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doesn’t make sense (unless x is a fixed point - c.f. first courses in
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Look for equivariant vector fields:
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The Lyapunov Exponents are

λi (x) = lim
n→∞

1
n log ‖DT n(x)vi (x)‖,

so that
‖DT n(x)v‖ = en(λ(x ,v)+o(1)).

The subspaces spanned by the vi (x) are the Oseledets spaces.
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Let T be a diffeomorphism of a manifold M and µ an ergodic
T -invariant measure. Then there exist λ1 > λ2 > . . . > λk > −∞
and subspaces V1(x), . . . ,Vk(x) such that:

I (Vi ) is a decomposition of Rd : V1(x)⊕ . . .⊕ Vk(x) = Rd ;

I DT (x)Vi (x) = Vi (Tx) for µ-a.e. x ;

I 1
n log ‖DT n(x)v‖ → λi for µ-a.e. x and all v ∈ Vi (x) \ {0}.
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I (Vi ) is a decomposition of Rd : V1(ω)⊕ . . .⊕ Vk(ω) = Rd ;
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I 1
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where A(n)(ω) = A(σn−1ω) · · ·A(ω).
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Let σ be a not-necessarily invertible ergodic measure-preserving
transformation of a probability space (Ω,P).

Let A : Ω→ Md(R)
satisfy

∫
log ‖Aω‖ dP <∞.

Then there exist λ1 > λ2 > . . . > λk > −∞ and spaces
U1(ω), . . . ,Uk(ω) such that:
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v ∈ Ui (ω) \ Ui+1(ω), where A(n)(ω) = A(σn−1ω) · · ·A(ω).

A nice proof of this version was subsequently given by
Raghunathan using the Kingman sub-additive ergodic theorem (or
Furstenberg-Kesten) and singular values.
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Let σ be a invertible ergodic measure-preserving transformation of
a probability space (Ω,P). Let Lω be a quasi-compact family of
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I 1
n log ‖L(n)(ω)v‖ → λi for µ-a.e. x and all v ∈ Vi (ω) \ {0},
where L(n)ω = Lσn−1ω · · · Lω.

Previous infinite-dimensional versions due to Ruelle, Mañé,
Thieullen, Lian and Lu,... (essentially all ‘invertible’)
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Why we care

We want to apply this to models of oceans

(!)

σ : Ω→ Ω is an autonomous driving process (e.g. the rotation of
the moon). Lω is a linear operator on a Banach space describing
ocean’s evolution when the driving system is in state ω.

The n step evolution of the ocean is given by

L(n)ω f = Lσn−1ω ◦ · · · ◦ Lωf .

Based on an analogy with autonomous dynamical systems, we
expect (sub)-level sets of Oseledets vectors to be almost
equivariant regions.
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Another picture



And another one: - See NASA YouTube Movie Perpetual
Ocean



Why we care II

The density operators L that we’re looking at are very far from
invertible (but the assumption that σ is invertible is fine), so we’re
naturally in the semi-invertible situation.

In practice, Lω cannot be measured, but finite-dimensional
approximations, Lεω can be measured.

The method works well in
practice to find poorly mixing regions of the ocean.

Question: Can the sub-level sets obtained from the
approximations Lεω be shown to be close to those obtained from
Lω?
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Answer 1: No

Bochi (following a scheme laid proposed by Mañé) showed in his
thesis that Lyapunov exponents are highly unstable.

He considers an ergodic system σ and a matrix cocycle Aω taking
values in SL2(R) (so λ1 + λ2 = 0). If V1(ω) and V2(ω) are not
uniformly separated, then there exist arbitrarily small perturbations
of the cocycle so that λε1 = λε2 = 0.

Bochi and Viana also proved higher-dimensional versions.
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Answer 2: Yes

Theorem[Froyland, González-Tokman, Q] Suppose σ is an
invertible measure-preserving transformation and (Aω) is a
Md(R)-valued cocycle.

Then if the cocycle is perturbed by adding i.i.d. absolutely
continuous noise to the matrices, Aεω = Aω + ε · Noise, then

I λεi → λi
I V ε

i (ω)→ Vi (ω) in probability

The proof uses ideas from an earlier proof due to Ledrappier and
Young in the case where the Aω and A−1ω are uniformly bounded.



Answer 3: Yes

Theorem[Froyland, González-Tokman, Q] Suppose σ is an
invertible measure-preserving transformation and Lω is an
(exponentially) Hilbert-Schmidt cocycle.

Then if Lω is perturbed by adding i.i.d. faster decaying Gaussian
perturbations, Lω = Lω + ε∆, then

I λεi → λi
I V ε

i (ω)→ Vi (ω) in probability



One slide about the proof

Upper bounds (for λ1 + λ2 + . . .+ λk) are easy (semi-continuity +
Kingman).

The issue is the lower bound. Study the logarithmic k-dimensional
volume expansion:

Ξk(L) = max
dim(V )=k

log det(L|V ).

This is a sub-additive quantity: Ξk(L1L2) ≤ Ξk(L1) + Ξk(L2). So

λ1 + . . .+ λk = lim
n→∞

1
nΞk(L(n)).

We introduce an approximately super-additive quantity
Ξ̃k(L) = EΞk(∆L∆) and work (hard!) to estimate Ξk − Ξ̃k .



One slide about the proof

Upper bounds (for λ1 + λ2 + . . .+ λk) are easy (semi-continuity +
Kingman).

The issue is the lower bound. Study the logarithmic k-dimensional
volume expansion:

Ξk(L) = max
dim(V )=k

log det(L|V ).

This is a sub-additive quantity: Ξk(L1L2) ≤ Ξk(L1) + Ξk(L2). So

λ1 + . . .+ λk = lim
n→∞

1
nΞk(L(n)).

We introduce an approximately super-additive quantity
Ξ̃k(L) = EΞk(∆L∆) and work (hard!) to estimate Ξk − Ξ̃k .



One slide about the proof

Upper bounds (for λ1 + λ2 + . . .+ λk) are easy (semi-continuity +
Kingman).

The issue is the lower bound. Study the logarithmic k-dimensional
volume expansion:

Ξk(L) = max
dim(V )=k

log det(L|V ).

This is a sub-additive quantity: Ξk(L1L2) ≤ Ξk(L1) + Ξk(L2). So

λ1 + . . .+ λk = lim
n→∞

1
nΞk(L(n)).

We introduce an approximately super-additive quantity
Ξ̃k(L) = EΞk(∆L∆) and work (hard!) to estimate Ξk − Ξ̃k .



One slide about the proof

Upper bounds (for λ1 + λ2 + . . .+ λk) are easy (semi-continuity +
Kingman).

The issue is the lower bound. Study the logarithmic k-dimensional
volume expansion:

Ξk(L) = max
dim(V )=k

log det(L|V ).

This is a sub-additive quantity: Ξk(L1L2) ≤ Ξk(L1) + Ξk(L2). So

λ1 + . . .+ λk = lim
n→∞

1
nΞk(L(n)).

We introduce an approximately super-additive quantity
Ξ̃k(L) = EΞk(∆L∆) and work (hard!) to estimate Ξk − Ξ̃k .



OK. Two slides

We’re taking compositions along an orbit of ω. We split the orbit
into blocks of length N ≈ log |ε|. (Significance: you can use the
triangle inequality to obtain uniform estimates ‖Lε(N) − L(N)‖ ≤ 1
on (most) blocks of this length. This ensures small perturbations
of singular spaces).

Now: split blocks into good blocks and bad blocks. Bad blocks =
rare; almost no control. Good blocks: Very strong attraction
towards maximally expanding subspace.

Use the ε perturbation to steer you back towards the good
directions in case you’re deeply in the weeds (cost = O(log ε× L1),
but do this once every o(1/| log ε|) steps); estimate how deeply in
the weeds you can be using a corollary of Kingman.
(Ecost = O(log ε), but do this once every o(1/| log ε|) steps. )
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