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Enzymes

* Large biological molecules that act as catalysts for
complex biochemical reactions in living organisms
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* Deterministic model: Michaelis-Menten equation

@= ulE]olS] K n

dt  K+[S]’ n*

* Here: stochastic model, limited #enzymes, shared



Bottlenecks in Enzymatic Processing

Competitive enzymatic degradation in E. Colr: Oxidative stress response in S. pombe:
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Connection to Queueing

* Queueing theory traditionally has
used stochastic models to understand
congestion effects in man-made
systems in engineering and business
where the processing resources are
limited

* Queueing theory useful for
formulating, analysing and interpreting
models

* Two Interesting regimes



Two Regimes in Queueing

Underloaded Overloaded

Photo by llze Ziedins

No queue for iPad mini in Lndon,

Nov 2, 2012

Photo by Rik Henderson
Service rate > arrival rate Service rate < arrival rate
Queues are short Queues are long

Little competition Strong competition



Two Regimes in Queueing

Underloaded Overloaded

No queue for iPad mini in London, Nov 2, 2012 Photo by llze Ziedins

Photo by Rik Henderson
Service rate > arrival rate Service rate < arrival rate
Queues are short Queues are long

Balance: service rate = arrival rate



Outline

* Competition for common downstream (degradation)
enzyme

* Adaptive enzymatic processing

* Enzymatic networks with shared resources



Competition for Enzymatic Processing

Theory

Plac/ara JCFP-LAA

Experiment



Competition for Degradation

« Two uncoupled proteins X7 and X> are processed
downstream by a common enzyme E

duction/arrival
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Stochastic Model

Biochemical reaction network: protein species X,,X,

o 2% X, (production)
X, +F -5 X,FE (binding of enzyme)
X,F 5 FE (degradation)

X;F - E, X, @ (dilution)

Assume: exponential reaction times and binding is instantaneous
Key stochastic processes (i=1,2):

Qi(t) = total number of molecules of species ¢ in the system at time t

(includes free molecules and those being degraded)

N(t) = total number of protein molecules in system at time t



Multiclass Queue: Processing in Random Order +
Reneging

Total service rate = ¢(n) = min(n, L) + nvy

n = total number of protein molecules in system



Steady-State Distribution

(Quasireversible Queue)
Markovian state descriptor: ordered list of the types in the

gueue (incl. those being processed)

Theorem (Kelly): There is a unique steady-state distribution
for the “list” Markov process. The associated steady-state
distribution for the total number of molecules in the system,
N, Is:

C An
[1e—1 6(0)
and conditioned on N=n, the stationary distribution for the

molecular count process Q is a binomial distribution with
parameters (n; p,,p,): '
n!

P(Q = (4,,9,)) = P(N = n)——p{' py’

!
N 9!
A=2N PE= iy

P(N =n) =




Moments:

E|Q;] = piE[N]

ElQf] = pi(1—pi)E[N]+ p; E[N?]
Var(Q:) = p;(Var(N)— E[N]) + p;E[N]
E[Q:Q;] = pip;(E[N?] —E[N]) for j #i

Correlation:  E[Q.0,1-E[Q,E[Q;]
i T JVar(Q,)Var(Q,)

F-1 L.
— J#1
JE=1+1/p)F-1+1/p))
F = Var(N) Fano factor - can be computed
E[N]

exactly



Moments for N

e Distribution: P(N — n) — CHnA gb(f)
where =1
A= Z A ¢(n) = min(n, L)u 4+ nvy
 Normalizing constant c: M(x,y,2) = ((Z))”i:
confluent hypergecq)lrn:eqcric fur?ction
Z - + > M(1,3+1,0)
A L A
(= ——, 6——“+L 5= =
pt Y Y

* Moment generating function:

E[euN] — <Z (euC)n 4 (euC)LM(1’6+ 1,6“5))

n! L!
n=0




Moments and Correlations for Q (L=1)

pidM (2,3 +1,6)
BM(1.3,9)
2p70°M (3,5 + 2,0) pioM (2,3 +1,0) pioM (2,3 + 1,9)

E[Q;]

2
Var ; — _ ) _ s | +
@) B(B+1)M(1,53,9) ( BM(1,/3,0) ) BM(1,3,9)
h(‘,."f} ) )
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'rij —

B=(p/7)+10=Ay, A=37"0 N,

20M(3,342,0)  O(M(2,5+1,))?

3,0) = o Y
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e . e f (J 5)
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o(3.0) = M2B+10). (.5 =200



Zero Dilution Limit for L=1

* Fory =0 and p=A/u<l
1

1
2 ( \
Di P \ pj P )

Here p =A/A, p,=4 /A
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Correlation Resonance (non-zero dilution)

* Correlation as a function of )\,

correlation
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Dynamics (Stochastic Simulations, L=1)
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Theorem (at balance: p2 ’“;”‘2 -1, y=0)
2
A (r’t e .
Let Q' (¢)= Q/(r ), 1 =1,2 (diffusion scaling)
r
AS 1 — oo,

Ql-r (¢) > &VV(-), 1 =1,2 (convergence in distribn)
where W is a one-dimensional reflecting

Brownian motion. -
W (t)



Generalizations
* Finitely many types of proteins X, ... , X

m
o 2 X, (production)
X, +EFE -5 X,E (binding of enzyme)
X,F 5 FE (degradation)

u X,E - E, X, o (dilution)
Steady-state multivariate distribution
factorizes: oo, =001
PQ= (g1, am)) = P(N = n)—"pir _pgm 075
e dm ql... g, L™ 5 0.50- T
P(N =n) A o(¢) in(¢, L) + ¢ e s
—N)=C=n : — pmin(¥£, Y 00- ——
[Lo=1 0(6) >0 8 10 12 14
F —1 Input rate (L)
Tij = , z;A], m=8, A =AVi, L=280, u=1
\/(F -1+ 1/p¢)(F -1 Upj) Correlation resonance near
balance

F' — Fano factor for N



(Generalizations
+ Reversible binding x.+£ < x.E

m=2 X=5 u=10 y=.01
nT=10%(K =0) 7~ =1000(K >0) K=n"/n"




(Generalizations
+ Reversible binding xi+& & xiz

m=2 X=5 u=10 y=.01
nT=10%(K =0) 7~ =1000(K >0) K=n"/n"
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Experiment



Queueing in a Synthetic Gene
Network

Two independently synthesized fluorescent proteins: YFP and
CFP in E Coli

ClpXP protease degrades LAA tagged proteins
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Effect of Coupling on Mean:

1
p=4 ~v=0.02
L=1 K=0.2

As \q{ increases, means both X; and X5
iIncrease rapidly at the “balance” point, where

A1+ A=




Effect of Coupling on Mean:
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Dynamic Modulation

330 ﬂ
| |
I\ |\
— ' A ¥ A, \
2 ﬂ\ fH tl \ J|
g | \ \ / \ N
2 310 ‘ [ | V / [\
§ | \ |l | \/ \ J \
| \ | \
& [ [\
 — [ \ |
3 ‘ \ | A
T ’l \ A W
o \ 1‘
< J N\ |
& 200} | WV
@ |
r |
-
S |
|
r
,V
2704
'
0 200 400 600 800

Time (min)

Red trace: periodic influx of doxycycline
Green trace: response in level of YFP

correlation

O
o

500
time (min.)

Blue trace: response in level of CFP due to coupled

degradation

1000



Adaptive Enzymatic Processing
(Theory)



Stochastic Model with Adaptation

o2 X, 3-5E,
_|_
% Xi+E= X;E -5 E,

n

A

W

I
Vi v X,ELo X Lo E-Lo.

V@) =aN=aY0,

If enzymes are underloaded - make less
If enzymes are overloaded - make more



Steady-State Distribution

Steady-state multivariate distribution factorizes and can
express the steady-state correlations in terms of Fano
factor F for N:

7“7;3'

_ F—1
V(F =1+ 1/p))(F =1+ 1/p;)

, 1F

For instant irreversible binding, (N,L) is a two-
dimensional birth-death process.



Correlation vs. A, (with slow adaptation)
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Correlation for variable 4,4,
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Effect of «
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Effect of
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Enzymatic Networks with Shared
Resources

parallel network with shared enzyme serial network with shared enzyme
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L EL EL EL EL E E E EE E

networks with shared cofactor
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Conclusions

Shared processing resources produce correlated
behavior in enzymatic networks

By mapping stochastic enzymatic models to
multiclass quasireversible queues, we obtained
explicit formulas for steady-state multi-variate
distributions and correlations

Correlations have a strong peak near balance point

Slow adaptation of enzymatic resources leads to high
correlations in broad regions of parameter space

Theoretical predictions agree with experimental
results for a two-component synthetic gene network
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