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Coarsening in Networks

Grain boundary coarsening is observed in polycrystalline ceramics and metals
and gas diffusion between cells of a foam. Under two-dimensions with isotropic
surface tension, grain boundaries evolve by curve shortening flow- for an evolving
curve γ(x , t) ⊂ R2, edges γ(x , t) move with respect to their curvatures:

γt (x , t) = κ~n(x , t).

Grains are faces of a trivalent network G. At junctions, by force balance we have
Herring’s condition: edges at vertices must meet at 120 degrees.

A two dimensional foam. (Glazier, Gross, and Stavans ’87)
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Previous work
Physical experiments
Bubble sorting: Hutzler ’00
Empirical laws: Aboav ’70, Lewis ’28
Foam packing: Newhall et al. ’12

Numerical simulation
Potts models: Anderson et al. ’84, Zöllner/Streitenberger ’04
Level set methods: Esedoglu/Elsey/Smereka ’11, Zhao et al ’96,
Merriman/Bence/Osher ’94
Others: Kinderlehrer/Livshits/Ta’asan ’06, Lazar et al ’11

Geometry and analysis
Single junction: Schnurer/Schulze ’07, Mazzeo/Saez ’07
Flow of lens: Schnurer et al. ’11, Bellettini/Novaga ’09

Wet foam
(NASA)

Potts model (Zöllner) Flow through triple junction
(Schnurer, Schulze)
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Evolution of individual grains

Assuming that a grain does not change its topology (number of sides), we have
the following simple rule relating the topology and geometry of single grains:

Theorem
(von Neumann’s “n − 6” rule) A grain with area A(t) and n sides satisfies

dA

dt
=

πM

3
(n − 6).

Here M is a constant based on material properties. In particular, grains with less
than six sides shrink, grains with more than six sides grow, and grains with six
sides keep the same area.

The first proof of this fact is due to Von Neumann in 1952, and appeared in the
discussion section of a metallurgical journal. The reasoning assumes all edges
evolve as arcs of constant curvature. Mullins provided a generalization for smooth
boundaries in 1956.
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Flowing through singularities

The N − 6 rule implies that grains can vanish in a network.
Also, edges can undergo side switching, in which one side
vanishes, and another is created.
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Mean field models

Several kinetic models from physicists (Fradkov ’94, Flyvbjerg ’88, Marder ’88)
were created for area densities fn(x , t) of grains with n sides. The general form is
transport equation with an intrinsic source term:

∂t fn(x , t) + (n − 6)∂x fn(x , t) = F (f ) .

Transport corresponds to advection of grains by the n − 6 rule.
F (f ) is the topological flux, which arises from grain annihilation, with form

F (f ) =
5∑

l=2

(l − 6)fl (0, t)

(
∞∑

m=2

Alm(t)fm(x , t)

)

The terms (l − 6)fl (0, t) for l = 2, 3, 4, 5 are rates of loss for l sided grains.
To determine F (f ), mean field rules are created for how grains are selected
to gain/lose sides (these rules eliminate correlations between grains)
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The M-species model

Prelimit behavior for kinetic equations can be understood by the following diagram

Interpretation: Each particle represents a grain, with area given by horizontal
position, and lines represent possible topologies. By n − 6 rule, grains move
sideways at constant rate. When a particle hits the origin, it is removed, and other
particles are randomly selected move vertically, indicating a mutation. This is an
example of a piecewise deterministic Markov process.
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Kinetic equations

Kinetic equations for number densities fσ(x , t) for species σ are

∂t fσ(x , t) + vσ∂x fσ(x , t) = jσ := j+σ (x , t) − j−σ (x , t),

j+σ (x , t) =
M∑

k=1




M−∑

l=1

L̇l Jσk W (l)
k (t) + βγ(t)Jσk wk



 fk (x , t),

j−σ (x , t) =




M−∑

l=1

L̇l KW (l)
σ (t) + βγ(t)Kwσ



 fσ(x , t),

L̇l = −fl (0, t)vl , l = 1, . . . , M−.

The M-species model contains several parameters:

vσ- velocity of species

K - how many particles mutate at singular
event

Wσ , γ(t)wσ-tier weights at singular event

Jσk -rules for how particles mutate

β- rate of interior events
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Well-posedness

Let X denote the space of continuous and integrable functions
f = (f1, . . . , fM) : [0,∞) → RM equipped with the norm

‖f‖ := ‖f‖L1 + ‖f‖L∞ , ‖f‖L1 :=
M∑

σ=1

‖fσ‖L1 , ‖f‖L∞ :=
M∑

σ=1

‖fσ‖L∞ .

Theorem
Assume given positive f0 ∈ X. There exists a (possibly infinite) time T∗ > 0 and a
unique map f ∈ C([0, T∗); X) with f (0) = f0 such that f is a positive, mild solution
to the kinetic equations on each interval [0, T ] with 0 < T < T∗.
Further, limt→T∗ f (t) = 0 if T∗ < ∞.

Proof sketch: Express integral form of kinetic equations as

f (x , t) = f (x − vσ t , 0) +

∫ t

0
jσ(x − vσ(t − τ) , τ)dτ.

Find Lipschitz estimate on total flux jσ and apply contraction mapping principle.



Stochastic
particle
systems
related to

grain
boundary

coarsening

Joe
Klobusicky
Rensselaer
Polytechnic

Institute

Hydrodynamic limit

For a limit of the stochastic particle system to the kinetic
equations, we have a tightness result - a subsequence of
measures μnk → μ in the Skorokhod topology
D([0, T ],M(R+)M) which solves a weak form of the kinetic
equations.
There’s evidence that more is true: we conjecture a
concentration inequality of the form

P

(

sup
s∈[0,T ]

d(μn(s), μ(s)) > ε

)

≤ C1(ε) exp(−nC2(ε)).

Where d is the BL distance which metrizes the weak
topology of measures. This conjecture is based on a
minimal model for the M-species model which produces a
similar estimate.
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A minimal model: ‘Removal-Driven Thinning’

For understanding the main machinery in calculating the
total loss Ln

σ(t), consider a minimal, one species model:

1 Particles travel toward the origin at unit speed.
2 When a particle hits the origin, remove the particle and

also another randomly chosen particle.
For initial empirical measures μn

0 → μ0, can we
describe convergence rates of μn

t → μt and
Ln(t) → L(t)?

Removal driven thinning
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Explicit solution

The limiting equation for total number, assuming densities f (x , t), is

∂t f (x , t) − ∂x f (x , t) = −
f (0, t)

∫∞
0 f (x , t)dx

f (x , t), x , t ∈ (0,∞).

f (x , 0) = f0(x), x ∈ (0,∞).

While nonlinear, it is straightforward to obtain an explicit solution

f (x , t) = β(t)f0(x + t),

β(t) =

∫ ∞

t
f0(x)dx .

Thus, f (x , t) is a translated and scaled copy of its initial conditions.
Less intuitive is a formula for the total loss at the origin

L(t) =
1

2

(

1 −
(∫ ∞

t
f0(x)

)2
)

.

With uniform initial data f0 = 1[0,1], for example, this gives

L(t) = t −
t2

2
, t ∈ [0, 1].

The quadratic term accounts for particles removed before arrival at the origin.
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An urn model

How to compare Ln(t) with L(t)? For the finite model, color
balls at position less than t black, and those at position at
least t white. Perform the following draw for a “diminishing
urn” with n balls, w of which are white, and b are black.

1 Remove a black ball.
2 Randomly remove another ball.

Repeat until all black balls are removed. What is Xw ,b, the
number of white balls remaining?

One-d loss model
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Urn models

The model described is one example of a large class of sampling methods called
diminishing urns. The main object of interest is the replacement matrix

M =

[
α β
γ δ

]
.

For an urn with white and black balls, randomly select a ball:

If a white ball is selected, add α white balls and β black balls.

If a black ball is selected, add γ white balls and δ black balls.

Repeat until no black balls remain. Let Xw,b be the number of remaining white
balls.

For an urn with w white and b black balls, we can condition on a single draw to
obtain a recurrence relation for the mgf hw,b(z) = E[exp(z ∙ Xw,b)], given by

hw,b(z) =
w

w + b
hw+α,b+β +

b

w + b
hw+γ,b+δ .

For large w , b, what are limiting quantities for Xw,b (e.g. LLN, central limit
theorems)? Depending on the type of urn, limiting distributions can take several
forms (Kumaraswamy, Weibull, Normal).
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Examples

Some increasingly interesting scenarios:

Classical Sampling. Select a ball. If the ball is replaced M =

[
0 0
0 0

]
. If not,

M =

[
−1 0
0 −1

]
.

The Ehrenfest Urn (1907). A simple model of diffusion for particles moving

between two regions. M =

[
−1 1
1 −1

]

.

The OK Corral (Williams/McIlroy-’98). Two groups of outlaws shoot at each other.

Randomly select which outlaw shoots. Then M =

[
0 −1
−1 0

]

.

The Cannibal Urn (Pittel ’82). Cannibals and noncannibals inhabit a shared space.
A randomly chosen person eats a noncannibal. A noncannibal becomes a

cannibal by eating another noncannibal. Thus M =

[
−2 −1
1 0

]
.
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Asymptotic normality

Suppose the fraction of noncannibals to cannibals approaches ρ ∈ [0, 1]. For the
cannibal urn, Pittel shows that for some functions φ(ρ) and ψ(ρ), for Xw,b denoting
the total number of draws until exhaustion, and w + b = n,

Xw,b − nφ(ρ)
√

nψ(ρ)
⇒ Z , Z ∼ N(0, 1)

Proof sketch: compare the mgf hw,b(z) for Xw,b to gw,b(z), the mgf of a normal
Z ∼ N(φ(w/b), ψ(w/b)). Then an asymptotic analysis shows that gw,b(z)
approximately satisfies the recurrence relation for hw,b(z) when

φ′ − φ = 0, φ(1) = 1,

ψ′ − ψ + φ2ρ(1 − ρ) = 0, ψ(1) = 0.

These are simple to solve:

φ(ρ) = exp(ρ − 1), ψ(ρ) = exp[2(ρ − 1)](ρ2 − 3ρ + ρ − exp(1 − ρ)).
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Concentration inequality for loss measure

For the one species model, the replacement matrix is M =

[
−2 −1
0 −1

]
. Using

methods similar to Pittel,

Xw,b − nφ(ρ)
√

nψ(ρ)
⇒ Z , Z ∼ N(0, 1)

hold when
ρφ′(ρ) − 2φ(ρ) = 0, φ(1) = 1,

ρψ′ − 2ψ(ρ) + 4ρ3(1 − ρ) = 0, ψ(1) = 0.

Thus
φ(ρ) = ρ2, ψ(ρ) = 2ρ2(1 − ρ)2.

The upshot: the random quantity Xw,b is intimately related to the total number of

particles which hit the origin: Ln(t) =
n−Xw,b

2 . From exponential tails of the
normal, the CLT can be converted into a concentration inequality:

P(|Ln(t) − L(t)| >
ε

2
) ≤

2

ε
e−8nε2

.
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The main concentration inequality

Let F be the limiting CDF of the minimal model, and d be the BL metric on
measures in [0,∞) which metrizes the weak topology:

d(F , G) = sup
‖ϕ‖BL≤1

∫ ∞

0
ϕ(x)d(F (x) − G(x)),

‖ϕ‖BL = sup
x

|ϕ(x)| + sup
x,y

|ϕ(x) − ϕ(y)|

|x − y |
.

Let μn(t) be an empirical measure of n particles, and μ(t) be the limiting measure
satisfying the limiting kinetic equations. With the two previous results, we may
state our final theorem:

Theorem
There exists a universal constant κ > 0 and Mε(F0) > 0 such that for every ε > 0
and T > 0 there exists Mε satisfying

P

(

sup
t∈[0,T ]

d(μn(t), μ(t)) > ε

)

≤ Mεe−κnε2
.
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Summary:

Some directions to look at:

Theoretical:

A full concentration estimate of hydrodynamic convergence.

A rigorous explanation of stabilization of network statistics.

Numerical:

Convergence to stable statistics from specialized initial conditions.

Generalization to nonhomogeneous media.

Improved understanding of fitting parameters.

References:
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Analysis and simulations of kinetic models for two-dimensional grain boundary
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