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What does D(T") look like?

DT"(x) = DT(T" 1x) . DT(T" 2x)--- DT (x).

Think of DT" as mapping T,M to T+nM, so diagonalization
doesn’'t make sense (unless x is a fixed point - c.f. first courses in
qualitative dynamical systems/differential equations).

Look for equivariant vector fields:

DT(x)vi(x)//vi(Tx)
DT (x)va(x) )/ va( Tx).
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Ai(x) = lim L log ] DT"(x)vi(x),
so that

IDT (v = e ol

The subspaces spanned by the v;(x) are the Oseledets spaces.
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Let T be a diffeomorphism of a manifold M and u an ergodic
T-invariant measure. Then there exist A1 > A2 > ... > A\ > —00
and subspaces Vi(x),..., Vi(x) such that:

>

(V;) is a decomposition of R%: Vi(x) @ ... ® Vi(x) = RY;
» DT(x)Vi(x) = Vi(Tx) for p-a.e. x;
Llog DT (x)v|| = A; for p-a.e. x and all v € Vi(x) \ {0}.
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Let o be an invertible ergodic measure-preserving transformation
of a probability space (Q,P). Let A: Q — GL4(R) satisfy
[log [|AZ]| dP < oo.
Then there exist A1 > A\» > ... > A > —o0 and subspaces
Vi(w), ..., Vk(w) such that:
» (V;) is a decomposition of RY: V4(w) @ ... ® Vi(w) = RY;
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Oseledets theorem: non-invertible version

Let o be a not-necessarily invertible ergodic measure-preserving
transformation of a probability space (Q2,P). Let A: Q — My(R)
satisfy [ log||Ay| dP < co.

Then there exist A1 > A» > ... > A\ > —o0 and spaces
Ui(w), ..., Uk(w) such that:
> (U;)is a flag: R? = Uy(w) D Ua(w) D ... D Uk(w) D {0};
» A(w)Ui(w) C Ui(ow) for u-a.e. x;
> Liog | A (w)v|| — A; for p-a.e. x and all
v € Ui(w) \ Uiy1(w), where AM(w) = A(c"1w) - - - A(w).
A nice proof of this version was subsequently given by

Raghunathan using the Kingman sub-additive ergodic theorem (or
Furstenberg-Kesten) and singular values.
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Oseledets theorem: semi-invertible version [Froyland, Lloyd,
Q]
Let o be a invertible ergodic measure-preserving transformation of
a probability space (Q,P). Let A: Q — My(R) satisfy
[ log||Au|| dP < co.
Then there exist A\ > A2 > ... > A\ > —o0 and spaces
Vi(w),. .., Vk(w) such that:
» (V;) is a decomposition of RY: V4(w) @ ... ® Vi(w) = RY;
» A(w)Vi(w) = Vi(ow) for p-a.e. x;
> Liog | A (w)v|| — A; for p-a.e. x and all v € Vi(w) \ {0},
where AN (W) = A(6" w) - - - A(w).
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Oseledets theorem: semi-invertible operator version
[Froyland, Gonzalez-Tokman, Lloyd, Q]

Let o be a invertible ergodic measure-preserving transformation of
a probability space (Q,P). Let L, be a quasi-compact family of
operators on a Banach space X satisfy [ log ||L,|| dP < oo.

Then there exist 1 < k< oo A1 > A2 > ... > A > —0o0 and
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Oseledets theorem: semi-invertible operator version
[Froyland, Gonzalez-Tokman, Lloyd, Q]

Let o be a invertible ergodic measure-preserving transformation of
a probability space (Q,P). Let L, be a quasi-compact family of
operators on a Banach space X satisfy [ log ||L,|| dP < oo.

Then there exist 1 < k< oo A1 > A2 > ... > A > —0o0 and
closed subspaces Vi(w),..., Vk(w), R(w) such that:

» (V;), R is a decomposition of X:
Vl(w) Gb...o Vk(w) ) R(w) = X;

> L,Vi(w) = Vi(ow) for u-a.e. x;

> Liog | £(M(w)v|| — A; for prae. x and all v € V;(w) \ {0},
where £ = £, 1, Lo,

Previous infinite-dimensional versions due to Ruelle, Mané,
Thieullen, Lian and Lu,... (essentially all ‘invertible’)
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Why we care

We want to apply this to models of oceans(!)

o: Q — Q is an autonomous driving process (e.g. the rotation of
the moon). L, is a linear operator on a Banach space describing
ocean’s evolution when the driving system is in state w.

The n step evolution of the ocean is given by

LOf = Lon1, 0000 L,f.

Based on an analogy with autonomous dynamical systems, we
expect (sub)-level sets of Oseledets vectors to be almost
equivariant regions.
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And another one: - See NASA YouTube Movie Perpetual
Ocean
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The density operators £ that we're looking at are very far from
invertible (but the assumption that ¢ is invertible is fine), so we're
naturally in the semi-invertible situation.

In practice, £, cannot be measured, but finite-dimensional
approximations, £, can be measured. The method works well in
practice to find poorly mixing regions of the ocean.

Question: Can the sub-level sets obtained from the
approximations L, be shown to be close to those obtained from
L7



Answer 1: No

Bochi (following a scheme laid proposed by Mafié) showed in his
thesis that Lyapunov exponents are highly unstable.



Answer 1: No

Bochi (following a scheme laid proposed by Mafié) showed in his
thesis that Lyapunov exponents are highly unstable.

He considers an ergodic system o and a matrix cocycle A, taking
values in SL(R) (so A1 + A2 = 0).



Answer 1: No

Bochi (following a scheme laid proposed by Mafié) showed in his
thesis that Lyapunov exponents are highly unstable.

He considers an ergodic system o and a matrix cocycle A, taking
values in SL>(R) (so A1 + A2 = 0). If Vi(w) and V,(w) are not
uniformly separated, then there exist arbitrarily small perturbations
of the cocycle so that A{ = A5 = 0.

Bochi and Viana also proved higher-dimensional versions.



Answer 2: Yes

Theorem|[Froyland, Gonzédlez-Tokman, Q] Suppose o is an
invertible measure-preserving transformation and (A,) is a
Mgy(R)-valued cocycle.

Then if the cocycle is perturbed by adding i.i.d. absolutely
continuous noise to the matrices, A, = A, + € - Noise, then

> /\I§ — A
» V&(w) = Vi(w) in probability

The proof uses ideas from an earlier proof due to Ledrappier and
Young in the case where the A, and A;l are uniformly bounded.



Answer 3: Yes

Theorem[Froyland, Gonzélez-Tokman, Q] Suppose o is an
invertible measure-preserving transformation and £, is an
(exponentially) Hilbert-Schmidt cocycle.

Then if £, is perturbed by adding i.i.d. faster decaying Gaussian
perturbations, £, = L, + €A\, then
> )\f — )\,’

» V&(w) = Vi(w) in probability

1
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Upper bounds (for A1 + A2 + ...+ Ax) are easy (semi-continuity +
Kingman).

The issue is the lower bound. Study the logarithmic k-dimensional
volume expansion:

= = I .
k(L) domex loe det(L]v)
This is a sub-additive quantity: =x(£1L2) < =x(L1) + =k(L2). So

A Ao A= lim 2= (20),
n—o0

n—

We introduce an approximately super-additive quantity

Z4(L) = EZ,(ALA) and work (hard!) to estimate =) — =,.
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We're taking compositions along an orbit of w. We split the orbit
into blocks of length N = log |¢|. (Significance: you can use the
triangle inequality to obtain uniform estimates ||£<(V) — (M| <1
on (most) blocks of this length. This ensures small perturbations
of singular spaces).

Now: split blocks into good blocks and bad blocks. Bad blocks =
rare; almost no control. Good blocks: Very strong attraction
towards maximally expanding subspace.

Use the € perturbation to steer you back towards the good
directions in case you're deeply in the weeds (cost = O(loge x L),
but do this once every o(1/|loge|) steps); estimate how deeply in
the weeds you can be using a corollary of Kingman.

(Ecost = O(loge), but do this once every o(1/|loge|) steps. )



