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Enzymes
• Large biological molecules that act as catalysts for 

complex biochemical reactions in living organisms
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• Deterministic model: Michaelis-Menten equation
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• Here: stochastic model, limited #enzymes, shared 



Bottlenecks in Enzymatic Processing
Competitive enzymatic degradation in E. Coli: 

Synthetic shared degradation model

Oxidative stress response in S. pombe:

QUEUEING!
Translational crosstalk:



Connection to Queueing 

•Queueing theory traditionally has 
used stochastic models to understand 
congestion effects in man-made 
systems in engineering and business 
where the processing resources are 
limited
•Queueing theory useful for 
formulating, analysing and interpreting 
models
• Two interesting regimes
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Outline

• Competition for common downstream (degradation) 
enzyme

• Adaptive enzymatic processing

• Enzymatic networks with shared resources



Competition for Enzymatic Processing
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Competition for Degradation
• Two uncoupled proteins X1 and X2 are processed 

downstream by a common enzyme E

E(L copies of enzyme E)
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dilution/reneging

degradation/processing
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Biochemical reaction network:  protein species

Assume: exponential reaction times and binding is instantaneous 
Key stochastic processes (i=1,2):

Stochastic Model

Qi(t) = total number of molecules of species i in the system at time t
(includes free molecules and those being degraded)

N(t) = total number of protein molecules in system at time t

X1,X2
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 Multiclass Queue: Processing in Random Order + 
Reneging

L

Total service rate = ⇤(n) = min(n, L)µ + n�

n = total number of protein molecules in system
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Steady-State Distribution 
(Quasireversible Queue)

    Markovian state descriptor: ordered list of the types in the 
queue (incl. those being processed) 

    Theorem (Kelly): There is a unique steady-state distribution 
for the “list” Markov process. The associated steady-state 
distribution for the total number of molecules in the system, 
N, is:

   
     and conditioned on N=n, the stationary distribution for the 

molecular count process Q is a binomial distribution with 
parameters                :
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E[Qi] = piE[N ]
E[Q2
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Fano factor - can be computed 
exactly
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Moments	for	N
• Distribution:																			

where

• Normalizing	constant	c:

• Moment	generating	function:
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Zero Dilution Limit for L=1
• For               and                          

 Here                  , 

γ → 0 ρ = Λ / µ < 1
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• Correlation as a function of
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Dynamics (Stochastic Simulations, L=1)
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Theorem (at balance:                          )
 
ρ  λ1 + λ2

µ
= 1, γ = 0

 

Let  Q̂i
r (t) = Qi (r

2t)
r

,  i = 1,2  (diffusion scaling)

As  r→∞,

Q̂i
r (i)→λi W (i),   i = 1,2  (convergence in distribn)

where W  is a one-dimensional reflecting 
Brownian motion.
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• Finitely many types of proteins 
Generalizations

X1,  ... , Xm
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Fig. 2. Correlation resonance for coupled enzymatic degradation: (a) steady-state
correlation in protein levels as a function of �1 (line - theory, symbols - stochastic
simulation) for two protein types and ten copies of the enzyme; other parameters
were µ = 1,�2 = 5, � = 0.01, ⌘+ = 20, ⌘

�

= 100 [3]. (b-d) Sample trajec-
tories resulting from stochastic simulations for �1 = 1, 5, 20, respectively [3]. (e)
Two-protein enzymatic degradation circuit in E. coli [12]. (f) A two-dimensional
histogram of YFP and CFP levels in individual cells during periodic induction of one
of the proteins (YFP) by doxycycline shows significant correlations [12].

bound or unbound) occurs at rate �. The biochemical reac-
tions associated with this model are given for i = 1, . . . , n,
by
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Assuming all reaction times are exponentially distributed,
using a Michaelis-Menten approximation for fast bind-
ing/unbinding reactions, and reformulating the stochastic
model as a multi-class queue which satisfies a property called
quasi-reversibility [4], we obtained an explicit expression for
the steady-state distribution of the protein counts and derived
formulas for associated steady-state moments. It yielded the
following steady-state correlation between the total numbers
(bound plus unbound) of protein types i and j

r
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is the total protein synthesis
rate, and F = V ar(N)/E[N ] is the steady-state Fano fac-
tor for the total number of protein molecules N in the sys-
tem. The steady-state moments for N were given explicitly in
terms of confluent hypergeometric functions. A typical graph
produced using these formulas (and compared with stochastic

simulation) is depicted in Figure 2a for the model with two
types of protein. This figure illustrates a general phenomenon
of “correlation resonance”: with small dilution rate (� ⌧ Lµ),
the correlation has a peak near the “balance point” where
the total rate of influx of proteins is equal to the maximum
processing capacity of the enzyme, i.e., where ⇤ = Lµ. This
correlation resonance is strongest in the zero dilution limit
(� ! 0) where we obtained the following asymptotic formula
for i 6= j, L = 1, K
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Fig. 3. Schematic diagram of the enzymatic cascade (left) and the related parallel
processing system (right) for n = 3.
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(15) and stochastic simulations (6400 realizations); b. Cross-correlation coe�cients
r1j(⌧) for di↵erent j = 1, ...8 for the same system � = 8, lines - analytical
expression (15), symbols - numerical simulations. c. Cross-correlation coe�cients
r
ij

(⌧ for di↵erent j = 2, ...8 for the same system with � = 9.5. d. Same for
� = 0.01.
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Fig. 1. Generality of correlation resonance in biochemical networks. For each di↵erent type of network, a levels of all species are highly correlated at the critical point
where the input rate � is balanced by removal of molecules from the system. (A) Parallel network of proteins degraded by a common enzyme. (B) Serial network of proteins
interconverted by a common enzyme. (C) Parallel network of molecules processed by di↵erent enzymes that all use a common cofactor. (D) Serial network of molecules
processed by di↵erent enzymes that all use a common cofactor. (E-H) Maximum correlations between X

1

and X
j

(denoted rmax

1j

), for each network. For the two serial

networks, these maximal correlations occur at �- and j- dependent time delays ⌧
max

. (I) Example trajectories from the underloaded (left), balanced (center), and overloaded
(right) regimes of the serial network shown in (B). For networks with shared enzymes, the number of enzymes was fixed at L = 80. For the networks with a shared cofactor,
the cofactor was synthesized at rate �

C

= 80 [AND DEGRADED????].

Results

Long-range correlations in enzymatic networks. In this section
we consider four enzymatic networks in which reactions are
limited by a common resource (Fig. 1A-D). For the parallel
network with the shared enzyme (Fig. 1A), we assume that L
enzymes E catalyze degradation of n proteins X

1,...n

, however
the same model can be applied to conversion of substrates X

i

into their corresponding products X⇤

i

. The biochemical reac-
tions comprising this system read
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Here � is the synthesis rate of all proteins, ⌘
±

are bind-
ing/unbinding rates of proteins to the enzyme, µ is the en-
zyme processing rate, and � is the dilution rate of all proteins
(bound and unbound).
For the serial network with the shared enzyme (Fig. 1B),

we assume that the only input to the system is synthesis of
protein E

1

with rate �, the same pool of L enzymes E convert
X

i

into X
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, and the last stage of enzymatic process degrades
the protein E
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For the cases with shared co-factors, we assume that enzymes
are not rate-limiting and excluded them from the model.
Instead, we assumed that the enzymatic reactions consume
shared cofactor C that is produced with rate �

C

and is de-

graded with rate �
C

. For the parallel case
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Fig. 2. (A) Time-shifted correlations in di↵erent regimes for the serial network
with a shared enzyme. (B) The value of the maximum correlation between Q

1

and Q
j

(rmax

1j

) and the time delay at which that correlation is found (⌧
max

). In
the underloaded regime the delay is short and correlations are small. Near the bal-
ance point, delay increases slightly while correlation increases dramatically. In the
overloaded regime the delay becomes very large and correlations decrease. (C) Cor-
relation length in the serial biochemical network with a shared enzyme. Correlation
length was calculated as distance in reaction steps at which r1jmax = 0.5. Linear
interpolation was used to provide a continuous distance (SI Text). Parameters for all
simulations were � = 0.01, µ = 1, ⌘+ = 1000, ⌘� = 0, and L = 80.
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Fig. 1. Generality of correlation resonance in biochemical networks. For each di↵erent type of network, a levels of all species are highly correlated at the critical point
where the input rate � is balanced by removal of molecules from the system. (A) Parallel network of proteins degraded by a common enzyme. (B) Serial network of proteins
interconverted by a common enzyme. (C) Parallel network of molecules processed by di↵erent enzymes that all use a common cofactor. (D) Serial network of molecules
processed by di↵erent enzymes that all use a common cofactor. (E-H) Maximum correlations between X

1

and X
j

(denoted rmax

1j

), for each network. For the two serial

networks, these maximal correlations occur at �- and j- dependent time delays ⌧
max

. (I) Example trajectories from the underloaded (left), balanced (center), and overloaded
(right) regimes of the serial network shown in (B). For networks with shared enzymes, the number of enzymes was fixed at L = 80. For the networks with a shared cofactor,
the cofactor was synthesized at rate �

C

= 80 [AND DEGRADED????].

Results

Long-range correlations in enzymatic networks. In this section
we consider four enzymatic networks in which reactions are
limited by a common resource (Fig. 1A-D). For the parallel
network with the shared enzyme (Fig. 1A), we assume that L
enzymes E catalyze degradation of n proteins X

1,...n

, however
the same model can be applied to conversion of substrates X

i

into their corresponding products X⇤

i

. The biochemical reac-
tions comprising this system read

? ��! X
i

, i = 1, . . . n

X
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+ E
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+

��*)��
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�

X
i

E
µ�! E, i = 1, . . . n

X
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E
��! E, X

i

��! ?

[1]

Here � is the synthesis rate of all proteins, ⌘
±

are bind-
ing/unbinding rates of proteins to the enzyme, µ is the en-
zyme processing rate, and � is the dilution rate of all proteins
(bound and unbound).
For the serial network with the shared enzyme (Fig. 1B),

we assume that the only input to the system is synthesis of
protein E

1

with rate �, the same pool of L enzymes E convert
X

i

into X
i+1

, and the last stage of enzymatic process degrades
the protein E

n�1

:
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1

X
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⌘

+
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E
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E
��! E, X
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��! ?

[2]

For the cases with shared co-factors, we assume that enzymes
are not rate-limiting and excluded them from the model.
Instead, we assumed that the enzymatic reactions consume
shared cofactor C that is produced with rate �

C

and is de-

graded with rate �
C

. For the parallel case

? ��! X
i

, ? �C�! C

X
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+ C
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�

X
i

C
µ�! ?, i = 1, . . . n

X
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[3]
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Fig. 2. (A) Time-shifted correlations in di↵erent regimes for the serial network
with a shared enzyme. (B) The value of the maximum correlation between Q

1

and Q
j

(rmax

1j

) and the time delay at which that correlation is found (⌧
max

). In
the underloaded regime the delay is short and correlations are small. Near the bal-
ance point, delay increases slightly while correlation increases dramatically. In the
overloaded regime the delay becomes very large and correlations decrease. (C) Cor-
relation length in the serial biochemical network with a shared enzyme. Correlation
length was calculated as distance in reaction steps at which r1jmax = 0.5. Linear
interpolation was used to provide a continuous distance (SI Text). Parameters for all
simulations were � = 0.01, µ = 1, ⌘+ = 1000, ⌘� = 0, and L = 80.

2 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author

Correlation resonance near 
balance

m = 8,  λi = λ  ∀i,  L = 80,  µ=1

F − Fano factor for N

Xi + E
⌘+

��*)��
⌘�

XiE (1)

P (Q = (q1, . . . , qm)) = P (N = n)
n!

q1! . . . qm!

pq11 . . . pqmm (2)

⇤ =

mX

i=1

�i, pi = �i/⇤ (3)

⌘+ = +1, ⌘� = 0 (4)

m = 2 �2 = 5 µ = 10 � = .01

⌘+ = 10

8
(K = 0) ⌘� = 1000(K > 0)

m = 2 �2 = 5 µ = 1 � = .1 ⌫ = 1

⌘+ = 200 ⌘� = 1000

? �i�! Xi (production)

Xi + E
⌘�! XiE (binding of enzyme)

XiE
µ�! Pi + E (degradation)

XiE
��! E, Xi

��! ? (dilution)

(5)

? �i�! Xi

Xi + E
⌘+

��*)��
⌘�

XiE
µ�! Pi + E

XiE
��! E, Xi

��! ?.

(6)

? ��! X1

Xi + E
⌘+

��*)��
⌘�

XiE
µ�! Xi+1 + E, i = 1, . . . ,m� 1

Xm + E
⌘+

��*)��
⌘�

XmE
µ�! E

XiE
��! E, Xi

��! ?, i = 1, . . . ,m

(7)

? �i�! Xi (production)

Xi + E
⌘�! XiE (binding of enzyme)

XiE
µ�! E (degradation)

XiE
��! E, Xi

��! ? (dilution)

(8)

1

�2

µ
 ↵  � (20)

p
i

= �
i

/
X

j

�
j

(21)

N =

X

j

q
j

(22)

P (N = n) = c
⇤

n

Q
n

`=1 �(`)
, �(`) = µmin(`, L) + `� (23)

3



Generalizations
• Reversible binding Xi + E

⌘+

��*)��
⌘�

XiE (1)

1

0 5 10 15 200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

λ1

co
rre

lat
ion

 

 
simulated L=10, K=0
analytic L=10, K=0
simulated L=10, K=5

numeric L=10, K=5
analytic L=10, K=5

0 5 10 15 200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

λ1

co
rre

lat
ion

 

 
simulated L=1, K=0
analytic L=1, K=0
simulated L=1, K=5
analytic L=1, K=5

(c) (d)

Xi + E
⌘+

��*)��
⌘�

XiE (1)

P (Q = (q1, . . . , qm)) = P (N = n)
n!

q1! . . . qm!

pq11 . . . pqmm (2)

⇤ =

mX

i=1

�i, pi = �i/⇤ (3)

⌘+ = +1, ⌘� = 0 (4)

m = 2 �2 = 5 µ = 10 � = .01

⌘+ = 10

8
(K = 0) ⌘� = 1000(K > 0) K = ⌘�/⌘+

�2 = 5 µ = 1 � = .1

⌘+ = 10

8
(K = 0) ⌘� = 1000(K > 0)

? �i�! Xi (production)

Xi + E
⌘�! XiE (binding of enzyme)

XiE
µ�! Pi + E (degradation)

XiE
��! E, Xi

��! ? (dilution)

(5)

? �i�! Xi

Xi + E
⌘+

��*)��
⌘�

XiE
µ�! Pi + E

XiE
��! E, Xi

��! ?.

(6)

? ��! X1

Xi + E
⌘+

��*)��
⌘�

XiE
µ�! Xi+1 + E, i = 1, . . . ,m� 1

Xm + E
⌘+

��*)��
⌘�

XmE
µ�! E

XiE
��! E, Xi

��! ?, i = 1, . . . ,m

(7)

1

L = 1



Generalizations
• Reversible binding 

• Fluctuating enzymes

Xi + E
⌘+

��*)��
⌘�

XiE (1)

1

0 10 20 30 40 50
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

λ
1

c
o
rr

e
la

ti
o
n

 

simulated, <L>=10
simulated, L=10

(c)

0 5 10 15 200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

λ1

co
rre

lat
ion

 

 
simulated L=10, K=0
analytic L=10, K=0
simulated L=10, K=5

numeric L=10, K=5
analytic L=10, K=5

0 5 10 15 200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

λ1

co
rre

lat
ion

 

 
simulated L=1, K=0
analytic L=1, K=0
simulated L=1, K=5
analytic L=1, K=5

(c) (d)

Xi + E
⌘+

��*)��
⌘�

XiE (1)

P (Q = (q1, . . . , qm)) = P (N = n)
n!

q1! . . . qm!

pq11 . . . pqmm (2)

⇤ =

mX

i=1

�i, pi = �i/⇤ (3)

⌘+ = +1, ⌘� = 0 (4)

m = 2 �2 = 5 µ = 10 � = .01

⌘+ = 10

8
(K = 0) ⌘� = 1000(K > 0) K = ⌘�/⌘+

�2 = 5 µ = 1 � = .1

⌘+ = 10

8
(K = 0) ⌘� = 1000(K > 0)

? �i�! Xi (production)

Xi + E
⌘�! XiE (binding of enzyme)

XiE
µ�! Pi + E (degradation)

XiE
��! E, Xi

��! ? (dilution)

(5)

? �i�! Xi

Xi + E
⌘+

��*)��
⌘�

XiE
µ�! Pi + E

XiE
��! E, Xi

��! ?.

(6)

? ��! X1

Xi + E
⌘+

��*)��
⌘�

XiE
µ�! Xi+1 + E, i = 1, . . . ,m� 1

Xm + E
⌘+

��*)��
⌘�

XmE
µ�! E

XiE
��! E, Xi

��! ?, i = 1, . . . ,m

(7)

1

Xi + E
⌘+

��*)��
⌘�

XiE (1)

P (Q = (q1, . . . , qm)) = P (N = n)
n!

q1! . . . qm!

pq11 . . . pqmm (2)

⇤ =

mX

i=1

�i, pi = �i/⇤ (3)

⌘+ = +1, ⌘� = 0 (4)

m = 2 �2 = 5 µ = 10 � = .01

⌘+ = 10

8
(K = 0) ⌘� = 1000(K > 0) K = ⌘�/⌘+

m = 2 �2 = 5 µ = 1 � = .1

⌘+ = 10

8
(K = 0) ⌘� = 1000(K > 0)

? �i�! Xi (production)

Xi + E
⌘�! XiE (binding of enzyme)

XiE
µ�! Pi + E (degradation)

XiE
��! E, Xi

��! ? (dilution)

(5)

? �i�! Xi

Xi + E
⌘+

��*)��
⌘�

XiE
µ�! Pi + E

XiE
��! E, Xi

��! ?.

(6)

? ��! X1

Xi + E
⌘+

��*)��
⌘�

XiE
µ�! Xi+1 + E, i = 1, . . . ,m� 1

Xm + E
⌘+

��*)��
⌘�

XmE
µ�! E

XiE
��! E, Xi

��! ?, i = 1, . . . ,m

(7)

? ⌫�! E, E
��! ?, XiE

��! ; (8)

1

L = 1

Xi + E
⌘+

��*)��
⌘�

XiE (1)

P (Q = (q1, . . . , qm)) = P (N = n)
n!

q1! . . . qm!

pq11 . . . pqmm (2)

⇤ =

mX

i=1

�i, pi = �i/⇤ (3)

⌘+ = +1, ⌘� = 0 (4)

m = 2 �2 = 5 µ = 10 � = .01

⌘+ = 10

8
(K = 0) ⌘� = 1000(K > 0)

m = 2 �2 = 5 µ = 1 � = .1 ⌫ = 1

⌘+ = 200 ⌘� = 1000

? �i�! Xi (production)

Xi + E
⌘�! XiE (binding of enzyme)

XiE
µ�! Pi + E (degradation)

XiE
��! E, Xi

��! ? (dilution)

(5)

? �i�! Xi

Xi + E
⌘+

��*)��
⌘�

XiE
µ�! Pi + E

XiE
��! E, Xi

��! ?.

(6)

? ��! X1

Xi + E
⌘+

��*)��
⌘�

XiE
µ�! Xi+1 + E, i = 1, . . . ,m� 1

Xm + E
⌘+

��*)��
⌘�

XmE
µ�! E

XiE
��! E, Xi

��! ?, i = 1, . . . ,m

(7)

? ⌫�! E, E
��! ?, XiE

��! ; (8)

1

L = 10



                        Experiment



Queueing in a Synthetic Gene 
Network

• Two independently synthesized fluorescent proteins: YFP and 
CFP    in E Coli

• ClpXP protease degrades LAA tagged proteins

• Tet promoter driving YFP
– Repressible by TetR
– Tunable by Doxycycline

• Lac/Ara promoter driving CFP
– Activated by AraC
– Tunable by Arabinose
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Effect of Coupling on Mean: 

Experiment: modulated 
doxycycline



Dynamic Modulation

     
     Red trace: periodic influx of doxycycline

Green trace: response in level of YFP 
Blue trace: response in level of CFP due to coupled 
degradation
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    Adaptive Enzymatic Processing 
                   (Theory) 



Stochastic Model with Adaptation

If enzymes are underloaded - make less
If enzymes are overloaded - make more

? �i�! X
i

, ? ⌫�! E, [16]

X
i

+ E
⌘

+

��*)��
⌘

�

X
i

E
µ�! E, [17]

X
i

E
��! ?, X

i

��! ?, E
��! ?. [18]

where the enzyme synthesis rate ⌫ is allowed to take various
forms as a function of the protein counts Q

i

. The simplest
form to explore first is ⌫(Q) where Q =

P
i

Q
i

is the total
number of all protein molecules in the system. Similar sys-
tems of enzymatic reactions with feedback were explored in
the literature (see, for example, [10]), however only in a deter-
ministic model, and with a single class of substrates for each
enzyme.

Deterministic dynamics. In the limit of large num-
bers of all molecules and fast binding-unbinding reactions
(Michaelis-Menten approximation), the system can be de-
scribed by the mass-action equations for the deterministic
variables q

i

and ` that denote concentrations of proteins X
i

and enzyme E, respectively:

dq
i

dt
= �

i

� µ`q
i

K
m

+
P

n

i=1 qi
� �q

i

for i = 1, . . . , n, [19]

d`

dt
= ⌫(q1, . . . , qn)� �`, [20]

where K
m

= ⌘�/⌘+ is the Michaelis-Menten constant.
Let us consider the case ⌫(q1, . . . , qn) = ↵

P
n

i=1 qi. Then
we can find the stable stationary solution of Eqs. (19)-(20) in
implicit form:

` =
↵⇤
�


µ`

K
m

+ �↵�1`
+ �

�
�1

[21]

q
i

= �
i


µ`

K
m

+ �↵�1`
+ �

�
�1

. [22]

where again ⇤ =
P

n

i=1 �i

. In the strong binding limit
K

m

! 0, these expressions simplify to

` =
↵⇤

µ↵+ �2
[23]

q
i

=
��

i

µ↵+ �2
, i = 1, ..., n. [24]

Interestingly, in spite of coupling of all x
i

via enzymatic degra-
dation, the steady-state values of q

i

depend only on their own
synthesis rate �

i

and not on any other �
j

, j 6= i. This is a
manifestation of the perfect adaptation caused by the integral
feedback via the regulated enzyme synthesis [10, 14]. Simi-
lar perfect adaptation is known to play a key role in making
bacterial chemotaxis robust against changes in overall concen-
tration of chemoattractants [5]. However, an abrupt change
in synthesis rate of one of the proteins transiently a↵ects the
rate (per molecule) at which proteins are removed from the
system, and therefore the abundances of all proteins, as the
amount of enzyme evolves to a new balance point (Fig. 6b).
The case of ⌫ = ↵q1, when only one of the proteins a↵ects the
synthesis rate of the protease, is considered in the Supplement
[CONSIDER CASE ⌫ = ↵q1 IN THe SUPPLEMENT], it is
qualitatively similar to the one presented here and also shows
perfect adaptation.
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Fig. 8. Stochastic simulation results. (a) Time course of the average pro-
tein and enzyme counts during adaptation for the model with two proteins with
�1 = 20,�2 = 30, ⌫ = 0.01Q, and initial conditions L(0) = 15,
Q1,2(0) = 0; (b) time course of correlation for several di↵erent underloaded and
overloaded initial conditions (see legend); (c) heat map of the asymptotic correla-
tion for �1 = 20,�2 = 30 in the model without adaptation (⌫ = 0) and
initial conditions L(0) = 25, Q(0) = 0; (d) same for the model with adaptation,
⌫ = 0.01Q. Other parameters are µ = 1, � = 0.01, ⌘+ = 200, ⌘

�

= 10 for
all panels. All the data presented was averaged over 3200 stochastic realizations.

Stochastic dynamics. We performed stochastic simu-
lations of reactions (16)-(18) with two types of proteins and
with ⌫ = ↵Q. Figure 8a shows the time course of the average
protein and enzyme counts during adaptation. After a tran-
sient period, the average number of copies of the enzyme ap-
proaches a value close to (�1+�2)/µ which corresponds to the
balance point. We also computed the value of the correlation
for the protein counts Q1, Q2 as a function of time. Figures 8b
depicts the time course of the correlation coe�cient for dif-
ferent combinations of the synthesis rates and initial number
of enzyme copies L(0), such that (�1 + �2)/µ is either signif-
icantly smaller or greater than L(0), that is the system after
short initial transient is either underloaded or overloaded. In
all cases the correlation coe�cient is low initially but, as L(t)
approaches the balance value (�1 + �2)/µ, tends toward high
values asymptotically. Figure 8c,d show the heat maps of
the correlations in the asymptotic regime (t ! 1) for dif-
ferent values of �1,�2. While in the non-adaptive case the
correlations are high only in the vicinity of the balance “line”
�1 +�2 = µL, in the adaptive case the correlations are strong
throughout the whole range of synthesis rates. Similar adap-
tation features are obtained for other forms of the adaptation
function, for example ⌫ = ↵Q1 (see Supplementary Text).

If the adaptation rate ⌫ depends only on the sum of all
protein counts, and the binding of proteins to enzyme is very
fast, an extension of the method used in [3] allows us to ap-
proximately express the multi-dimensional steady-state dis-
tribution for the protein counts in terms of that for a two-
dimensional birth-death process which tracks the sum Q and
the number L of the enzyme copies that are in the system. Un-
der an instant binding assumption, this finding reduces the di-
mension of the natural Markovian state descriptor from 2n+1
to 2 and allows us to explore steady-state correlations using
numerical methods for the two-dimensional process (Q,L).
Furthermore, it can be rigorously shown (see Supplementary
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Steady-State Distribution
Steady-state multivariate distribution factorizes and can
express the steady-state correlations in terms of Fano 
factor F for N:
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Fig. 2. Correlation resonance for coupled enzymatic degradation: (a) steady-state
correlation in protein levels as a function of �1 (line - theory, symbols - stochastic
simulation) for two protein types and ten copies of the enzyme; other parameters
were µ = 1,�2 = 5, � = 0.01, ⌘+ = 20, ⌘

�

= 100 [3]. (b-d) Sample trajec-
tories resulting from stochastic simulations for �1 = 1, 5, 20, respectively [3]. (e)
Two-protein enzymatic degradation circuit in E. coli [12]. (f) A two-dimensional
histogram of YFP and CFP levels in individual cells during periodic induction of one
of the proteins (YFP) by doxycycline shows significant correlations [12].

bound or unbound) occurs at rate �. The biochemical reac-
tions associated with this model are given for i = 1, . . . , n,
by

? �i�! X
i

, [1]

X
i

+ E
⌘

+

��*)��
⌘

�

X
i

E
µ�! E, [2]

X
i

E
��! E, X

i

��! ?. [3]

Assuming all reaction times are exponentially distributed,
using a Michaelis-Menten approximation for fast bind-
ing/unbinding reactions, and reformulating the stochastic
model as a multi-class queue which satisfies a property called
quasi-reversibility [4], we obtained an explicit expression for
the steady-state distribution of the protein counts and derived
formulas for associated steady-state moments. It yielded the
following steady-state correlation between the total numbers
(bound plus unbound) of protein types i and j

r
ij

=
F � 1p

(F � 1 + 1/p
i

)(F � 1 + 1/p
j

)
, i 6= j, [4]

where p
i

= �
i

/⇤,⇤ :=
P

K

k=1 �k

is the total protein synthesis
rate, and F = V ar(N)/E[N ] is the steady-state Fano fac-
tor for the total number of protein molecules N in the sys-
tem. The steady-state moments for N were given explicitly in
terms of confluent hypergeometric functions. A typical graph
produced using these formulas (and compared with stochastic

simulation) is depicted in Figure 2a for the model with two
types of protein. This figure illustrates a general phenomenon
of “correlation resonance”: with small dilution rate (� ⌧ Lµ),
the correlation has a peak near the “balance point” where
the total rate of influx of proteins is equal to the maximum
processing capacity of the enzyme, i.e., where ⇤ = Lµ. This
correlation resonance is strongest in the zero dilution limit
(� ! 0) where we obtained the following asymptotic formula
for i 6= j, L = 1, K

m

:= ⌘
�

/⌘+ = 0, and ⇢ := ⇤/µ < 1:

r
ij

=

✓
1 +

1
p
i

✓
1
⇢
� 1

◆◆
�1/2 ✓

1 +
1
p
j

✓
1
⇢
� 1

◆◆
�1/2

. [5]
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Fig. 3. Schematic diagram of the enzymatic cascade (left) and the related parallel
processing system (right) for n = 3.
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r1j(⌧) for di↵erent j = 1, ...8 for the same system � = 8, lines - analytical
expression (15), symbols - numerical simulations. c. Cross-correlation coe�cients
r
ij
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For instant irreversible binding, (N,L) is a two-
dimensional birth-death process. 
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Fig. 9. (a) Heat map of the Fano factor as a function of �1,�2 in the model
without adaptation (fixed L = 25); (b) same for the model with adaptation,
⌫ = 0.01Q. (c) steady-state correlation coe�cient as a function of �2 for �1 = 10

and L = 25 computed directly from simulated time series of Q1, Q2 and from (4)
via simulations of the Fano factor of S; (d) same for the model with adaptation
⌫ = 0.01Q. Other parameters are µ = 1, � = 0.01, ⌘+ = 200, ⌘

�

= 10 for
all panels. All the data presented was averaged over 3200 stochastic realizations.

text) that the correlation coe�cient r
ij

is still expressed via
the Fano factor of the one-dimensional distribution of the total
number of proteins by formula (10).

Under the instant binding assumption, the stochastic dy-
namics of protein X (which denotes any type of protein, so
we drop the index here, and both free and bound to E) and
enzyme E (also both free and bound to protein) can be de-
scribed by the following set of biochemical reactions (where
the quantities above the arrows now indicate propensities of
the corresponding reactions):

? ⇤�! X, ? ⌫(Q)�! E, [25]

X
µ(Q^L)�! ?, X

�Qf�! ?, [26]

E
�Lf�! ?, X + E

�(Q^L)�! ? [27]

where Q and L are the total numbers of protein X and en-
zyme E at time t, respectively, (Q ^ L) indicates the smaller
of Q and L, Q

f

= Q � (Q ^ L), and L
f

= L � (Q ^ L) are
the number of unbound copies of pertain and enzyme, respec-
tively. The last reaction denotes simultaneous removal of one
protein and one enzyme when a protein-enzyme complex is
diluted.

This set of reactions constitutes a nonlinear birth-death
process for which the steady-state distribution cannot be
found analytically. However, it can be easily found numer-
ically (see, for example Fig. ??). An approximate solution
can be found assuming that the adaptation rate ⌫(Q) and di-
lution rate � are small compared with protein synthesis and
enzymatic degradation rates ⇤, µ. In this case, the number of
enzymes changes slowly compared with the numbers of pro-
teins, and the marginal probability distribution for Q equi-
librates toward the stationary distribution P

s

(Q|L = const).
The slow dynamics of L can be found as a nonlinear birth-

death process with the birth rate ⌫(E[Q|L]) and the death
rate �. given by formula (11).

Figures 9a,b show heat maps of the Fano factor of the to-
tal protein number Q for the example of two proteins X1, X2

competing for the same enzyme E with and without adap-
tation obtained directly from the simulation of the auxiliary
two-dimensional process (25)-(27). In the case without adap-
tation, the Fano factor is close to one away from the balance
line where �1+�2 = µL (the distribution of protein is close to
Poisson), but grows much larger than one near balance. Fig-
ures 9c,d show correlations between Q1 and Q2 obtained from
direct simulations of (16)-(18) and via Eq.(4) with the Fano
factor of Q computed for the two-dimensional birth-death pro-
cess (Q,L). As expected, there is excellent agreement between
the two.

If ⌫ depends on the amount of one of the proteins (say
X1) alone, the dimension of the minimal process determining
steady state moments is more than two. However, qualita-
tive properties of adaptive queueing in this case are similar to
those seen here (see Supplementary Text).

Adaptation of linear enzymatic cascades

In this section, we consider enzymatic adaptation for the lin-
ear enzymatic chain introduced in Section XX above. In ad-
dition to reactions (6)-(9), we assume that enzymes are syn-
thesized with the rate that is proportional to the number of
unbound proteins and are diluted with the same rate � as
proteins themselves:

? ��! X1, ? ⌫�! E [28]

X
i

+ E
⌘

+

��*)��
⌘

�

X
i

E
µ�! X

i+1 + E, i = 1, ..., n� 1, [29]

X
K

+ E
⌘

+

��*)��
⌘

�

X
n

E
µ�! E, , [30]

X
i

E
��! E, X

i

��! ?, E
��! ?. [31]

Deterministic dynamics. The mass-action equations
for the deterministic variables q

i

and `in this case read:

dq1
dt

= �� µ`q
i

K
m

+
P

n

j=1 qj
� �q1 for , [32]

dq
i

dt
=

µ`(q
i�1 � q

i

)
K

m

+
P

n

j=1 qj
� �q

i

, for i = 2, . . . , n, [33]

d`

dt
= ⌫(q1, . . . , qn)� �`, [34]

Let us again consider the case ⌫(q1, . . . , qn) = ↵
P

n

i=1 qi.
In the strong binding limit K

m

! 0 and for small dilution
�, the approximate stationary solution of Eqs. (32)-(34) are
given by

q
i

=
��

µ↵

1
(1 + �2/µ↵)i

[35]

` ⇡ n�

µ

✓
1� (n� 1)�2

2µ↵2
+ ...

◆
[36]

For small �, the number of enzymes in the stationary state is
slightly below the exact balance level `

b

= n�/µ. A typical
transient regime for the 8-stage chain is shown in Fig. XX...
As in the case of adaptive enzymatic degradation described in
the previous section, the negative feedback leads to transient
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? �i�! X
i

, ? ⌫�! E, [16]

X
i

+ E
⌘

+

��*)��
⌘

�

X
i

E
µ�! E, [17]

X
i

E
��! ?, X

i

��! ?, E
��! ?. [18]

where the enzyme synthesis rate ⌫ is allowed to take various
forms as a function of the protein counts Q

i

. The simplest
form to explore first is ⌫(Q) where Q =

P
i

Q
i

is the total
number of all protein molecules in the system. Similar sys-
tems of enzymatic reactions with feedback were explored in
the literature (see, for example, [10]), however only in a deter-
ministic model, and with a single class of substrates for each
enzyme.

Deterministic dynamics. In the limit of large num-
bers of all molecules and fast binding-unbinding reactions
(Michaelis-Menten approximation), the system can be de-
scribed by the mass-action equations for the deterministic
variables q

i

and ` that denote concentrations of proteins X
i

and enzyme E, respectively:

dq
i

dt
= �

i

� µ`q
i

K
m

+
P

n

i=1 qi
� �q

i

for i = 1, . . . , n, [19]

d`

dt
= ⌫(q1, . . . , qn)� �`, [20]

where K
m

= ⌘�/⌘+ is the Michaelis-Menten constant.
Let us consider the case ⌫(q1, . . . , qn) = ↵

P
n

i=1 qi. Then
we can find the stable stationary solution of Eqs. (19)-(20) in
implicit form:

` =
↵⇤
�


µ`

K
m

+ �↵�1`
+ �

�
�1

[21]

q
i

= �
i


µ`

K
m

+ �↵�1`
+ �

�
�1

. [22]

where again ⇤ =
P

n

i=1 �i

. In the strong binding limit
K

m

! 0, these expressions simplify to

` =
↵⇤

µ↵+ �2
[23]

q
i

=
��

i

µ↵+ �2
, i = 1, ..., n. [24]

Interestingly, in spite of coupling of all x
i

via enzymatic degra-
dation, the steady-state values of q

i

depend only on their own
synthesis rate �

i

and not on any other �
j

, j 6= i. This is a
manifestation of the perfect adaptation caused by the integral
feedback via the regulated enzyme synthesis [10, 14]. Simi-
lar perfect adaptation is known to play a key role in making
bacterial chemotaxis robust against changes in overall concen-
tration of chemoattractants [5]. However, an abrupt change
in synthesis rate of one of the proteins transiently a↵ects the
rate (per molecule) at which proteins are removed from the
system, and therefore the abundances of all proteins, as the
amount of enzyme evolves to a new balance point (Fig. 6b).
The case of ⌫ = ↵q1, when only one of the proteins a↵ects the
synthesis rate of the protease, is considered in the Supplement
[CONSIDER CASE ⌫ = ↵q1 IN THe SUPPLEMENT], it is
qualitatively similar to the one presented here and also shows
perfect adaptation.
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Fig. 8. Stochastic simulation results. (a) Time course of the average pro-
tein and enzyme counts during adaptation for the model with two proteins with
�1 = 20,�2 = 30, ⌫ = 0.01Q, and initial conditions L(0) = 15,
Q1,2(0) = 0; (b) time course of correlation for several di↵erent underloaded and
overloaded initial conditions (see legend); (c) heat map of the asymptotic correla-
tion for �1 = 20,�2 = 30 in the model without adaptation (⌫ = 0) and
initial conditions L(0) = 25, Q(0) = 0; (d) same for the model with adaptation,
⌫ = 0.01Q. Other parameters are µ = 1, � = 0.01, ⌘+ = 200, ⌘

�

= 10 for
all panels. All the data presented was averaged over 3200 stochastic realizations.

Stochastic dynamics. We performed stochastic simu-
lations of reactions (16)-(18) with two types of proteins and
with ⌫ = ↵Q. Figure 8a shows the time course of the average
protein and enzyme counts during adaptation. After a tran-
sient period, the average number of copies of the enzyme ap-
proaches a value close to (�1+�2)/µ which corresponds to the
balance point. We also computed the value of the correlation
for the protein counts Q1, Q2 as a function of time. Figures 8b
depicts the time course of the correlation coe�cient for dif-
ferent combinations of the synthesis rates and initial number
of enzyme copies L(0), such that (�1 + �2)/µ is either signif-
icantly smaller or greater than L(0), that is the system after
short initial transient is either underloaded or overloaded. In
all cases the correlation coe�cient is low initially but, as L(t)
approaches the balance value (�1 + �2)/µ, tends toward high
values asymptotically. Figure 8c,d show the heat maps of
the correlations in the asymptotic regime (t ! 1) for dif-
ferent values of �1,�2. While in the non-adaptive case the
correlations are high only in the vicinity of the balance “line”
�1 +�2 = µL, in the adaptive case the correlations are strong
throughout the whole range of synthesis rates. Similar adap-
tation features are obtained for other forms of the adaptation
function, for example ⌫ = ↵Q1 (see Supplementary Text).

If the adaptation rate ⌫ depends only on the sum of all
protein counts, and the binding of proteins to enzyme is very
fast, an extension of the method used in [3] allows us to ap-
proximately express the multi-dimensional steady-state dis-
tribution for the protein counts in terms of that for a two-
dimensional birth-death process which tracks the sum Q and
the number L of the enzyme copies that are in the system. Un-
der an instant binding assumption, this finding reduces the di-
mension of the natural Markovian state descriptor from 2n+1
to 2 and allows us to explore steady-state correlations using
numerical methods for the two-dimensional process (Q,L).
Furthermore, it can be rigorously shown (see Supplementary
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Fig. 1. Generality of correlation resonance in biochemical networks. For each di↵erent type of network, a levels of all species are highly correlated at the critical point
where the input rate � is balanced by removal of molecules from the system. (A) Parallel network of proteins degraded by a common enzyme. (B) Serial network of proteins
interconverted by a common enzyme. (C) Parallel network of molecules processed by di↵erent enzymes that all use a common cofactor. (D) Serial network of molecules
processed by di↵erent enzymes that all use a common cofactor. (E-H) Maximum correlations between X

1

and X
j

(denoted rmax

1j

), for each network. For the two serial

networks, these maximal correlations occur at �- and j- dependent time delays ⌧
max

. (I) Example trajectories from the underloaded (left), balanced (center), and overloaded
(right) regimes of the serial network shown in (B). For networks with shared enzymes, the number of enzymes was fixed at L = 80. For the networks with a shared cofactor,
the cofactor was synthesized at rate �

C

= 80 [AND DEGRADED????].

Results

Long-range correlations in enzymatic networks. In this section
we consider four enzymatic networks in which reactions are
limited by a common resource (Fig. 1A-D). For the parallel
network with the shared enzyme (Fig. 1A), we assume that L
enzymes E catalyze degradation of n proteins X

1,...n

, however
the same model can be applied to conversion of substrates X

i

into their corresponding products X⇤

i

. The biochemical reac-
tions comprising this system read

? ��! X
i

, i = 1, . . . n

X
i

+ E
⌘

+

��*)��
⌘

�

X
i

E
µ�! E, i = 1, . . . n

X
i

E
��! E, X

i

��! ?

[1]

Here � is the synthesis rate of all proteins, ⌘
±

are bind-
ing/unbinding rates of proteins to the enzyme, µ is the en-
zyme processing rate, and � is the dilution rate of all proteins
(bound and unbound).
For the serial network with the shared enzyme (Fig. 1B),

we assume that the only input to the system is synthesis of
protein E

1

with rate �, the same pool of L enzymes E convert
X

i

into X
i+1

, and the last stage of enzymatic process degrades
the protein E

n�1

:

? ��! X
1

X
i

+ E
⌘

+

��*)��
⌘

�

X
i

E
µ�! X

i+1

+ E, i = 1, . . . n� 1

X
n

+ E
⌘

+

��*)��
⌘

�

X
n

E
µ�! E

X
i

E
��! E, X

i

��! ?

[2]

For the cases with shared co-factors, we assume that enzymes
are not rate-limiting and excluded them from the model.
Instead, we assumed that the enzymatic reactions consume
shared cofactor C that is produced with rate �
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and is de-

graded with rate �
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. For the parallel case
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Fig. 2. (A) Time-shifted correlations in di↵erent regimes for the serial network
with a shared enzyme. (B) The value of the maximum correlation between Q

1

and Q
j

(rmax

1j

) and the time delay at which that correlation is found (⌧
max

). In
the underloaded regime the delay is short and correlations are small. Near the bal-
ance point, delay increases slightly while correlation increases dramatically. In the
overloaded regime the delay becomes very large and correlations decrease. (C) Cor-
relation length in the serial biochemical network with a shared enzyme. Correlation
length was calculated as distance in reaction steps at which r1jmax = 0.5. Linear
interpolation was used to provide a continuous distance (SI Text). Parameters for all
simulations were � = 0.01, µ = 1, ⌘+ = 1000, ⌘� = 0, and L = 80.
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Fig. 1. Generality of correlation resonance in biochemical networks. For each di↵erent type of network, a levels of all species are highly correlated at the critical point
where the input rate � is balanced by removal of molecules from the system. (A) Parallel network of proteins degraded by a common enzyme. (B) Serial network of proteins
interconverted by a common enzyme. (C) Parallel network of molecules processed by di↵erent enzymes that all use a common cofactor. (D) Serial network of molecules
processed by di↵erent enzymes that all use a common cofactor. (E-H) Maximum correlations between X

1

and X
j

(denoted rmax

1j

), for each network. For the two serial

networks, these maximal correlations occur at �- and j- dependent time delays ⌧
max

. (I) Example trajectories from the underloaded (left), balanced (center), and overloaded
(right) regimes of the serial network shown in (B). For networks with shared enzymes, the number of enzymes was fixed at L = 80. For the networks with a shared cofactor,
the cofactor was synthesized at rate �

C

= 80 [AND DEGRADED????].

Results

Long-range correlations in enzymatic networks. In this section
we consider four enzymatic networks in which reactions are
limited by a common resource (Fig. 1A-D). For the parallel
network with the shared enzyme (Fig. 1A), we assume that L
enzymes E catalyze degradation of n proteins X

1,...n

, however
the same model can be applied to conversion of substrates X
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into their corresponding products X⇤
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Here � is the synthesis rate of all proteins, ⌘
±

are bind-
ing/unbinding rates of proteins to the enzyme, µ is the en-
zyme processing rate, and � is the dilution rate of all proteins
(bound and unbound).
For the serial network with the shared enzyme (Fig. 1B),

we assume that the only input to the system is synthesis of
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For the cases with shared co-factors, we assume that enzymes
are not rate-limiting and excluded them from the model.
Instead, we assumed that the enzymatic reactions consume
shared cofactor C that is produced with rate �

C

and is de-

graded with rate �
C

. For the parallel case
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Fig. 2. (A) Time-shifted correlations in di↵erent regimes for the serial network
with a shared enzyme. (B) The value of the maximum correlation between Q

1

and Q
j

(rmax

1j

) and the time delay at which that correlation is found (⌧
max

). In
the underloaded regime the delay is short and correlations are small. Near the bal-
ance point, delay increases slightly while correlation increases dramatically. In the
overloaded regime the delay becomes very large and correlations decrease. (C) Cor-
relation length in the serial biochemical network with a shared enzyme. Correlation
length was calculated as distance in reaction steps at which r1jmax = 0.5. Linear
interpolation was used to provide a continuous distance (SI Text). Parameters for all
simulations were � = 0.01, µ = 1, ⌘+ = 1000, ⌘� = 0, and L = 80.
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Fig. 1. Generality of correlation resonance in biochemical networks. For each di↵erent type of network, a levels of all species are highly correlated at the critical point
where the input rate � is balanced by removal of molecules from the system. (A) Parallel network of proteins degraded by a common enzyme. (B) Serial network of proteins
interconverted by a common enzyme. (C) Parallel network of molecules processed by di↵erent enzymes that all use a common cofactor. (D) Serial network of molecules
processed by di↵erent enzymes that all use a common cofactor. (E-H) Maximum correlations between X

1

and X
j

(denoted rmax

1j

), for each network. For the two serial

networks, these maximal correlations occur at �- and j- dependent time delays ⌧
max

. (I) Example trajectories from the underloaded (left), balanced (center), and overloaded
(right) regimes of the serial network shown in (B). For networks with shared enzymes, the number of enzymes was fixed at L = 80. For the networks with a shared cofactor,
the cofactor was synthesized at rate �

C

= 80 [AND DEGRADED????].

Results

Long-range correlations in enzymatic networks. In this section
we consider four enzymatic networks in which reactions are
limited by a common resource (Fig. 1A-D). For the parallel
network with the shared enzyme (Fig. 1A), we assume that L
enzymes E catalyze degradation of n proteins X

1,...n

, however
the same model can be applied to conversion of substrates X
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into their corresponding products X⇤
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tions comprising this system read
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Here � is the synthesis rate of all proteins, ⌘
±

are bind-
ing/unbinding rates of proteins to the enzyme, µ is the en-
zyme processing rate, and � is the dilution rate of all proteins
(bound and unbound).
For the serial network with the shared enzyme (Fig. 1B),

we assume that the only input to the system is synthesis of
protein E
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with rate �, the same pool of L enzymes E convert
X

i

into X
i+1

, and the last stage of enzymatic process degrades
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For the cases with shared co-factors, we assume that enzymes
are not rate-limiting and excluded them from the model.
Instead, we assumed that the enzymatic reactions consume
shared cofactor C that is produced with rate �

C

and is de-

graded with rate �
C

. For the parallel case
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Fig. 2. (A) Time-shifted correlations in di↵erent regimes for the serial network
with a shared enzyme. (B) The value of the maximum correlation between Q

1

and Q
j

(rmax

1j

) and the time delay at which that correlation is found (⌧
max

). In
the underloaded regime the delay is short and correlations are small. Near the bal-
ance point, delay increases slightly while correlation increases dramatically. In the
overloaded regime the delay becomes very large and correlations decrease. (C) Cor-
relation length in the serial biochemical network with a shared enzyme. Correlation
length was calculated as distance in reaction steps at which r1jmax = 0.5. Linear
interpolation was used to provide a continuous distance (SI Text). Parameters for all
simulations were � = 0.01, µ = 1, ⌘+ = 1000, ⌘� = 0, and L = 80.
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Fig. 1. Generality of correlation resonance in biochemical networks. For each di↵erent type of network, a levels of all species are highly correlated at the critical point
where the input rate � is balanced by removal of molecules from the system. (A) Parallel network of proteins degraded by a common enzyme. (B) Serial network of proteins
interconverted by a common enzyme. (C) Parallel network of molecules processed by di↵erent enzymes that all use a common cofactor. (D) Serial network of molecules
processed by di↵erent enzymes that all use a common cofactor. (E-H) Maximum correlations between X

1

and X
j

(denoted rmax

1j

), for each network. For the two serial

networks, these maximal correlations occur at �- and j- dependent time delays ⌧
max

. (I) Example trajectories from the underloaded (left), balanced (center), and overloaded
(right) regimes of the serial network shown in (B). For networks with shared enzymes, the number of enzymes was fixed at L = 80. For the networks with a shared cofactor,
the cofactor was synthesized at rate �

C

= 80 [AND DEGRADED????].

Results

Long-range correlations in enzymatic networks. In this section
we consider four enzymatic networks in which reactions are
limited by a common resource (Fig. 1A-D). For the parallel
network with the shared enzyme (Fig. 1A), we assume that L
enzymes E catalyze degradation of n proteins X

1,...n

, however
the same model can be applied to conversion of substrates X
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into their corresponding products X⇤
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Here � is the synthesis rate of all proteins, ⌘
±

are bind-
ing/unbinding rates of proteins to the enzyme, µ is the en-
zyme processing rate, and � is the dilution rate of all proteins
(bound and unbound).
For the serial network with the shared enzyme (Fig. 1B),

we assume that the only input to the system is synthesis of
protein E
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For the cases with shared co-factors, we assume that enzymes
are not rate-limiting and excluded them from the model.
Instead, we assumed that the enzymatic reactions consume
shared cofactor C that is produced with rate �
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and is de-
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. For the parallel case
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Fig. 2. (A) Time-shifted correlations in di↵erent regimes for the serial network
with a shared enzyme. (B) The value of the maximum correlation between Q

1

and Q
j

(rmax

1j

) and the time delay at which that correlation is found (⌧
max

). In
the underloaded regime the delay is short and correlations are small. Near the bal-
ance point, delay increases slightly while correlation increases dramatically. In the
overloaded regime the delay becomes very large and correlations decrease. (C) Cor-
relation length in the serial biochemical network with a shared enzyme. Correlation
length was calculated as distance in reaction steps at which r1jmax = 0.5. Linear
interpolation was used to provide a continuous distance (SI Text). Parameters for all
simulations were � = 0.01, µ = 1, ⌘+ = 1000, ⌘� = 0, and L = 80.
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Conclusions
• Shared processing resources produce correlated 

behavior in enzymatic networks
• By mapping stochastic enzymatic models to 

multiclass quasireversible queues, we obtained 
explicit formulas for steady-state multi-variate 
distributions and correlations

• Correlations have a strong peak near balance point
• Slow adaptation of enzymatic resources leads to high 

correlations in broad regions of parameter space
• Theoretical predictions agree with experimental 

results for a two-component synthetic gene network
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