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First-passage percolation in Z2

I Nearest-neighbor graph on Z2 (edges go one unit north,
south, east, west).

I Randomly assign a weight (“cost”) to each node.
I Distance between two nodes is the total weight of the

lowest-weight (“cheapest”) path between them.
I This gives a random metric space.
I Introduced by Hammersley and Welsh (1965).



Discrete Gaussian free field
I Let R ( Z2 connected. Consider DGFF on R with Dirichlet

boundary conditions on ∂R: Gaussian field Y on R with
covariance function

EY (x)Y (y ) =GR(x,y ),

where GR is the Green’s function of simple random walk on
R killed on ∂R .

I Log-correlated Gaussian field: GR(x,y ) ∼ log
|R |

|x−y | .

I Similar correlation structure to branching random walk.



Liouville first-passage percolation

I Liouville first-passage percolation (LFPP) is first-passage
percolation on eγY , where Y is a Gaussian free field and γ

is an inverse-temperature parameter:

I Duplantier–Sheffield (2008) and Rhodes–Vargas (2008),
along with many others subsequently, have studied the
measure arising from the exponential of log-correlated
Gaussian fields. We are concerned instead with the metric.



Questions

I How does the metric (left–right crossing distance,
point-to-point distance, diameter. . . ) scale with the box
size S and the temperature γ?
I Ding–Goswami (2016) prove that the exponent of the

expectation is strictly less than 1 in the small-γ regime via
“switchings.”

I As S→∞ (with γ held constant), does the (normalized)
metric converge to some limiting metric?
I We make progress in the small-γ regime.



Main result

Let ds(x,y ) be the linearly-interpolated first-passage percolation
distance between x and y in [0,1]2, using lattice of size S = 2s,
normalized so that the expected left-right distance of the
square is 1.

Theorem (Ding–D.)
If γ is sufficiently small, then the sequence {ds}s∈N is tight in
the Gromov–Hausdorff topology. In fact, it is tight in the uniform
topology on functions ([0,1]2)2→ R≥0.
By Prokhorov’s theorem, this implies subsequential
convergence.



Small-γ regime

I Any constant number of scales (at the top or at the bottom)
are negligible—can use any fixed amount of independence
needed.
I Crossing weights are highly concentrated.

I At a constant scale, geodesics are almost straight
(Hausdorff dimension close to 1).



Tightness

I Obtain subsequential convergence by proving tightness of
the normalized metric.

I Follows by Arzelà–Ascoli theorem from equicontinuity of
the metric as the scale increases.

I Need to get good tail bounds on the diameter of a box so
we can max over many boxes.



Coefficient of variation bound

Theorem (Ding–D.)
The coefficient of variation (CV = σ/µ) of the crossing weights
can be made arbitrarily small by making γ sufficiently small.

Corollary
Arbitrarily high and low crossing quantiles are multiplicatively
related as long as γ is sufficiently small.



Bounding CV2

I Use induction from scale s to scale s+k , where k is
constant but large.

I Bound the variance from above and the expectation from
below.

I Without contributions from boxes between scales s and
s+k , variance and expectation “should” both go like
K = 2k .
I Need to relate the coefficients (as constant multiples of the

expected crossing weight at scale s).

I So by making γ small and k large, can make Var/E2 as
small as we like.



Easy and hard crossings

I Easy crossings (left) at a smaller scale are necessary to
cross at a larger scale.
I =⇒ inductive lower bounds for crossing weights

I Hard crossings (right) at a smaller scale are sufficient to
cross at a larger scale.
I =⇒ inductive upper bounds for crossing weights

I RSW result: easy and hard crossings can be related.
I not obvious, and the crux of our results



Russo–Seymour–Welsh results
I Show that crossing probabilities/weights in the easy

direction are related to those for the hard direction by a
constant factor.

I Introduced for Bernoulli percolation by Russo, Seymour,
Welsh in 1978–81.

I Try to glue together easy crossings to get a hard crossing.



RSW for Voronoi percolation (Tassion 2014)

I Tassion proved an RSW result in a weakly correlated
ordinary (not first-passage) percolation setting.

I Self-dual model—go from square crossing to hard crossing
rather than easy crossing to hard crossing.

I Delicate multi-scale analysis involving inductively
controlling both the probability of crossings and the
geometry of crossings if they do exist.



Challenges for first-passage percolation

I Goal is now to show there are good probabilities of
crossings with certain weights.
I Thus need to choose these weights appropriately, and keep

track of them in every construction.
I At the end, we need to show that the weight we get is not

too big—requires our inductive hypothesis.

I We don’t have a notion of self-duality
I Need to go from easy crossing to hard crossing rather than

from square crossing to easy crossing.



Keeping track of the weights

I Tassion’s analysis is already quite delicate—having a
limited “weight budget” makes things substantially trickier
in many places.

I Multiscale joining procedure creates paths of weight∑
cnws−nk , where c is some constant and wn is the

crossing weight at scale n.
I Need to force k to be large so that this is summable—can

do this by skipping over many scales at each joining step.
I Need the sum we get to be not too large (dominated by the

largest term)—apply inductive hypothesis and our a priori
bound on easy crossings.



Future work

I Investigate properties of limit point metrics.
I Show convergence of the metrics to a limiting metric

(eventual goal of current work with Jian Ding and Subhajit
Goswami).

I What happens for larger γ?
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