This work is collaborated with Dr. Linbo Wang at Department of Biostatistics, Harvard University.

Full paper can be found at https://arxiv.org/abs/1711.04466
Outline

- What is causal effect.
- Existing causal quantities and their problems.
- Criteria for a “good” causal quantity
- An impossibility theorem.
What is causal effect

- Heating with fire causes water to boil. (Deterministic)
- HIV exposure causes AIDS. (Stochastic, strong effect)
- Smoking causes lung cancer. (Stochastic, weak effect)
Skip 100 pages of philosophical discussions of causal effect...
We have some random variables X_1, X_2, \cdots, X_n, Y.

X_1, \cdots, X_n (cause variables) are exactly all the direct causes of Y (result variable). We assume there is no hidden cause of Y.

Our purpose is to quantify the effect of a causal relationship $X_1 \rightarrow Y$, based on the joint probability distribution of X_1, X_2, \cdots, X_n, Y.

Yue Wang

Quantifying Causal Effect
Information theory

- Idea: if X causes Y, then X contains information of Y. Use information to quantify causal effect.
- Measure of information: entropy.

$$H(X) = -\sum_i p_i \log p_i,$$

where $p_i = \mathbb{P}(X = x_i)$.
- $H(X) \geq 0$. Equality holds if and only if X is deterministic.
Mutual information (MI)

\[\text{MI}(X, Y) = H(X) + H(Y) - H(X, Y). \]
Mutual information (MI)

- Intuition: the information shared between X and Y. The information gain of Y if we know X. The predict power of X on Y.
- If X causes Y, then $\text{MI}(X, Y)$ can be used to describe the causal effect of $X \rightarrow Y$.
- $\text{MI}(X, Y) \geq 0$. Equality holds if and only if X and Y are independent.
Conditional Mutual information (CMI)

- Generalize MI for more variables.
 \[
 \text{CMI}(X_1, Y \mid X_2) = \text{MI}(X_1X_2, Y) - \text{MI}(X_2, Y).
 \]
- Conditioned on the knowledge of \(X_2\), how much extra information of \(Y\) could \(X_1\) provide.
- Can be used to describe the causal effect of \(X_1 \rightarrow Y\) if \(X_1\) and \(X_2\) cause \(Y\).
- \(\text{CMI}(X_1, Y \mid X_2) \geq 0\). Equality holds if and only if \(X_1\) and \(Y\) are independent conditioned on \(X_2\). This means that with the knowledge of \(X_2\), \(X_1\) contains no new knowledge of \(Y\).
Problem of CMI

- CMI measures unique information. When $X_1 \approx X_2$, they contain nearly the same information of Y. Both $\text{CMI}(X_1, Y \mid X_2)$ and $\text{CMI}(X_2, Y \mid X_1)$ are very small.

- Cannot distinguish:

$$
\begin{align*}
X_1 \quad &
\begin{array}{c}
\downarrow \quad \downarrow \\
X_2 & \quad Y
\end{array} \\
\quad &
\begin{array}{c}
\quad \\
X_2 = X_1 + \epsilon, \quad Y = X_2 + \delta \\
X_1 \perp Y \mid X_2
\end{array}
\end{align*}
$$

ϵ and δ are independent small noises.

- $\text{CMI}(X_1, Y \mid X_2)$ is 0 in the first case, and very small in the second case.
New methods

- Utilize the slight difference between X_1 and X_2.
- Causal strength (CS) and part mutual information (PMI).

$$\text{CS}(X_1, Y) = \sum_{x_1, x_2, y} \mathbb{P}(x_1, x_2, y) \log \frac{\mathbb{P}(y \mid x_1, x_2)}{\sum_{x_1'} \mathbb{P}(y \mid x_1', x_2) \mathbb{P}(x_1')}.$$

$$\text{PMI}(X_1, Y \mid X_2) = \sum_{x_1, x_2, y} \mathbb{P}(x_1, x_2, y) \log \frac{\mathbb{P}(x_1, y \mid x_2)}{\sum_{x_1'} \mathbb{P}(y \mid x_1', x_2) \mathbb{P}(x_1') \sum_{y'} \mathbb{P}(x_1 \mid x_2, y') \mathbb{P}(y')}.$$
New methods

\[X_2 = X_1 + \epsilon, \quad Y = X_2 + \delta \]
\[X_1 \perp Y \mid X_2 \]
\[\epsilon \text{ and } \delta \text{ are independent small noises.} \]
\[\text{CS}(X_1, Y) \text{ and PMI}(X_1, Y \mid X_2) \text{ are } 0 \text{ in the first case, and relatively large in the second case.} \]
Problem of new methods

- X_1
- X_2
- Y

$X_2 = X_1 + \epsilon$, $Y = X_2 + \delta$

$X_1 \perp Y \mid X_2$

ϵ and δ are independent small noises.

- These two joint distributions are almost the same, but the resulting causal effects are very different.
- CS and PMI may not be continuous with joint distribution (under total variation distance) when both $\{X_1\}$ and $\{X_2\}$ have all the information of Y contained in $\{X_1, X_2\}$.
Assume we have cause variables $S = \{X_1, \cdots, X_n\}$ and the result variable Y. A Markov boundary of Y, S_1, is a subset of S, which is minimal, and keeps its information of Y.

$$\text{MI}(S_1, Y) = \text{MI}(S, Y),$$

$$\forall S_2 \subseteq S_1, \quad \text{MI}(S_2, Y) < \text{MI}(S, Y).$$

This means $Y \perp\!
\!
\!
\!
\perp S \setminus S_1 \mid S_1$.
MB may not be unique. (Set $X_1 = X_2$ in the above example.)

Assume MB is unique. A cause variable inside MB has positive irreplaceable predict power of Y, and a cause variable outside MB has zero irreplaceable predict power of Y. Therefore the unique MB should be exactly all the cause variables with positive causal effect.
When there are multiple MB, both CS and PMI are not directly defined. (Contains 0/0 in the expression.)

Try to use continuation: choose a sequence of distributions (for which CS and PMI are defined) converging to the original distribution, and check whether the corresponding CS and PMI converge.
Problem of new methods

Theorem

In any arbitrarily small neighborhood of a distribution with multiple MB, CS (also PMI) can take any value in an interval with positive length.

- When there are multiple MB, both CS and PMI cannot be well-defined.
- Similar to the behavior of a complex function near an essential singularity.
- Calculating CS and PMI in such case is not numerically feasible.
Sketch of the proof

- Construct two sequences of distributions, both of which converge to the original distribution.
- CS (or PMI) of two sequences always exist, but converge to different values.
- Distribution of one sequence can continuously transform into distribution of the other sequence, during which CS (or PMI) is always defined.
We have cause variables $\mathcal{S} = \{X_1, X_2, \cdots, X_n\}$ and result variable Y.

Our purpose is to quantify the effect of a causal relationship $X_1 \rightarrow Y$.

We propose several criteria for a “good” causal quantity.

We focus on the case where MB is unique. In such case, the unique MB should be exactly all the variables with positive causal effect.
Criteria for quantifying causal effect

- **C0.** The effect of $X_1 \rightarrow Y$ is identifiable from the joint distribution of cause variables and result variable.
- **C1.** If there is unique MB \mathcal{M}, and $X_1 \notin \mathcal{M}$, then the effect of $X_1 \rightarrow Y$ is 0.
- **C2.** If there is unique MB \mathcal{M}, and $X_1 \in \mathcal{M}$, then the effect of $X_1 \rightarrow Y$ is at least $\text{CMI}(X_1, Y \mid \mathcal{M}\{X_1\})$.
- **C3.** The effect of $X_1 \rightarrow Y$ is a continuous function of the joint distribution.
- CMI fails in C2. CS and PMI fail in C3.
An impossibility theorem

Theorem

Assume in a distribution, Y has multiple MB. X_1 belongs to at least one MB, but not all MB. Then in any neighborhood of this distribution, the effect of $X_1 \rightarrow Y$ cannot be defined while satisfying criteria C0–C3.
For variable X_1, we define X_1 with ϵ-noise to be X_1^ϵ, which equals X_1 with probability $1 - \epsilon$, and equals an independent noise with probability ϵ. Denote all cause variables by S.

Lemma (Strict Data Processing Inequality)

S_1 is a group of variables without X_1, Y. If we add ϵ-noise on X_1 to get X_1^ϵ, then $\operatorname{CMI}(X_1^\epsilon, Y \mid S_1) \leq \operatorname{CMI}(X_1, Y \mid S_1)$, and the equality holds if and only if $\operatorname{CMI}(X_1, Y \mid S_1) = 0$.

Lemma

Assume Y has multiple MB. For one MB \mathcal{M}_0, if we add ϵ noise on all variables of $S \setminus \mathcal{M}_0$, then in the new distribution, \mathcal{M}_0 is the unique MB.
Assume $X_1 \in \mathcal{M}_0$, $X_1 \notin \mathcal{M}_1$ for MB $\mathcal{M}_0, \mathcal{M}_1$.

We can add ϵ-noise on $S \setminus \mathcal{M}_1$, such that \mathcal{M}_1 is the unique MB. Criterion C1 shows that the effect of $X_1^\epsilon \rightarrow Y$ is 0.

We can add ϵ-noise on $S \setminus \mathcal{M}_0$, such that \mathcal{M}_0 is the unique MB. Criterion C2 shows that the effect of $X_1 \rightarrow Y$ is at least $\text{CMI}(X_1, Y \mid \mathcal{M}_0 \setminus \{X_1\}) > 0$.

Let $\epsilon \rightarrow 0$. Criterion C3 shows that the effect of $X_1 \rightarrow Y$ should be at least $\text{CMI}(X_1, Y \mid \mathcal{M}_0 \setminus X)$, and should be 0.
Quantifying causal effect with multiple MB is an essentially ill-posed problem.

When a distribution with unique MB is close to another distribution with multiple MB, a reasonable causal quantity is either very small (CMI) or fluctuate violently (CS, PMI). Therefore in such case, quantitative method is not feasible.

A practical problem: detecting whether MB is unique from data.
Algorithm 1: An assumption-free algorithm for determining the uniqueness of MB

(1) **Input**
Observations of $S = \{X_1, \ldots, X_k\}$ and Y

(2) **Set** $E = \emptyset$

(3) **For** $i = 1, \ldots, k$,
Test whether $X_i \perp Y \mid S \setminus \{X_i\}$
If $X_i \not\perp Y \mid S \setminus \{X_i\}$
$E = E \cup \{X_i\}$

(4) **If** $Y \perp S \mid E$
output: Y has a unique MB
Else
output: Y has multiple MB

Yue Wang
Quantifying Causal Effect
Algorithm 2: An assumption-free algorithm for producing one MB

(1) **Input**

 Observations of $S = \{X_1, \ldots, X_k\}$ and Y

(2) **Set** $\mathcal{M}_0 = S$

(3) **Repeat**

 Set $X_0 = \arg \min_{X \in \mathcal{M}_0} \Delta(X, Y | \mathcal{M}_0 \setminus \{X_i\})$

 If $X_0 \perp Y | \mathcal{M}_0 \setminus \{X_0\}$

 Set $\mathcal{M}_0 = \mathcal{M}_0 \setminus \{X_0\}$

 Until $X_0 \not\perp Y | \mathcal{M}_0 \setminus \{X_0\}$

(4) **Output** \mathcal{M}_0 is a MB
Algorithm 3: A general algorithm for determining the uniqueness of MB

(1) **Input**
 Observations of $S = \{X_1, \ldots, X_k\}$ and Y
 Algorithm Ω which can correctly produce one MB

(2) **Set** $M_0 = \{X_1, \ldots, X_m\}$ to be the result of Algorithm Ω on S

(3) **For** $i = 1, \ldots, m$,
 Set M_i to be the result of Algorithm Ω on $S \mid \{X_i\}$
 If $Y \perp M_0 \mid M_i$
 Output Y has multiple MB
 Terminate

(4) **Output** Y has a unique MB
Algorithm 4: An assumption-free algorithm for determining the uniqueness of MB

1. **Input**
 Observations of $S = \{X_1, \ldots, X_k\}$ and Y

2. **Set** $\mathcal{M}_0 = \{X_1, \ldots, X_m\}$ to be the result of Algorithm 2 on S

3. **For** $i = 1, \ldots, m$,
 - If $Y \perp X_i \mid S \setminus \{X_i\}$
 - If $X_i \not\perp Y \mid S \setminus \{X_i\}$
 - **Output** Y has multiple MB
 - **Terminate**

4. **Output** Y has a unique MB
Figure: Success rates and average time costs per execution (in seconds) of Algorithms 1 (red circle), 3-KI (green ‘x’), 3-AF (blue ‘+’), 4 (black diamond) with different numbers of observations in Case A. Number of observations and time costs are in logarithm.
Figure: Success rates and average time costs per execution (in seconds) of Algorithms 1 (red circle), 3-KI (green ‘x’), 3-AF (blue ‘+’), 4 (black diamond) with different numbers of observations in Case B. Number of observations and time costs are in logarithm.
Figure: Success rates and average time costs per execution (in seconds) of Algorithms 1 (red circle), 3-KI (green ‘x’), 3-AF (blue ‘+’), 4 (black diamond) with different numbers of observations in Case C. Number of observations and time costs are in logarithm.

Thank you!