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Averaging principle

Consider the perturbed system

X/(t) = e A(Xc(t), Ye(t)), Xc(0)=xe€ R",

Y(t) = K(X(t), Ye(t),  Ye(0) =y € R7,

where 0 < e << 1.
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Averaging principle

Consider the perturbed system

X/(t) = e A(Xc(t), Ye(t)), Xc(0)=xe€ R",

(1)
Y(t) = K(X(t), Ye(t),  Ye(0) =y € R7,

where 0 < e << 1.

Under reasonable assumptions on f; and f, for any fixed T > 0

lim sup |X(t)—x|=0.
=0 te0,7]
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Averaging principle

Consider the perturbed system

X!(t) = e A1(Xc(t), Ye(t)), Xc(0)=x€ R",

(1)
Y(t) = K(X(t), Ye(t),  Ye(0) =y € R7,

€

where 0 < e << 1.

Under reasonable assumptions on f; and f, for any fixed T > 0

lim sup |X(t)—x|=0.
=0 te0,7]

The behavior of the slow variable X, on time intervals of order ¢!
is of interest, because on such time scales significant changes take

place.
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For any frozen slow component x € R"”, consider the fast equation

Yey(t) = H0x Ya(t),  Yiy(0) =y,

and assume that the limit

.
lim ;/0 L(x, Yoy (£)) dt = F(x)

T—o0

exists, for some f : R” — R", independent of y € R™.
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For any frozen slow component x € R"”, consider the fast equation

Yey(t) = H0x Ya(t),  Yiy(0) =y,

and assume that the limit

1 (7 _
lim — fi(x, Yy, (t)) dt =: f(x)

T—o0 0

exists, for some f : R” — R", independent of y € R™.

The averaging principle says that in the time interval [0, T /€] the
slow motion X. can be approximated by the trajectories of the
averaged system

X'(t) = F(X(t)), X(0) = x.

That is

lim sup | X(t) — X(t)|gn = 0.
€0te(0,T/¢
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Averaging principle for randomly perturbed systems

A further development concerns the case of random perturbations
of dynamical systems.
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Averaging principle for randomly perturbed systems

A further development concerns the case of random perturbations
of dynamical systems.

For example, in system (1) the coefficient f, may be assumed to
depend also on a parameter w € , (so that the fast variable is a
random process), or even the perturbing coefficient fi may be
taken random.
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Averaging principle for randomly perturbed systems

A further development concerns the case of random perturbations
of dynamical systems.

For example, in system (1) the coefficient f, may be assumed to
depend also on a parameter w € , (so that the fast variable is a
random process), or even the perturbing coefficient fi may be
taken random.

One has to reinterpret condition

.
jim ;/0 A(x, Yey () dt = F(x)

T—o0

and the type of convergence of X, to X.
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In 1968 Khasminskii has proved that averaging holds for the
following system of stochastic differential equations

AX.(t) = AX(E), Ye(0)) de -+ g1 (Xe(2), Ye(1)) (),
aYi(£) = TR(X(0). Ye(0) de+ = galX,(1). Yo(t)) dw(r),
2)

with initial conditions X.(0) = x € R" and Y(0) =y € R™, for
some k-dimensional Brownian motion w(t).
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In 1968 Khasminskii has proved that averaging holds for the
following system of stochastic differential equations

dX(t) = A(X(1), Ye(t)) dt + g1(Xe(2), Ye(t)) dw(2),

aYi(£) = TR(X(0). Ye(0) de+ = galX,(1). Yo(t)) dw(r),
2)

with initial conditions X.(0) = x € R" and Y(0) =y € R™, for
some k-dimensional Brownian motion w(t).

In this case the perturbation in the slow motion is given by the
sum of a deterministic part and a stochastic part

6f1(X,)/) dt + \Egl(xv)/)dw(t):

and the fast motion is described by a stochastic differential
equation.
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Under reasonable assumptions on the coefficients > and go, the
fast equation with frozen slow component x € R”

dY*Y(t) = h(x, YV (t)) dt + g(x, Y (t)) dw(t),

V() =y € R,

is well posed.
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Under reasonable assumptions on the coefficients > and go, the
fast equation with frozen slow component x € R”

dY*Y(t) = h(x, YV (t)) dt + g(x, Y (t)) dw(t),

V() =y € R,

is well posed.

Then, for every fixed x € R", we can introduce the transition
semigroup

Pip(y) = Eo(Y™ (1)),
where ¢ : R" — R is Borel bounded.
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Main assumptions

We assume that there exists f : R” — R” such that for every
t>0,x€ R"and y € R™

t+T —
E’T/ lx, Y*(s)) ds — 7(x)| < o(T),

where a(T) — 0as T — oc.
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Main assumptions

We assume that there exists f : R” — R” such that for every
t>0,x€ R"and y € R™

] %, Y*¥(s)) ds — F(x)| < a(T),

where a(T) — 0as T — oc.

We also assume that there exists 3 : R” — R**" such that for
every t >0, x € R"and y € R”

max ‘ g 06, Y (s))grd (x, Y (s)) ds — 3 (x)| < a(T),

where a(T) — 0as T — oc.
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The convergence result

Under reasonable conditions on the coefficients the averaged
equation

dX(t) = b(X(t)) dt +Va(X(t)) dw(t), X(0) = x,

is well posed.
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The convergence result

Under reasonable conditions on the coefficients the averaged
equation

dX(t) = b(X(t)) dt + Va(X(t)) dw(t), X(0) = x,
is well posed.
The averaging principle says that

the slow component X(-) converges weakly in the space of
continuous trajectories C([0, T];R") to the solution X(-) of the
averaged equation.

Moreover, if g1 does not depend on the fast variable, the
convergence is stronger.
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How to verify the assumptions?
Assume that

the semigroup P} associated with the fast equation admits a
unique invariant measure >

and for any x,y € H and ¢ € Lip(H)

<c (L+Ixlu+lyln) e [eliip)-

Pio(y) — /H ¢(z) 1 (dz)
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How to verify the assumptions?
Assume that

the semigroup P} associated with the fast equation admits a
unique invariant measure >

and for any x,y € H and ¢ € Lip(H)

<c (L+Ixlu+lyln) e [eliip)-

Pio(y) — /H ¢(z) 1 (dz)

Then, the two assumptions are satisfied if we define

B(x) = / bi(x,y) i (y),

and
3Y(x) = / g o )g (x,y) di(y).
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Averaging for SPDEs

In a series of papers, also together with M. Freidlin, we have
considered an infinite dimensional analogue of (2) in a bounded
domain D C RY, d > 1,

%Lf(t,é) = Aer(tvg) + fl(g’ uf(t’£)7 Ve(t’f))

ow
81( ue(t, ), vel(£.€) S —(£,),

Ove

(66 =~ (A — Nlt,) + B(E u(t,€), (£, )]

w2

+\2 82(&, ue(t,£), ve(t,€)) %t(ﬂf)’

(3)

with initial conditions u(0,&) = x(£), ve(0,&) = y(&) and suitable
boundary conditions.
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Well-posedness of the system

Here, we assume

- Az and A; are second order uniformly elliptic operators.
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Well-posedness of the system

Here, we assume
- Az and A; are second order uniformly elliptic operators.

- w®i(t,€) and w®(t,£) are cylindrical Wiener processes in
H := L%(D), defined on a complete stochastic basis
(Q, F, Ft,P), with covariance @ and Q.
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Well-posedness of the system

Here, we assume
- Az and A; are second order uniformly elliptic operators.

- w®i(t,€) and w®(t,£) are cylindrical Wiener processes in
H := L%(D), defined on a complete stochastic basis
(Q, F, Ft,P), with covariance @ and Q.

- @1 and @ are bounded linear operators in H, fulfilling
suitable assumptions and not Hilbert-Schmidt, in general.
When d = 1, we could take Q; = /.
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Well-posedness of the system

Here, we assume
- Az and A; are second order uniformly elliptic operators.

- w®i(t,€) and w®(t,£) are cylindrical Wiener processes in
H := L%(D), defined on a complete stochastic basis
(Q, F, Ft,P), with covariance @ and Q.

- @1 and @ are bounded linear operators in H, fulfilling
suitable assumptions and not Hilbert-Schmidt, in general.
When d = 1, we could take Q; = /.

- the mappings f;,gi : D x R? — R are measurable;

S. Cerrai Averaging for non-autonomous slow-fast systems of SPDEs



Well-posedness of the system

Here, we assume
- Az and A; are second order uniformly elliptic operators.

- w®i(t,€) and w®(t,£) are cylindrical Wiener processes in
H := L%(D), defined on a complete stochastic basis
(Q, F, Ft,P), with covariance @ and Q.

- @1 and @ are bounded linear operators in H, fulfilling
suitable assumptions and not Hilbert-Schmidt, in general.
When d = 1, we could take Q; = /.

- the mappings f;,gi : D x R? — R are measurable;
- the mappings fi(£,-) : R2 — R and gi(&,-) : R? = R are

Lipschitz-continuous, or more general.
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Under the hypotheses above, the stochastic system admits a
unique adapted mild solution

(ue, ve) € LP(Q2; C([0, T]; H)) x LP(Q2; C([0, T]; H)),

forany p>1and T >0, and for any € > 0.
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By adapting to this infinite dimensional situations the arguments
described above, we can average the coefficients f; and gy of the
slow equation, and obtain the averaged equation

du(t) = [Aru(t) + F(u(t))] dt + G(u(t)) dw® (), u(0) = x.

Then,

we show that it admits a unique mild solution
ue LP(Q2,C([0, T]; H)), forany p>1and T > 0.
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Therefore, we prove that under the conditions above, for any
T > 0 we have

L(u) — £(G), in C([0, T];H), aselo.

gi(& 01,02) = gi(&,01), (£ 01,00) € D x R?,

then, for any n > 0
lim P (Jue = @l (o, ry.4) > ) =0,

or, even more,

limE sup |uc(t)— a(t)|}, =0,
=0 teo,7]
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In the proof of the averaging limit, we have used
- the Khasminskii method of localization in time,

- the method of corrector functions and elliptic equations in
Hilbert spaces.
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In the proof of the averaging limit, we have used
- the Khasminskii method of localization in time,

- the method of corrector functions and elliptic equations in
Hilbert spaces.

In recent years, many different other models of slow-fast systems of
SPDEs have been considered. So, now the literature on the validity
of the averaging principle for SPDEs is quite large.
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The case of non-autonomous systems

Together with A. Lunardi, we dealt with

non-autonomous systems of reaction-diffusion equations of
Hodgkin-Huxley or Ginzburg -Landau type, perturbed by a
Gaussian noise of multiplicative type.

S. Cerrai Averaging for non-autonomous slow-fast systems of SPDEs



The case of non-autonomous systems

Together with A. Lunardi, we dealt with

non-autonomous systems of reaction-diffusion equations of
Hodgkin-Huxley or Ginzburg -Landau type, perturbed by a
Gaussian noise of multiplicative type.

In neurophysiology the Hodgkin-Huxley model, and its simplified
version given by the Fitzhugh-Nagumo system, are used to describe
the activation and deactivation dynamics of a spiking neuron.
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The case of non-autonomous systems

Together with A. Lunardi, we dealt with

non-autonomous systems of reaction-diffusion equations of
Hodgkin-Huxley or Ginzburg -Landau type, perturbed by a
Gaussian noise of multiplicative type.

In neurophysiology the Hodgkin-Huxley model, and its simplified
version given by the Fitzhugh-Nagumo system, are used to describe
the activation and deactivation dynamics of a spiking neuron.

The classical Hodgkin-Huxley model has time-independent
coefficients, but (see Wainrib 2013)

systems with time-dependent coefficients are particularly important
to study models of learning in neuronal activity.
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The system

We are dealing here with the following class of equations

OUe (1) = Mue(t) + ba(€, (1), v(6)) + (€. ue(6)) 2 (,6)
at € b) € s Ve 9 € at ) )

ov,

() =~ (/A — 0)ule) + bo(t/e. &, 1), v 1)]

€

w2

P gt/ & v(0) 5 (4.9)

N -

u€(07£) = X(f)? V6(07§) = )/(f), §e D,

Nlue(tag):NZVE(tvg):Oa t207 56 oD.

In fact, we considered more general differential operators.
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The noise

The noises w@(t) and w®(t) are cylindrical Wiener processes in
H, with covariance @ and @Q>. That is,

oo
w(t,€) = Z Qien(&) Br(t), 1=1,2,
k=1
where {ex}ken is the orthonormal basis in H that diagonalizes A,

with eigenvalues {—ay }ken, and {Bk(t)}ken is a sequence of
independent Brownian motions.
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The noise

The noises w@(t) and w®(t) are cylindrical Wiener processes in
H, with covariance @ and @Q>. That is,

w(t,€) = Z Qien(&) Bi(t), i=1,2,
k=1

where {ex}ken is the orthonormal basis in H that diagonalizes A,
with eigenvalues {—ay }ken, and {Bk(t)}ken is a sequence of
independent Brownian motions.

We assume Qjex = Aj ek, for every k > 1 and i = 1,2, and

00 o0
Ri= Y Miled3 <00, =) leld < o0,
k=1 k=1

for some constants p; € (2,+o0] and 5 € (0, +00) such that
Blpi=2)
Pi

S. Cerrai Averaging for non-autonomous slow-fast systems of SPDEs



Notice that when

2/d
o ~ k / , sup |ex|oo < 00,
ke N

the condition above on the eigenvalues \; x of the operators Q;

becomes
o0

Ki = Z)\ﬁ’k < 0,

k=1

for some
.< 2d
Prsg—2
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The coefficients b; and g;

Just to simplify our presentation, we assume that the diffusion
coefficients g1 and g» are two bounded Lipschitz-continuous
functions.
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The coefficients b; and g;

Just to simplify our presentation, we assume that the diffusion
coefficients g1 and g» are two bounded Lipschitz-continuous
functions. Moreover,

by (€, u,v) = — 2”+1+Za )+ (€, u,v),
and
2m ]
by(t, &, u,v) = =B(6, )V 4> Bi(, V) + ha(t, €, u,v),
j=1

where hy; and hy are locally Lipschitz functions with linear growth.
All coefficients «, 3, «j and 3; are continuous, and

inf a(&) > 0, inf _p(t,&) >0

&ebD (t,£)e Rt xD
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For every x,y € C(D), we set

Bl(X7y)(§) = b1(§7x(§)7y(§))7 §e D,

and

Ba(t, x,y)(§) := ba(t,€, x(£),¥(€)), t=0, £€ D,
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For every x,y € C(D), we set

Bl(X,y)(f) = b1(§7x(§)7y(§))7 §e D,

and

Ba(t, x,y)(§) := ba(t,€, x(£),¥(€)), t=0, £€ D,

Moreover, for every x,z € C(D), we set

[G1(x)2](¢) := &(&, x(£))z(§), €€ D,

and

[Ga(t, x)Z](§) := &a(t, €, x(£))z(§), t>0, £€ D.
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The evolution family generated by ~(t)A

We assume
0<% <A(t)<m, t>0,

and we define

v(t,s) = /t y(r)dr, s<t.

We denote by A the realization of A, endowed with the given
boundary conditions, in all spaces LP(D), 1 < p < oo, and in
(D).
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The evolution family generated by ~(t)A

We assume
0 <y <(t) <, t>0

)

and we define

v(t,s) = /t y(r)dr, s<t.

We denote by A the realization of A, endowed with the given
boundary conditions, in all spaces LP(D), 1 < p < oo, and in
(D).

For any € > 0 we set

Ud(t,s) = exp <W’p) A-Y- s)) , s<t
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Clearly, for every initial condition x, we have that
u(t) = U(t,s)x, t>s,

is the unique mild solution to the linear problem

Deu(t) = %(y(t)A —a)u(t), t>s, u(s)=x,

endowed with the given boundary conditions.
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The slow-fast system

With the notations introduced above, our system can be rewritten
in the following abstract form

duc(t) = [Auc(t) + Bi(ue(t), ve(t))] dt + Gi(uc(t)) del(t),
dve(t) = % [(v(t/e)A — a)ve(t) + Ba(t/e, uc(t), ve(t))] dt
+\2 Ga(t/e, ve(t)) dw® (1),

u(0) =x, v(0)=y.
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The slow-fast system

With the notations introduced above, our system can be rewritten
in the following abstract form

duc(t) = [Auc(t) + Bi(ue(t), ve(t))] dt + Gi(uc(t)) del(t),
dve(t) = % [(v(t/e)A — a)ve(t) + Ba(t/e, uc(t), ve(t))] dt
+\2 Ga(t/e, ve(t)) dw® (1),

u(0) =x, v(0)=y.

In what follows, we shall denote

H=1?(D), E=C(D).
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We show that for any € > 0 and x,y € E there exists a unique
adapted mild solution to the problem above in

LP(QQ; Cp((s, T]; E X E)), with s < T and p > 1.
This means that there exist two unique adapted processes u. and

Ve in LP(2; Cp((s, T); E)) such that

t
uE(t):etAx+/ e(=DAB (u(r), ve(r)) ds

+ [ eI ) W ),

and

v(t) = uﬁ(t,s)wi/s Ud(t, r)Ba(r, uc(r), ve(r)) dr

+\}E /st Ue(l', r)Gz(f, VE(r)) dWQz(r)‘
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Some bounds

We show that for any p > 1 and s < T there exists a constant
Cps, 7 > 0 such that for any x,y € E and € € (0,1]

E sup |u(t)g < cps1 (14 xR+ yI2)
te [s,T]

and

)
E / (D2 dt < cpmr (14 X2+ [y]2) .
S
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Some bounds

We show that for any p > 1 and s < T there exists a constant
Cps, 7 > 0 such that for any x,y € E and € € (0,1]

E sup |u(t)g < cps1 (14 xR+ yI2)
te [s,T]

and -
E / (D2 dt < cpmr (14 X2+ [y]2) .
S

I\/Ioreove_r, we show t_hat there exists # > 0 such that for any
6c[0,0),xec C/D),yc Eands< T

sup E‘Ue’LoosTce( ))<CsT<1+’X‘C9 "Hy,E)
ec (0,1]
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Finally, we prove that for any > 0 there exists () > 0 such that
forany T>0,p>2 x€ C’D),y€ Eand ri,r € [s, ]

sup Bluln) = w2 < 6o(T) (14 g + g ) In = O
e€ (0,1
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Finally, we prove that for any > 0 there exists () > 0 such that
forany T>0,p>2 x€ C’D),y€ Eand ri,r € [s, ]

sup Bluln) = w2 < 6o(T) (14 g + g ) In = O
e€ (0,1

This implies that

the family {L£(uc)}ee (0,17 is tight in C([s, T]; E), for any
X € CQ(D), with 8 > 0, and for any y € E.
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The fast equation

For any frozen slow component x € E, any initial condition y € E
and any s € R, we introduce the problem

dv(t) = [(7(t)A — a)v(t) + Ba(t, x, v(t))] dt + Ga(t, v(t)) dw®(t),
with v(s) =y, where

wl(t), ift>0,

w(—t), ift <0,

for two independent Q-Wiener processes, WlQ2(t) and WzQz(t).
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The fast equation

For any frozen slow component x € E, any initial condition y € E
and any s € R, we introduce the problem

dv(t) = [(7(t)A — a)v(t) + Ba(t, x, v(t))] dt + Ga(t, v(t)) dw 2 (t),
with v(s) =y, where

wl(t), ift>0,

w(—t), ift <0,
for two independent Q-Wiener processes, WlQ2(t) and WzQz(t).

The process v*(+;s,y) € LP(Q; C([s, T]; E)) is a mild solution if

t
(ti5,y) = Ua(t,s)y + / Un(t. 7) Ba(r,x, v¥(r; 5, y)) dr
S

+/ Ua(t, r) Go(r,v¥(r;s,y)) dw®(r).
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We prove that

for any x,y € and forany p>1lands< T,
there exists a unique mild solution
vi¥(sis,y) € LP(Q: C((s, T]; E) N L((s, T); E)).
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We prove that

for any x,y € and forany p>1lands< T,
there exists a unique mild solution
vi¥(sis,y) € LP(Q: C((s, T]; E) N L((s, T); E)).

We prove also that there exists § > 0 such that for any x,y € E
and p>1

E v (t;s,y)|E < ¢ (1 + e P9 |y|P |x]’z_-> , s<t
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The fast equation in R

An adapted process v* € LP(Q; C(R; E)) is a mild solution of the
equation above in R if, for every s < t,

v¥(t) = Ua(t, s)v*(s) + / Ua(t, r) Ba(r,x, v*(r)) dr

+/ Ua(t, r) Ga(r,v*(r)) dw(r).
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We prove that if a > 0 is large enough and/or Lg, is small enough,
foranyte Rand xe€ E

there exists n*(t) € LP(Q; E), for all p > 1,
such that

lim E|v*(t;s,y) —n*(t)|z =0,

S——00
forany y € Eandt € R.
Moreover, for every p > 1 there exists some §, > 0 such that
E X (tis,y) = (1)|g < e 9 (14 [xIE + |yIZ) -

Finally, »* is a mild solution in R of the fast equation.

S. Cerrai Averaging for non-autonomous slow-fast systems of SPDEs



The evolution system of probabilities

For any fixed x € E, we define the transition evolution operator

Pio(y) =Ep(vi(t;s,y)), s<t, yecE,

where ¢ € B,(E).
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The evolution system of probabilities
For any fixed x € E, we define the transition evolution operator
Pieo(y) =Eo(vi(tis,y)), s<t y€E,

where ¢ € B,(E).
Forany t € R and x € E, we set

p = L07*(t))-
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The evolution system of probabilities
For any fixed x € E, we define the transition evolution operator
Pieo(y) =Eo(vi(tis,y)), s<t y€E,

where ¢ € B,(E).
Forany t € R and x € E, we set

p = L07*(t))-

We show that the family {y}}+cr defines an evolution system of
probability measures on E for the fast equation.

This means that uf is a probability measure on E, for any t € R,
and for every ¢ € Cp(E)

/P?,tw(y)ui(dy)Z/so(y)u?(dy), s<t.
E E
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Notice that, due to the previous estimates, for any p > 1 we have

suﬂgme(t)\’é <c (L+]x[8), xeE,
te

so that

SUP/ Y2 i (dy) < ¢ (1+|xIZ) -
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Notice that, due to the previous estimates, for any p > 1 we have
suﬂgme(t)\’é <c (L+]x[8), xeE,
te

so that

SUP/ Y2 i (dy) < ¢ (1+|xIZ) -

Moreover, we prove that for any R > 0 there exists cg > 0 such
that

x1,x2 € Be(R) = squéE | (t) — an(t)|,25 < crlx1 — x2|2,;:.
te
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The key limiting result

Under the conditions above,

im _Plec) = [ el nile)

S——00

for any p € Cy(E).
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The key limiting result

Under the conditions above,

im _Plec) = [ el nile)

S——00
for any p € Cy(E).
Moreover, if ¢ € CI}(E),

< llellcye e 1) (1 + [x|e + |yle) -

PXoly) - /E o(2) i (dz)
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The key limiting result

Under the conditions above,

im _Plec) = [ el nile)

S——00
for any p € Cy(E).
Moreover, if ¢ € CI}(E),

PXoly) - /E o(2) i (dz)

< llellcye e 1) (1 + [x|e + |yle) -

Finally, if {v}}+cRr is another evolution family of measures for the
same equation, such that

sup [ Iyle vi(dy) < .
teRJE

then
vi =i, teR, xe E.
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Almost periodic functions

Let (X, dx) and (Y, dy) be two complete metric spaces. For any
bounded function f : R — Y and € > 0, we define

T(f,e)={r € R : dy(f(t+7),f(t)) <e, forall t € R}.
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Almost periodic functions

Let (X, dx) and (Y, dy) be two complete metric spaces. For any
bounded function f : R — Y and € > 0, we define

T(f,e)={r € R : dy(f(t+7),f(t)) <e, forall t € R}.

- A continuous function f : R — Y is said to be almost periodic
if, for all € > 0 there exists a number /. > 0 such that

T(f,e)Nfa,a+1l]#0, ac R
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Almost periodic functions

Let (X, dx) and (Y, dy) be two complete metric spaces. For any
bounded function f : R — Y and € > 0, we define

T(f,e)={r € R : dy(f(t+7),f(t)) <e, forall t € R}.

- A continuous function f : R — Y is said to be almost periodic
if, for all € > 0 there exists a number /. > 0 such that

T(f,e)Nfa,a+1l]#0, ac R

- Let F C X and, for any x € F, let f(-,x) : R — Y bea
continuous function. The family of functions {f(-, x)}xe F is
said uniformly almost periodic if for any € > 0 there exists
I > 0 such that

ﬂT eNfa,a+l]#0, acR.
x€F
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The important consequence of almost periodicity

- There exists the mean value in Y of any almost periodic
function f : R — Y, that is

T

1
3 lim —= f(s)dse Y.
T—o0 0
Moreover, for every t € R
1 t+T 1 T
lim — f(s)ds = lim — f(s)ds,

T—oo T t T—oo T 0

uniformly with respect to t € R.
- If {f (-, x)}xe F is a uniformly almost periodic family of
functions, with F C X, then
1 [t+T 1 T
3 lim = f(s,x)ds = lim — f(s,x)ds,

T—oo t T—o0 0

uniformly with respect to t € R and x € F.
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Almost periodicity of the evolution family of measures

We assume the following conditions on «(t) and the coefficients
bo(t, €&, 0) and go(t,€,0).

- The function v : R — (0, 00) is periodic.

- For every R > 0, the families of functions

Br = {bz(-,f,o) 1 &e D, o€ BRZ(R)}7

Or = {gg &€ D o c BR(R)}

are both uniformly almost periodic.

Under these conditions, it is easy to check that for any R > 0 the
family of functions

{Ba(-sx,y) 1 (x,¥) € Bexe(R)}, {G(,y) : y € Be(R)},
are both uniformly almost periodic.
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In Da Prato-Tudor (1995), SPDEs with periodic and almost
periodic coefficients are studied and it is proven that if

- 4(+) is periodic,
- the family of functions

{Ba(sx,y) = (xy) € Bexe(R)}s {Ga(ey) =y € Be(R)},

are both uniformly almost periodic, for any R > 0,
- the family of measures {uf}ier is tight in P(E),
then the mapping

t € R pi € P(E) is almost periodic.
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In fact, we prove that if « is sufficiently large and/or Lg, is
sufficiently small, there exists § > 0 such that for any p > 1 and

forany x € E

X P < P
ngE ’77 (t) co(D) = Cp (1 + ‘X’E) ’

In particular, the family of measures
Ar:={ui;t€ R, xe Be(R)},

is tight in P(E), for any R > 0.
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In fact, we prove that if « is sufficiently large and/or Lg, is
sufficiently small, there exists § > 0 such that for any p > 1 and
forany x € E

X P < P
ngE ’77 (t) co(D) = Cp (1 + ‘X’E) ’

In particular, the family of measures
Ar:={ui;t€ R, xe Be(R)},

is tight in P(E), for any R > 0.

In view of Da Prato-Tudor result, this implies that the mapping
te R— pui e P(E),

is almost periodic, for any fixed x € E.
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The averaged equation

We first show that for every compact set K C E, the family of
functions

{te RH/EBl(X,z)/ft((dz)e E:xe K}

is uniformly almost periodic.
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The averaged equation

We first show that for every compact set K C E, the family of
functions

{te RH/EBl(X,z)u’t((dz)e E:xe K}

is uniformly almost periodic.

Due to the almost periodicity of the family above, we can define

B(x) := lim / /ley wi(dy)dt, xe E.

T—o0 T
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The averaged equation

We first show that for every compact set K C E, the family of
functions

{te RH/EBl(X,z)u’t((dz)e E:xe K}

is uniformly almost periodic.

Due to the almost periodicity of the family above, we can define

B(x) := lim / /ley wi(dy)dt, xe E.

T—o0 T

Notice that this, together with the estimates we have for By, yields

B()le < c (1+Ix[E")-
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The fundamental limit

If « is sufficiently large and/or L, is sufficiently small, there exist
some constants x1,kp > 0 such that forany T >0, s € R and

x,y € E
2

=

s+T
1/ Bi(x, v(t;s,y)) dt — B(x)

T E

(1+ X2+ ylR) + T, x),

\Hﬁ

for some mapping « : [0,00) x E — [0, +00) such that

sup (T, x) <c(1+|[x|g"), x€E,
T>0

and, for any compact set K C E,

lim sup a(T,x) =0.

T—o0 xe K
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The mapping B : E — E is locally Lipschitz-continuous. Moreover,
for any x,h € E and 6 € My,

(B(x+ h) — B(x),5>E <c (1+|hle +|x|E)-

Here M, denotes a suitable subset of the subdifferential of the
norm of h.
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The mapping B : E — E is locally Lipschitz-continuous. Moreover,
for any x,h € E and 6 € My,

(B(x+ h) — B(x),5>E <c (1+|hle +|x|E)-

Here M, denotes a suitable subset of the subdifferential of the
norm of h.

Thus, we can introduce the averaged equation

du(t) = [Au(t) + B(u(t))] dt + G(u(t)) dw@(t), u(0)=xe€ E.
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The mapping B : E — E is locally Lipschitz-continuous. Moreover,
for any x,h € E and 6 € My,

(B(x+ h) — B(x),5>E <c (1+|hle +|x|E)-

Here M, denotes a suitable subset of the subdifferential of the
norm of h.

Thus, we can introduce the averaged equation
du(t) = [Au(t) + B(u(t))] dt + G(u(t)) dw@(t), u(0)=xe€ E.
In view of the nice properties of B,

the equation above admits a unique mild solution
ue LP(Q; Cp((0, T]; E)).
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The averaging limit

Fix x € C?(D), for some 6 > 0, and y € E. Then, if a is large
enough and/or Ly, is small enough, for any 7 > 0 and n > 0 we
have

lim P( sup |U€(t)—L_l(t)’E>7]> =0,

=0 te[0,T]

where & is the solution of the averaged equation.
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A few comments about the proof

For any h € D(A) and € > 0, we have

/uetf £)d¢ = / d§+//u€s§Ah(§)d§ds
// (ue(s dfds+/ /[G1 ue(s)h](€)dw® (s, €)

# [ (Bulas) wl9)6) ~ Blu(s)(©) he) de o
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Therefore, due to the tightness of the family {L(uc)}ee (0,17 in
P(C([0, T]; E)), we have to prove

lim E sup |R(t)|g =0,
=0 teo,7]

where

Ri(t) == /0 /D (Bu(ue(5), ve(5))(€) — Bluc(5))(€)) h(€) de d.
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Clearly, the limit

lim E sup |R(t)|e =0, (4)
=0 te0,T]

is a consequence of the fundamental result

T 2
E ‘71_/5 Bl(x, VX(t; s,y)) dt — E(X) . (5)

c
7(1—|—|X| +yI2) +(T,x) =0, as T — oo.
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Clearly, the limit

lim E sup |R(t)|e =0, (4)
=0 te0,T]

is a consequence of the fundamental result

2

T
E ‘71_/5 Bl(x, VX(t; s,y)) dt — E(X) . (5)

c
7(1+|X| +y|2) +a(T,x) >0, as T — .
But going from (5) to (4), is not painless. We use here the
Khasminskii method of localization in time, but this requires first a

truncation procedure for the coefficients and some uniform
estimates.
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Thank You
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