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Introduction Binary trees with edge lengths

Rooted binary tree

Lplane - space of finite unlabeled rooted reduced binary trees with edge
lengths, including an empty tree φ = {ρ} comprised of a root vertex ρ and no
edges.

d(x , y): the length of the minimal path within T between x and y .

The length of a tree T is the sum of the lengths of its edges:

length(T ) =

#T∑
i=1

li .

The height of a tree T is the maximal distance between the root and a vertex:

height(T ) = max
1≤i≤#T

d(vi , ρ).
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Introduction Binary trees with edge lengths

Galton-Watson trees

A Galton-Watson process is a simple (Markov) model of population growth.

The process starts with a single progenitor at time t = 0.

At each integer instant t > 0 each member terminates and leaves a random
number k of offspring according to a distribution {pk}, k = 0, 1, . . . .

If p0 + p2 = 1 (only zero or two offspring are possible), the process is called
binary.

If E(k) = 1 (constant expected progeny), the process is called critical.

A Galton-Watson tree describes a trajectory of the process.

A Galton-Watson tree with i.i.d. exponential edge lengths with parameter λ
is called exponential GW tree GW(λ).
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Introduction Prune invariance

Prune invariance results

Neveu (1986): established invariance of an exponential critical and
sub-critical binary Galton-Watson tree GW(λ) with respect to the tree
erasure (a.k.a. leaf-length pruning, trimming).

Burd, Waymire, and Winn (2000): established invariance of the critical binary
Galton-Watson tree (with no edge lengths) with respect to Horton pruning
(cutting the tree leaves).

Burd, Waymire, and Winn (2000): established that Horton prune invariance
is a characteristic property of the critical binary tree, in the space of (not
necessarily binary) Galton-Watson trees with no edge lengths.

Duquesne and Winkel (2012): established invariance of the Galton-Watson
(non-binary) trees with respect to hereditary reduction.

Next: give a unified description of various pruning operations and generalize the
invariance results.
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Generalized dynamical pruning Definition

Partial order on trees

∆x,T is the subtree descendant to point x ∈ T .

Partial order: T1 � T2 if and only if ∃ an isometry f : (T1, d)→ (T2, d).

ρ
1

T
1

T
2

Δ
x,T

x

T

(b) Isometry(a) Descendant tree
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Generalized dynamical pruning Definition

Generalized dynamical pruning

Consider a monotone non-decreasing ϕ : Lplane → R+, i.e. ϕ(T1) ≤ ϕ(T2)
whenever T1 � T2.

Generalized dynamical pruning operator

St(ϕ,T ) : Lplane → Lplane

induced by ϕ at any t ≥ 0 cuts all subtrees ∆x,T for which the value of ϕ is
below threshold t.

Formally,

St(ϕ,T ) := ρ ∪
{
x ∈ T \ ρ : ϕ

(
∆x,T

)
≥ t
}
.

Here, Ss(ϕ,T ) � St(ϕ,T ) whenever s ≥ t.
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Generalized dynamical pruning Definition

Generalized dynamical pruning

Informally,

Consider a function ϕ : T → R+, that is non-decreasing along every path
from a leaf to the root.

Generalized dynamical pruning operator St(ϕ,T ) induced by ϕ at any t ≥ 0
cuts all points x ∈ T for which the value of ϕ is below threshold t.

IIIIII

Generic stages in dynamical pruning of a tree: an example.
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Generalized dynamical pruning Examples

Example 1: Pruning by tree height (tree erasure)

Let the function ϕ(T ) equal the height of T :

ϕ(T ) = height(T ).

Semigroup property: St ◦ Ss = St+s for any t, s ≥ 0.

It coincides with the tree erasure introduced by Neveu (1986), and further
examined by Le Jan (1991), Duquesne and Winkel (2007, 2012), Evans,
Pitman and Winter (2006), and others.
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Generalized dynamical pruning Examples

Example 2: Pruning by tree length

Let the function ϕ(T ) equal the total lengths of T :

ϕ(T ) = length(T ).

No semigroup property.

Closely related to the dynamics of a particular Hamilton-Jacobi equation.

VIVIIIIII

a
b

c

a-t

b-t b-t

c c c a+b+c-t

a+b <t <a+b+cb ≤ t ≤ a+ba ≤ t < b0 < t < at  = 0
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Generalized dynamical pruning Examples

Example 3: Horton pruning

Let
ϕ(T ) = k(T )− 1,

where the Horton-Strahler order k(T ) is the minimal number of Horton
prunings R (cutting the tree leaves and applying series reduction) necessary
to eliminate all points in tree T except ρ.

Semigroup property with St = Rbtc.
The Horton-Strahler order k(T ) is known as the register number as it equals
the minimum number of memory registers necessary to evaluate an
arithmetic expression described by a tree T .

Studied by Burd, Waymire, and Winn (2000).
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Generalized dynamical pruning Prune invariance of Galton-Watson trees

Prune invariance for Galton-Watson trees

Theorem (Arnold, Kovchegov, IZ [2017] )

Let T
d
= GW(λ) be an exponential critical binary Galton-Watson tree with

parameter λ > 0. Then, for any monotone non-decreasing function
ϕ : Lplane → R+, the pruned tree T t conditioned on surviving is an exponential
critical binary Galton-Watson tree with parameter

Et(λ, ϕ) = λpt(λ, ϕ).

Formally,

T t :=
{
St(ϕ,T )|St(ϕ,T ) 6= φ

} d
= GW(λpt

(
λ, ϕ)

)
,

where pt(λ, ϕ) = P(St(ϕ,T ) 6= φ).
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Generalized dynamical pruning Prune invariance of Galton-Watson trees

Prune invariance results

Moreover,

Theorem (Arnold, Kovchegov, Z [2017] )

(a) If ϕ(T ) equals the total length of T (ϕ = length(T )), then

Et(λ, ϕ) = λe−λt
[
I0(λt) + I1(λt)

]
.

(b) If ϕ(T ) equals the height of T (ϕ = height(T )), then

Et(λ, ϕ) =
2λ

λt + 2
.

(c) If ϕ(T ) + 1 equals the Horton-Strahler order of the tree T , then

Et(λ, ϕ) = λ2−btc.
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Generalized prune invariance Definition

Generalized prune-invariance

Definition (Prune-invariance)

Consider a probability measure µ on Lplane such that µ(φ) = 0. Let

ν(T ) = µ ◦ S−1
t (T ) = µ

(
S−1
t (T )

)
.

Measure µ is called invariant with respect to the pruning operator St(ϕ,T ) if for
any tree T ∈ Lplane we have

µ(T ) = ν(T |T 6= φ).

Also need the invariance of the distribution of edge lengths in the pruned tree
Tt := St(ϕ,T ). Kovchegov & Z [2017] - arXiv:1608.05032

A weaker mean invariance only preserves the means of selected branch
statistics.

Open question: finding and classifying all the invariant probability measures µ on
Lplane.
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Horton pruning

Horton pruning

Pruning R(T ) of a finite tree T cuts the leaves and degree-2 chains
connected to leaves.

Nodes cut at k-th pruning, Rk−1(T ) \ Rk(T ), have order k, k ≥ 1.

A chain of the same order vertices is called branch.

Let Nk is the number of branches of order k ; and Nij is the number of
instances when an order-i branch merges an order-j branch.
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Horton pruning

Horton pruning

Tree T has order k(T ) = 3 since it is eliminated in three prunings.

T R2(T) R3(T) R(T) 
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Horton pruning Statistical approach to prune invariance

Statistical approach to prune invariance
[Kovchegov and Z, Fractals, 2016]

The Tokunaga coefficient Tij is the average number of branches of order i
that merge with a branch of order j :

Tij =
E[Nij ]

E[Nj ]
, 1 ≤ i < j ≤ K .

The coefficients Tij form the Tokunaga matrix

TK =


0 T1,2 T1,3 . . . T1,K

0 0 T2,3 . . . T2,K

0 0
. . .

. . .
...

...
...

. . . 0 TK−1,K

0 0 0 0 0

 .

Ilya Zaliapin (UNR) Self-Similar Trees 03/31/2018 (OSU-FPD) 19 / 33



Horton pruning Statistical approach to prune invariance

Statistical approach to prune invariance

Theorem ( Kovchegov and Z [2016] )

(Subject to some conditions) a probability measure µ on Lplane is mean Horton
invariant if and only if

Ti,i+k = Tk for all i , k > 0

for some sequence Tk ≥ 0.

The Tokunaga matrix becomes Toeplitz

TK =


0 T1 T2 . . . TK−1

0 0 T1 . . . TK−2

0 0
. . .

. . .
...

...
...

. . . 0 T1

0 0 0 0 0

 .

Burd, Waymire and Winn [2000] established this for Galton-Watson trees.
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Horton pruning Geometric branching process

Geometric branching process
Kovchegov and Z [2017, 2018]

A Geometric Branching Process (GBP) produces prune-invariant trees for
arbitrary Tokunaga sequences {Tk}.
A special class of critical Tokunaga processes appears with

Tk = (c − 1)ck−1, c ≥ 1.

(The case c = 2 corresponds to the critical binary GW tree.)

The critical Tokunaga property is equivalent to the time shift invariance of
the GBP.

The critical Tokunaga trees are characterized by the property that each of
their sub-trees (properly defined) has the same distribution as a random tree.

A more general property Tk = a ck−1 is equivalent to the asymptotic (in
branch order) time shift invariance of the GBP.

Interestingly, the Tokunaga trees with Tk = a ck−1 are well known in applied
literature...
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Horton pruning Tokunaga trees

River networks

[Shreve 1966, 1969; Tokunaga, 1978; Peckham, 1995; Burd et al., 2000; Z et al., 2009;

Zanardo et al., 2013]

http://wwf.panda.org 
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Horton pruning Tokunaga trees

Hillslope drainage networks

[Z et al., 2009]

Makalu	  Everest	  
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Horton pruning Tokunaga trees

Vein structure of botanical leaves

[Newman et al., 1997; Turcotte et al., 1998]
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Horton pruning Tokunaga trees

Earthquake aftershock clusters

[Yoder et al., 2011]
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Horton pruning Tokunaga trees

Diffusion limited aggregation

[Ossadnik, 1992; Masek and Turcotte, 1993]

http://markjstock.org/dla3d/images/save47c_e.png 
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Horton pruning Tokunaga trees

Two dimensional site percolation

[Turcotte et al., 1999; Yakovlev et al., 2005; Z et al., 2006]

http://www.opencourse.info/anderson/l1024pc.png 
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Horton pruning Tokunaga trees

Dynamics of billiards

[Gabrielov et al., 2008; Patterson et al., 2016]
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Tree representation of a function

Tree representation of a function, level(Xt)
Z and Kovchegov, 2012
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Tree representation of a function

Tree representation of a function

(a) Tree T  (b) Harris path HT 

Theorem (J. Neveu and J. Pitman [1989], J. F. Le Gall [1993] )

The level-set tree level(Xt) is an exponential critical binary Galton-Watson tree
GW(λ) if and only if the rises and falls of Xt , excluding the last fall, are i.i.d.
exponential random variables with parameter λ/2.
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Tree representation of a function

Pruning time series

Proposition ( Z and Kovchegov [2012])

1 The transition from a time series Xk to the time series Xmin
k of its local

minima corresponds to the Horton pruning of the level-set tree level(X ).

2 A symmetric random walk in discrete time corresponds to a critical Tokunaga
tree with c = 2 (i.e., Tk = 2k−1). In particular, the critical Galton-Watson
tree corresponds a symmetric exponential random walk.

Open problem: Finding all the time series models invariant with respect to Horton
pruning.
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Summary

Summary

Generalized dynamical pruning encompasses a number of continuous and
discrete pruning operations.

Horton prune invariance is equivalent to the existence of Tokunaga
coefficients Tk := Ti,i+k (under some natural conditions).

Geometric Branching Model generates prune-invariant trees for an arbitrary
sequence Tk .

Tokunaga trees, Tk = ack−1, is a subclass widely seen in observations. It is
equivalent to the time shift invariance.

Future: A possibility to study non-linear wave dynamics as a dynamical
pruning (proof-of-concept results for Hamilton-Jacobi systems).
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