of the bulk free energy. We present here two estimates that we
use in the proof of (4.1). The first tail bound can be derived for the inverse-gamma polymer by
combining Theorem 1.7 of [4], which utilizes integrable probability methods, with Theorem 2.2 of
[19]. For the O’Connell-Yor polymer, the bound was established in [28] as Proposition 2.1 without
the use of integrable probability. A proof of the bound for the inverse-gamma polymer, without
the use of integrable probability, will appear in [15]. This result can be found in Theorem 4.3.1 of
the Ph.D. thesis [37].

Proposition A.1. Fix ε ∈ (0, µ/2). There exist positive constants C,N0 depending on ε such that
for each N ≥ N0, t ≥ 1, and each ρ ∈ [ε, µ − ε], we have

P
(
logZ0,vN − Λ(vN ) ≥ tN1/3

)
≤ e−C min{t3/2, tN1/3}.

The next tail bound is Proposition 3.8 in [6]. The analogous bound for the O’Connell-Yor
polymer appears as Proposition 3.4 in [28].

Proposition A.2. Let ε ∈ (0, µ/2). There exist positive constants C,N0 depending on ε such that
for each N ≥ N0, t ≥ 1 and and each ρ ∈ [ε, µ − ε], we have

P
(
logZ0,vN − Λ(vN ) ≤ −tN1/3

)
≤ e−C min{t3/2, tN1/3}.

A.2. Proof of Propositions 4.8 and 4.9. Let ε ∈ (0, µ/2) and fix ρ ∈ [ε, µ − ε]. We start with
a few derivative calculations.

d

dz

Ψ1(ρ+ z)

Ψ1(ρ+ z) + Ψ1(µ − ρ− z)

∣∣∣∣
z=0

=
Ψ2(ρ)Ψ1(µ− ρ) + Ψ1(ρ)Ψ2(µ− ρ)

(Ψ1(ρ) + Ψ1(µ− ρ))2
,

(A.1)

d

dz

Ψ1(µ − ρ− z)

Ψ1(ρ+ z) + Ψ1(µ − ρ− z)

∣∣∣∣
z=0

= −Ψ2(ρ)Ψ1(µ− ρ) + Ψ1(ρ)Ψ2(µ − ρ)

(Ψ1(ρ) + Ψ1(µ− ρ))2
,

d2

dz2
Ψ1(ρ+ z)

Ψ1(ρ+ z) + Ψ1(µ− ρ− z)

∣∣∣∣
z=0

= −2Ψ2(ρ)(Ψ2(ρ)−Ψ2(µ− ρ))

(Ψ1(ρ) + Ψ1(µ − ρ))2
+

Ψ3(ρ)

Ψ1(ρ) + Ψ1(µ− ρ)

+ Ψ1(ρ)
(2(Ψ2(ρ)−Ψ2(µ− ρ))2

(Ψ1(ρ) + Ψ1(µ − ρ))3
− Ψ3(µ− ρ) + Ψ3(ρ)

(Ψ1(ρ) + Ψ1(µ− ρ))2

)
,

d2

dz2
Ψ1(µ− ρ− z)

Ψ1(ρ+ z) + Ψ1(µ− ρ− z)

∣∣∣∣
z=0

=
2Ψ2(µ− ρ)(Ψ2(ρ)−Ψ2(µ− ρ))

(Ψ1(ρ) + Ψ1(µ− ρ))2
+

Ψ3(µ− ρ)

Ψ1(ρ) + Ψ1(µ− ρ)

+ Ψ1(µ − ρ)
(2(Ψ2(ρ)−Ψ2(µ− ρ))2

(Ψ1(ρ) + Ψ1(µ − ρ))3
− Ψ3(µ− ρ) + Ψ3(ρ)

(Ψ1(ρ) + Ψ1(µ− ρ))2

)
,

d

dz

( Ψ1(ρ+ z)

Ψ1(ρ+ z) + Ψ1(µ− ρ− z)
Ψ0(µ− ρ− z) +

Ψ1(µ − ρ− z)

Ψ1(ρ+ z) + Ψ1(µ − ρ− z)
Ψ0(ρ+ z)

)∣∣∣∣
z=0

=
(Ψ0(µ − ρ)−Ψ0(ρ))(Ψ2(ρ)Ψ1(µ − ρ) + Ψ1(ρ)Ψ2(µ− ρ))

(Ψ1(ρ) + Ψ1(µ− ρ))2
,

(A.2)

d2

dz2

( Ψ1(ρ+ z)

Ψ1(ρ+ z) + Ψ1(µ − ρ− z)
Ψ0(µ − ρ− z) +

Ψ1(µ− ρ− z)

Ψ1(ρ+ z) + Ψ1(µ− ρ− z)
Ψ0(ρ+ z)

)∣∣∣∣
z=0

=
2(Ψ0(ρ)Ψ2(µ − ρ)−Ψ2(ρ)Ψ0(µ − ρ))(Ψ2(ρ)−Ψ2(µ− ρ))

(Ψ1(ρ) + Ψ1(µ− ρ))2
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+
Ψ3(ρ)Ψ0(µ − ρ) + Ψ0(ρ)Ψ3(µ − ρ)−Ψ2(ρ)Ψ1(µ− ρ)−Ψ1(ρ)Ψ2(µ− ρ)

Ψ1(ρ) + Ψ1(µ− ρ)

+ (Ψ1(ρ)Ψ0(µ− ρ) + Ψ0(ρ)Ψ1(µ− ρ))
(2(Ψ2(ρ)−Ψ2(µ− ρ))2

(Ψ1(ρ) + Ψ1(µ− ρ))3
− Ψ3(µ − ρ) + Ψ3(ρ)

(Ψ1(ρ) + Ψ1(µ− ρ))2

)
.

Because of the bijection in (2.3), there exists a z such that

Nξ[ρ+ z] = vN − ⌊sN2/3⌋e1 + ⌊sN2/3⌋e2.(A.3)

From (A.1) we see that the derivative of Ψ1(ρ+z)
Ψ1(ρ+z)+Ψ1(µ−ρ−z) at z = 0 is strictly negative. By

continuity, it is also strictly negative on a neighborhood of 0. This and the mean value theorem
imply that

z ∈ [c1sN
−1/3, c2sN

−1/3](A.4)

for some positive constant c1, c2 depending on ε.
The quantity appearing on the left side of Proposition 4.8 and Proposition 4.9 is essentially the

following (we ignore the integer floor function),

−N
[ Ψ1(ρ+ z)

Ψ1(ρ+ z) + Ψ1(µ − ρ− z)
Ψ0(µ − ρ− z) +

Ψ1(µ− ρ− z)

Ψ1(ρ+ z) + Ψ1(µ− ρ− z)
Ψ0(ρ+ z)

]

+N
[ Ψ1(ρ)

Ψ1(ρ) + Ψ1(µ− ρ)
Ψ0(µ− ρ) +

Ψ1(µ− ρ)

Ψ1(ρ) + Ψ1(µ − ρ)
Ψ0(ρ)

]

+NΨ0(µ− ρ)
[
(

Ψ1(ρ+ z)

Ψ1(ρ+ z) + Ψ1(µ − ρ− z)
− Ψ1(ρ)

Ψ1(ρ) + Ψ1(µ− ρ)

]

+NΨ0(ρ)
[ Ψ1(µ− ρ− z)

Ψ1(ρ+ z) + Ψ1(µ − ρ− z)
− Ψ1(µ− ρ)

Ψ1(ρ) + Ψ1(µ − ρ)

]
.

In the above, we used (A.3) to write ⌊sN2/3⌋ = (vN −Nξ[ρ+ z]) · e1 = (Nξ[ρ+ z]− vN ) · e2.
By performing Taylor expansions in z and using the computations presented earlier in this

section, we observe a number of cancellations, ultimately turning the above expression into

N

2
· Ψ1(ρ)Ψ2(µ− ρ) + Ψ2(ρ)Ψ1(µ− ρ)

Ψ1(ρ) + Ψ1(µ− ρ)
z2 +N · O(z3).

This and (A.4) imply the claimed bounds in Propositions 4.8 and 4.9, provided that a sufficiently
small value of c0 is chosen. �

A.3. Non-random properties. The following monotonicity property of the ratios of partition
functions is in [9, Lemma A.2].

Lemma A.3. Let x, y, z ∈ Z
2 be such that x · e1 ≤ y · e1, x · e2 ≥ y · e2, and x, y ≤ z, then

(A.5)
Zx,z

Zx,z−e1

≤ Zy,z

Zy,z−e1

and
Zx,z

Zx,z−e2

≥ Zy,z

Zy,z−e2

.

The above lemma implies the following results about the monotonicity between the ratio of
partition functions and exit times.

Lemma A.4. Let z ∈ Z
2
≥0 and let k, l ∈ Z≥0 be such that l ≤ k. Then

Z0,z(τ ≥ l)

Z0,z−e1(τ ≥ l)
≤ Z0,z(τ ≥ k)

Z0,z−e1(τ ≥ k)
and

Z0,z(τ ≥ l)

Z0,z−e2(τ ≥ l)
≥ Z0,z(τ ≥ k)

Z0,z−e2(τ ≥ k)
.

Proof. Note that
Z0,z(τ≥l)

Z0,z−e1 (τ≥l) =
Zle1,z

Zle1,z−e1
and

Z0,z(τ≥k)
Z0,z−e1 (τ≥k) =

Zke1,z

Zke1,z−e1
. Then Lemma A.3 gives us

the inequality
Zle1,z

Zle1,z−e1

≤ Zke1,z

Zke1,z−e1

.
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v

u

z

w

u

v

(0, 0)

(m, −n) u

v

(0, 0)

(r, r)

Figure A.1. Top: Illustration of Lemma A.7 in the special case when Yu and Zv

are southwest boundaries. Bottom: Illustration of Lemma A.8 and Lemma A.9. Note
that any directed path between u and v goes through a gray edge/arrow if and only if
it goes through a black edge/arrow.

The other inequality with e2 follows from a similar argument. �

The next lemma is an immediate consequence of Lemma A.4. It suggests that shifting the
endpoint to the right or down increases the likelihood of the polymer taking more e1 steps at the
beginning.

Lemma A.5. For any k, l,m ∈ Z≥0 and x ∈ Z
2
≥0 such that x+ le1 −me2 ∈ Z

2
≥0,

Q0,x{τ ≥ k} ≤ Q0,x+le1−me2{τ ≥ k}.

Proof. Note that the proof of Lemma A.4 also gives

Z0,x

Z0,x−e1

≤ Z0,z(τ ≥ k)

Z0,x−e1(τ ≥ k)
and

Z0,x

Z0,x−e2

≥ Z0,x(τ ≥ k)

Z0,x−e2(τ0,x ≥ k)
.

Rearrange to get

(A.6) Q0,x{τ ≥ k} =
Z0,x(τ ≥ k)

Z0,x
≤ Z0,x+e1(τ ≥ k)

Z0,x+e1

= Q0,x+e1{τ ≥ k}

and

(A.7) Q0,x{τ ≥ k} ≥ Q0,x+e2{τ ≥ k}.
Applying the two inequalities (A.6) and (A.7) repeatedly gives us the statement of our lemma. �

Fix u ∈ Z
2, we will define a polymer with a general down-right boundary with the base at u. Let

Yu = {yi}i∈Z be a bi-infinite downright path going through u. We use the convention that y0 = u
and yi · e1 ≤ yj · e1 if i ≤ j.
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Next, let us place positive edge weights {Syi−1,yi} along Yu, and we will define the following
function H. Let Hu,u = 1. For each x0 = ym for some m > 0, define

Hu,x0 =

m∏

n=1

Ỹyn−1,yn where Ỹyn−1,yn =

{
Syn−1,yn if yn − yn−1 = e1,

1/Syn−1,yn if yn − yn−1 = −e2.

For each x0 = y−m for some m > 0, define

Hu,x0 =
−m+1∏

n=0

Ỹyn,yn−1 where Ỹyn,yn−1 =

{
1/Syn,yn−1 if yn − yn−1 = e1,

Syn,yn−1 if yn − yn−1 = −e2.

Recall Y≥
u = ∪n(yn +Z≥0) and Y>

u = ∪n(yn +Z>0). For each y ∈ Yu and v ∈ Y>
u , define the set

of paths

X
Yu
y,v = {x• ∈ Xy,v : x1 ∈ Y>

u }.
This set is empty if both y + ei, i ∈ {1, 2}, are on Yu. For v ∈ Y>

u , define the partition function

ZYu
u,v =

∑

y∈Yu

∑

x•∈XYu
y,v

Hu,y

|y−v|1∏

i=1

Yxi ,

where {Yz} are the bulk weights for z ∈ Y>
u . For v ∈ Yu let ZYu

u,v = Hu,v. The corresponding

quenched path measure will be denoted as QYu
u,v. Note that these partition functions satisfy the

following induction: for w ∈ Y>
u ,

ZYu
u,w = (ZYu

u,w−e1 + ZYu
u,w−e2)Yw.(A.8)

Given a polymer model defined on Y≥
u . We fix another bi-infinite down-right path Zv ⊂ Y≥

u and
define the following nested polymer model rooted at v. It has the same bulk weights, and on the
new boundary Zv = {zn}, the weights are given by

Szn−1,zn =





ZYu
u,zn

ZYu
u,zn−1

if zn − zn−1 = e1,

ZYu
u,zn−1

ZYu
u,zn

if zn − zn−1 = −e2.

We will denote this nested polymer measure by Q
Zv,(Yu)
v,• .

Lemma A.6. Fix u, v ∈ Z
2 and two down-right bi-infinite paths Yu and Zv with Zv ⊂ Y≥

u . Then
for w ∈ Z≥0

v ,

ZZv,(Yu)
v,w =

ZYu
u,w

ZYu
u,v

.(A.9)

Consequently, for each w ∈ Z≥0
v and i ∈ {1, 2},

(A.10)
ZYu
u,w+ei

ZYu
u,w

=
Z

Zv,(Yu)
v,w+ei

Z
Zv,(Yu)
v,w

.

Proof. When w ∈ Zv the equality (A.9) comes straight from the definitions. Then it follows for
w ∈ Z>

v because the two sides satisfy the same induction (A.8). �

Lemma A.7. Fix u, v ∈ Z
2 and two down-right bi-infinite paths Yu and Zv with Zv ⊂ Y≥

u . Let
i ∈ {1, 2} and z ∈ Zv be such that z + ei is inside Z>0

v . Then, for each w ∈ Z>0
v .

QYu
u,w{path goes through [[z, z + ei]]} = QZv,(Yu)

v,w {path goes through [[z, z + ei]]}.
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Proof. We prove the case with i = 2, the other case being symmetric. Then

QYu
u,w{path goes through the edge [[z, z + e2]]} =

ZYu
u,z · Zz+e2,w

ZYu
u,w

=

ZYu
u,z

ZYu
u,v

· Zz+e2,z

ZYu
u,w

ZYu
u,v

=
Z

Zv,(Yu)
v,z · Zz+e2,z

Z
Zv,(Yu)
v,w

by Lemma A.6

= QZv,(Yu)
v,w {path goes through the edge [[z, z + e2]]}.

See the top panel in Figure A.1 for an illustration. �

Next, we restrict attention to stationary polymers with southwest and antidiagonal boundaries.
To simplify the notation, we will denote the respective partition functions by Zu,• and Zdia

u,• . The

corresponding polymer measures are denoted by Qu,• and Qdia
u,• . For the antidiagonal boundaries, the

bi-infinite paths are given by Su = u+S(0,0), where S(0,0) is given in (4.9). For the nested polymers,
we will always assume the outer polymer has an antidiagonal boundary, and the nested partition

functions with antidiagonal and southwest boundaries are denoted, respectively, by Z
(u),dia
v,• and

Z
(u)
v,• . The corresponding polymer measures are denoted by Q

(u)
v,• and Q

(u),dia
v,• .

The following two lemmas relate the exit times of two polymer processes with different starting
points. They are illustrated on the bottom of Figure A.1.

Lemma A.8. Fix two base points (0, 0) and (m,−n) with m,n > 0. Take u with u ≤ (0, 0) and

u ≤ (m,−n). Let Z
(u)
0, • and Z

(u)
(m,−n), • be the partition functions of the polymers with southwest

boundaries, rooted at (0, 0) and (m,−n), respectively, nested inside a polymer rooted at u and
having antidiagonal boundary Su. Then for v ∈ ((0, 0) + Z

2
>0) ∩ ((m,−n) + Z

2
>0),

Q
(u)
0,v{τ ≤ m} = Q

(u)
(m,−n),v{τ < −n}.

Proof. This lemma follows from Lemma A.7 as we have the equalities

Q
(u)
0,v{τ ≤ m}
= Qdia

u,v{{path goes through edges {[[a, a + e2]] : 0 < a · e1 ≤ m and a · e2 = 0}}∪
{path goes through edges {[[a, a + e1]] : 0 < a · e2 ≤ v · e2 and a · e1 = 0}}

= Qdia
u,v{path goes through edges {[[b, b+ e1]] : 0 < b · e2 ≤ v · e2 and b · e1 = m}

= Q
(u)
(m,−n),v{τ < −n}. �

Recall the exit time from the antidiagonal boundary, defined above (4.10).

Lemma A.9. Fix two base points (0, 0) and (r, r) with r ∈ Z>0. Take u ∈ −Z
2
>0. Let Z

(u)
0, •

and Z
(u),dia
(r,r), • be the partition functions of the polymers with southwest and antidiagonal boundaries,

rooted at (0, 0) and (r, r), respectively, nested inside a polymer rooted at u and having antidiagonal
boundary Su. Then for v ∈ (r, r) + Z

2
>0,

Q
(u)
0,v{τ ≥ 2r} = Q

(u),dia
(r,r),v {τ

dia ≥ r}.

Proof. This lemma again follows from Lemma A.7 as we have the equalities

Q
(u)
0,v{τ ≥ 2r}
= Qdia

u,z{path goes through edges {[[a, a + e2]] : 2r ≤ a · e1 ≤ v · e1 and a · e2 = 0}}
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= Qdia
u,z

{
{path goes through edges {[[(b, 2r − b), (b, 2r − b) + e1]] : 2r ≤ b < v · e1}}∪

{path goes through edges {[[(b, 2r − b), (b, 2r − b) + e2]] : 2r ≤ b ≤ v · e1}}
}

= Q
(u),dia
(r,r),v {τ

dia ≥ r}. �

A.4. Radon-Nikodym derivative calculation. Given a > 0, N ∈ Z>0, and ρ > 0, let P ρ

denote the probability distribution on the product space Ω = R
⌊aN2/3⌋ under which the coordinates

Xi(ω) = ωi are i.i.d. Ga−1(ρ) random variables.

Proposition A.10. Fix µ > 0 and ε ∈ (0, µ/2). There exists a positive constant C that only
depends on ε and µ and such that the following holds. Take any a > 0, b ∈ R, and N ∈ Z>0, and
any ρ ∈ [ε, µ − ε]. Take |b| ≤ 1

4εN
1/3 and let f denote the Radon-Nikodym derivative

f =
dP ρ+bN−1/3

dP ρ
.

Then

EP ρ
[f2] ≤ eCab2 .

Proof. Let us denote λ = ρ+ bN−1/3. From a direct computation, we obtain

EP ρ
[f2] =

∫ ( ⌊aN2/3⌋∏

i=1

1
Γ(λ)

1
ωλ+1
i

e
− 1

ωi

1
Γ(ρ)

1
ωρ+1
i

e
− 1

ωi

)2
P (dω)

=
(Γ(ρ)2
Γ(λ)2

1

Γ(ρ)

∫ ∞

0

1

x2λ−ρ+1
e−

1
xdx

)⌊aN2/3⌋

=
(Γ(ρ)Γ(2λ − ρ)

Γ(λ)2

)⌊aN2/3⌋
.(A.11)

We continue by taking the logarithm of (A.11),

log (A.11) = ⌊aN2/3⌋
(
log Γ(ρ) + log Γ(2λ− ρ)− 2 log Γ(λ)

)
.

Note that ρ = λ − bN−1/3 and 2λ − ρ = λ + bN−1/3. We can thus assume that b > 0, the other
case being symmetric. Next, note that if we Taylor expand

(A.12) log Γ(ρ) + log Γ(2λ− ρ)− 2 log Γ(λ),

then both the zeroth and the first derivative terms cancel out.
The assumption 0 < b ≤ 1

4εN
1/3 implies that

0 < ε ≤ ρ < λ < 2λ− ρ ≤ µ− ε

2
< µ.

In addition, log Γ(•) is a smooth function on R>0. Thus, the second derivative term and the
remainder from the expansion can be upper bounded using a constant C ′ depending only on ε and
µ and we get

(A.12) ≤ C ′b2N−2/3 + C ′b3N−1.

Again, by the assumption on b, C ′b2N−2/3 + C ′b3N−1 ≤ (1 + ε/4)C ′b2N−2/3. The claim follows
with C = (1 + ε/4)C ′. �
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A.5. Sub-exponential random variables. Let {Xi} be a sequence of i.i.d. sub-exponential
random variables with parameters K0 > 0 and λ0 > 0. This means

E[eλ(X1−E[X1])] ≤ eK0λ2
for all λ ∈ [0, λ0].(A.13)

Define S0 = 0 and Sk = X1 + · · · +Xk − kE[X1] for k ≥ 1. The following theorem captures the
right tail behavior of the running maximum.

Theorem A.11. Assume (A.13). Then

P

(
max
0≤k≤n

Sk ≥ t
√
n
)
≤

{
e−t2/(4K0) if t ≤ 2λ0K0

√
n ,

e−
1
2
λ0t

√
n if t ≥ 2λ0K0

√
n .

Proof. Since Sk is a mean zero random walk, eλSk is a non-negative sub-martingale for λ ≥ 0. By
Doob’s maximal inequality,

P

(
max
0≤k≤n

Sk ≥ t
√
n
)
= P

(
max
0≤k≤n

eλSk ≥ eλt
√
n
)
≤ E[eλSn ]

eλt
√
n

=
E[eλ(X1−E[X1])]n

eλt
√
n

≤ enK0λ2−λt
√
n,

where in the last inequality we applied (A.13), for which we now assume λ ∈ [0, λ0]. On this
interval, the exponent h(λ) = nK0λ

2 − λt
√
n is minimized at λt = min{λ0,

t
2K0

√
n
} and

h(λt) =

{
− t2

4K0
if t ≤ 2λ0K0

√
n ,

nK0λ
2
0 − λ0t

√
n ≤ −1

2λ0t
√
n if t ≥ 2λ0K0

√
n .

The proof is complete. �

Next, we verify that log gamma and log inverse gamma random variables are sub-exponential.
Recall that if X ∼ Ga(α), then E[logX] = Ψ0(α), where Ψ0 is the digamma function, i.e. Ψ0(α) =
(log Γ(α))′.

Proposition A.12. Fix ε ∈ (0, µ/2). There exist positive constants K0, λ0 depending on ε such
that for each α ∈ [ε, µ − ε] and X ∼ Ga(α), we have

E[eλ(logX−Ψ0(α))] ≤ eK0λ2
for all λ ∈ [−λ0, λ0].

Proof. First, note that E[Xλ] = Γ(α+λ)
Γ(α) , provided that α + λ > 0. This last condition can be

guaranteed for all α > ε by taking λ0 small enough (depending on ε). Then, by Taylor’s theorem,

logE[eλ(logX−Ψ0(α))] = log(E[Xλ]e−λΨ0(α)) = log Γ(α+ λ)− log Γ(α)− λΨ0(α)

= Ψ1(α)
λ2

2
+ o(λ2) ≤ K0λ

2,

provided λ0 is taken sufficiently small depending on ε. The constant K0 can be chosen to not
depend on α ∈ [ε, µ − ε] because Ψ1 is a smooth function on R>0. �

A.6. Random walk estimates. Let {Xi}i∈Z>0 be an i.i.d. sequence of random variables with

E[Xi] = µ, Var[Xi] = 1 and E[|Xi − µ|3] = c3 < ∞.

Define Sk =
∑k

i=1 Xi for k ≥ 1. We have the following proposition which bounds the probability
that the running maximum of a random walk is small.

Proposition A.13. There exists a positive constant C such that for any l > 0, we have

(A.14) P

(
max

1≤k≤N
Sk < l

)
≤ C(c3l + c23)(|µ|+ 1/

√
N).

This result follows directly from the following two results from [30].
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Lemma A.14 ([30] Lemma 5). There exists an absolute constant C such that for any l > 0

(A.15) P

(
max

1≤k≤N
Sk < l

)
− P

(
max

1≤k≤N
Sk < 0

)
≤ C(c3l + c23)(|µ|+ 1/

√
N).

Lemma A.15 ([30] Lemma 7). There exists an absolute constant C such that

(A.16) P

(
max

1≤k≤N
Sk < 0

)
≤ Cc23(|µ|+ 1/

√
N).
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[33] Seppäläinen, T. (2012). Scaling for a one-dimensional directed polymer with boundary
conditions. Ann. Probab. 40 19–73. Corrected version available at arXiv:0911.2446.
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