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Averaging principle

Consider the perturbed system
X ′ε(t) = ε f1(Xε(t),Yε(t)), Xε(0) = x ∈ Rn,

Y ′ε(t) = f2(Xε(t),Yε(t)), Yε(0) = y ∈ Rm,

(1)

where 0 < ε << 1.

Under reasonable assumptions on f1 and f2, for any fixed T > 0

lim
ε→0

sup
t∈ [0,T ]

|Xε(t)− x | = 0.

The behavior of the slow variable Xε on time intervals of order ε−1

is of interest, because on such time scales significant changes take
place.
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For any frozen slow component x ∈ Rn, consider the fast equation

Y ′x ,y (t) = f2(x ,Yx(t)), Yx ,y (0) = y ,

and assume that the limit

lim
T→∞

1

T

∫ T

0
f1(x ,Yx ,y (t)) dt =: f̄ (x)

exists, for some f̄ : Rn → Rn, independent of y ∈ Rm.

The averaging principle says that in the time interval [0,T/ε] the
slow motion Xε can be approximated by the trajectories of the
averaged system

X̄ ′(t) = f̄ (X̄ (t)), X̄ (0) = x .

That is
lim
ε→0

sup
t∈ [0,T/ε]

|Xε(t)− X̄ (t)|Rn = 0.
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Averaging principle for randomly perturbed systems

A further development concerns the case of random perturbations
of dynamical systems.

For example, in system (1) the coefficient f2 may be assumed to
depend also on a parameter ω ∈ Ω, (so that the fast variable is a
random process), or even the perturbing coefficient f1 may be
taken random.

One has to reinterpret condition

lim
T→∞

1

T

∫ T

0
f1(x ,Yx ,y (t)) dt =: f̄ (x)

and the type of convergence of Xε to X̄ .
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In 1968 Khasminskii has proved that averaging holds for the
following system of stochastic differential equations

dXε(t) = f1(Xε(t),Yε(t)) dt + g1(Xε(t),Yε(t)) dw(t),

dYε(t) =
1

ε
f2(Xε(t),Yε(t)) dt +

1√
ε
g2(Xε(t),Yε(t)) dw(t),

(2)
with initial conditions Xε(0) = x ∈ Rn and Yε(0) = y ∈ Rm, for

some k-dimensional Brownian motion w(t).

In this case the perturbation in the slow motion is given by the
sum of a deterministic part and a stochastic part

εf1(x , y) dt +
√
ε g1(x , y)dw(t),

and the fast motion is described by a stochastic differential
equation.
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Under reasonable assumptions on the coefficients f2 and g2, the
fast equation with frozen slow component x ∈ Rn

dY x ,y (t) = f2(x ,Y x ,y (t)) dt + g2(x ,Y x ,y (t)) dw(t),

Y x ,y (0) = y ∈ Rm,

is well posed.

Then, for every fixed x ∈ Rn, we can introduce the transition
semigroup

Px
t ϕ(y) = Eϕ(Y x ,y (t)),

where ϕ : Rn → R is Borel bounded.
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Main assumptions

We assume that there exists f̄ : Rn → Rn such that for every
t ≥ 0, x ∈ Rn and y ∈ Rm

E
∣∣∣∣ 1

T

∫ t+T

t
f1(x ,Y x ,y (s)) ds − f̄ (x)

∣∣∣∣ ≤ α(T ),

where α(T )→ 0 as T →∞.

We also assume that there exists ā : Rn → Rk×n such that for
every t ≥ 0, x ∈ Rn and y ∈ Rm

max
i ,j

E
∣∣∣∣ 1

T

∫ t+T

t
g i ,k

1 (x ,Y x ,y (s))gk,j
1 (x ,Y x ,y (s)) ds − āi ,j(x)

∣∣∣∣ ≤ α(T ),

where α(T )→ 0 as T →∞.
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The convergence result

Under reasonable conditions on the coefficients the averaged
equation

dX̄ (t) = b̄(X̄ (t)) dt +
√
ā(X̄ (t)) dw(t), X̄ (0) = x ,

is well posed.

The averaging principle says that

the slow component Xε(·) converges weakly in the space of
continuous trajectories C ([0,T ];Rn) to the solution X̄ (·) of the

averaged equation.

Moreover, if g1 does not depend on the fast variable, the
convergence is stronger.
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How to verify the assumptions?

Assume that

the semigroup Px
t associated with the fast equation admits a
unique invariant measure µx

and for any x , y ∈ H and ϕ ∈ Lip(H)∣∣∣∣Px
t ϕ(y)−

∫
H
ϕ(z)µx(dz)

∣∣∣∣ ≤ c (1 + |x |H + |y |H) e−δt [ϕ]Lip(H).

Then, the two assumptions are satisfied if we define

b̄(x) =

∫
Rm

b1(x , y) dµx(y),

and

āi ,j(x) =

∫
Rm

g i ,k
1 (x , y)gk,j

1 (x , y) dµx(y).
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Averaging for SPDEs

In a series of papers, also together with M. Freidlin, we have
considered an infinite dimensional analogue of (2) in a bounded
domain D ⊂ Rd , d ≥ 1,

∂uε
∂t

(t, ξ) = A1uε(t, ξ) + f1(ξ, uε(t, ξ), vε(t, ξ))

+g1(ξ, uε(t, ξ), vε(t, ξ))
∂wQ1

∂t
(t, ξ),

∂vε
∂t

(t, ξ) =
1

ε
[(A2 − λ)vε(t, ξ) + f2(ξ, uε(t, ξ), vε(t, ξ))]

+
1√
ε
g2(ξ, uε(t, ξ), vε(t, ξ))

∂wQ2

∂t
(t, ξ),

(3)

with initial conditions uε(0, ξ) = x(ξ), vε(0, ξ) = y(ξ) and suitable
boundary conditions.
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Well-posedness of the system

Here, we assume

- A1 and A2 are second order uniformly elliptic operators.

- wQ1(t, ξ) and wQ2(t, ξ) are cylindrical Wiener processes in
H := L2(D), defined on a complete stochastic basis
(Ω,F ,Ft ,P), with covariance Q1 and Q2.

- Q1 and Q2 are bounded linear operators in H, fulfilling
suitable assumptions and not Hilbert-Schmidt, in general.
When d = 1, we could take Qi = I .

- the mappings fi , gi : D × R2 → R are measurable;

- the mappings fi (ξ, ·) : R2 → R and gi (ξ, ·) : R2 → R are
Lipschitz-continuous, or more general.
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Under the hypotheses above, the stochastic system admits a
unique adapted mild solution

(uε, vε) ∈ Lp(Ω;C ([0,T ];H))× Lp(Ω;C ([0,T ];H)),

for any p ≥ 1 and T > 0, and for any ε > 0.
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By adapting to this infinite dimensional situations the arguments
described above, we can average the coefficients f1 and g1 of the
slow equation, and obtain the averaged equation

du(t) =
[
A1u(t) + F̄ (u(t))

]
dt + Ḡ (u(t)) dwQ1(t), u(0) = x .

Then,

we show that it admits a unique mild solution
ū ∈ Lp(Ω,C ([0,T ];H)), for any p ≥ 1 and T > 0.
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Therefore, we prove that under the conditions above, for any
T > 0 we have

L(uε) ⇀ L(ū), in C ([0,T ];H), as ε ↓ 0.

If
g1(ξ, σ1, σ2) = g1(ξ, σ1), (ξ, σ1, σ2) ∈ D × R2,

then, for any η > 0

lim
ε→0

P
(
|uε − ū|C([0,T ];H) > η

)
= 0,

or, even more,

lim
ε→0

E sup
t∈ [0,T ]

|uε(t)− ū(t)|pH = 0,
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In the proof of the averaging limit, we have used

- the Khasminskii method of localization in time,

- the method of corrector functions and elliptic equations in
Hilbert spaces.

In recent years, many different other models of slow-fast systems of
SPDEs have been considered. So, now the literature on the validity
of the averaging principle for SPDEs is quite large.
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The case of non-autonomous systems

Together with A. Lunardi, we dealt with

non-autonomous systems of reaction-diffusion equations of
Hodgkin-Huxley or Ginzburg -Landau type, perturbed by a

Gaussian noise of multiplicative type.

In neurophysiology the Hodgkin-Huxley model, and its simplified
version given by the Fitzhugh-Nagumo system, are used to describe
the activation and deactivation dynamics of a spiking neuron.

The classical Hodgkin-Huxley model has time-independent
coefficients, but (see Wainrib 2013)

systems with time-dependent coefficients are particularly important
to study models of learning in neuronal activity.
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The system

We are dealing here with the following class of equations

∂uε
∂t

(t) = ∆uε(t) + b1(ξ, uε(t), vε(t)) + g1(ξ, uε(t))
∂wQ1

∂t
(t, ξ),

∂vε
∂t

(t) =
1

ε
[(γ(t/ε)∆− α)vε(t) + b2(t/ε, ξ, uε(t), vε(t))]

+
1√
ε
g2(t/ε, ξ, vε(t))

∂wQ2

∂t
(t, ξ),

uε(0, ξ) = x(ξ), vε(0, ξ) = y(ξ), ξ ∈ D,

N1uε (t, ξ) = N2vε (t, ξ) = 0, t ≥ 0, ξ ∈ ∂D.

In fact, we considered more general differential operators.
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The noise

The noises wQ1(t) and wQ2(t) are cylindrical Wiener processes in
H, with covariance Q1 and Q2. That is,

wQi (t, ξ) =
∞∑
k=1

Qiek(ξ)βk(t), i = 1, 2,

where {ek}k∈N is the orthonormal basis in H that diagonalizes ∆,
with eigenvalues {−αk}k∈N, and {βk(t)}k∈N is a sequence of
independent Brownian motions.

We assume Qiek = λi ,kek , for every k ≥ 1 and i = 1, 2, and

κi :=
∞∑
k=1

λρii ,k |ek |
2
∞ <∞, ζ :=

∞∑
k=1

α−βk |ek |
2
∞ <∞,

for some constants ρi ∈ (2,+∞] and β ∈ (0,+∞) such that

β(ρi − 2)

ρi
< 1.
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Notice that when

αk ∼ k2/d , sup
k∈N
|ek |∞ <∞,

the condition above on the eigenvalues λi ,k of the operators Qi

becomes

κi =
∞∑
k=1

λρii ,k <∞,

for some

ρi <
2d

d − 2
.
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The coefficients bi and gi

Just to simplify our presentation, we assume that the diffusion
coefficients g1 and g2 are two bounded Lipschitz-continuous
functions.

Moreover,

b1(ξ, u, v) = −α(ξ) u2n+1 +
2n∑
j=0

αj(ξ)uj + h1(ξ, u, v),

and

b2(t, ξ, u, v) = −β(t, ξ)v2m+1 +
2m∑
j=1

βj(t, ξ)v j + h2(t, ξ, u, v),

where h1 and h2 are locally Lipschitz functions with linear growth.
All coefficients α, β, αj and βj are continuous, and

inf
ξ∈ D̄

α(ξ) > 0, inf
(t,ξ)∈R+×D̄

β(t, ξ) > 0.
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inf
ξ∈ D̄

α(ξ) > 0, inf
(t,ξ)∈R+×D̄

β(t, ξ) > 0.
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For every x , y ∈ C (D̄), we set

B1(x , y)(ξ) := b1(ξ, x(ξ), y(ξ)), ξ ∈ D,

and

B2(t, x , y)(ξ) := b2(t, ξ, x(ξ), y(ξ)), t ≥ 0, ξ ∈ D,

Moreover, for every x , z ∈ C (D̄), we set

[G1(x)z ](ξ) := g1(ξ, x(ξ))z(ξ), ξ ∈ D,

and

[G2(t, x)z ](ξ) := g2(t, ξ, x(ξ))z(ξ), t ≥ 0, ξ ∈ D.
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The evolution family generated by γ(t)∆

We assume
0 < γ0 ≤ γ(t) ≤ γ1, t ≥ 0,

and we define

γ(t, s) :=

∫ t

s
γ(r) dr , s < t.

We denote by A the realization of ∆, endowed with the given
boundary conditions, in all spaces Lp(D), 1 < p <∞, and in
C (D̄).

For any ε > 0 we set

Uε(t, s) = exp

(
γ(r , ρ)

ε
A− α

ε
(t − s)

)
, s < t.

S. Cerrai Averaging for non-autonomous slow-fast systems of SPDEs



The evolution family generated by γ(t)∆

We assume
0 < γ0 ≤ γ(t) ≤ γ1, t ≥ 0,

and we define

γ(t, s) :=

∫ t

s
γ(r) dr , s < t.

We denote by A the realization of ∆, endowed with the given
boundary conditions, in all spaces Lp(D), 1 < p <∞, and in
C (D̄).

For any ε > 0 we set

Uε(t, s) = exp

(
γ(r , ρ)

ε
A− α

ε
(t − s)

)
, s < t.

S. Cerrai Averaging for non-autonomous slow-fast systems of SPDEs



Clearly, for every initial condition x , we have that

u(t) = Uε(t, s)x , t ≥ s,

is the unique mild solution to the linear problem

∂tu(t) =
1

ε
(γ(t)∆− α)u(t), t > s, u(s) = x ,

endowed with the given boundary conditions.
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The slow-fast system

With the notations introduced above, our system can be rewritten
in the following abstract form

duε(t) = [Auε(t) + B1(uε(t), vε(t))] dt + G1(uε(t)) dwQ1(t),

dvε(t) =
1

ε
[(γ(t/ε)∆− α)vε(t) + B2(t/ε, uε(t), vε(t))] dt

+
1√
ε
G2(t/ε, vε(t)) dwQ2(t),

uε(0) = x , vε(0) = y .

In what follows, we shall denote

H = L2(D), E = C (D̄).
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We show that for any ε > 0 and x , y ∈ E there exists a unique
adapted mild solution to the problem above in
Lp(Ω;Cb((s,T ];E × E )), with s < T and p ≥ 1.

This means that there exist two unique adapted processes uε and
vε in Lp(Ω;Cb((s,T ];E )) such that

uε(t) = etAx +

∫ t

s
e(t−r)AB1(uε(r), vε(r)) ds

+

∫ t

s
e(t−s)AG1(uε(r)) dwQ1(r),

and

vε(t) = Uε(t, s)y +
1

ε

∫ t

s
Uε(t, r)B2(r , uε(r), vε(r)) dr

+
1√
ε

∫ t

s
Uε(t, r)G2(r , vε(r)) dwQ2(r).
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Some bounds

We show that for any p ≥ 1 and s < T there exists a constant
cp,s,T > 0 such that for any x , y ∈ E and ε ∈ (0, 1]

E sup
t∈ [s,T ]

|uε(t)|pE ≤ cp,s,T
(
1 + |x |pE + |y |pE

)
,

and

E
∫ T

s
|vε(t)|pE dt ≤ cp,s,T

(
1 + |x |pE + |y |pE

)
.

Moreover, we show that there exists θ̄ > 0 such that for any
θ ∈ [0, θ̄), x ∈ C θ(D̄), y ∈ E and s < T

sup
ε∈ (0,1]

E |uε|L∞(s,T ;Cθ(D̄)) ≤ cs,T

(
1 + |x |Cθ(D̄) + |y |E

)
.
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Finally, we prove that for any θ > 0 there exists γ(θ) > 0 such that
for any T > 0, p ≥ 2, x ∈ C θ(D̄), y ∈ E and r1, r2 ∈ [s, t]

sup
ε∈ (0,1)

E |uε(r1)− uε(r2)|pE ≤ cp(T )
(

1 + |x |pm1

Cθ(D̄)
+ |y |pE

)
|r1 − r2|γ(θ)p.

This implies that

the family {L(uε)}ε∈ (0,1] is tight in C ([s,T ];E ), for any

x ∈ C θ(D̄), with θ > 0, and for any y ∈ E .
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The fast equation

For any frozen slow component x ∈ E , any initial condition y ∈ E
and any s ∈ R, we introduce the problem

dv(t) = [(γ(t)A− α)v(t) + B2(t, x , v(t))] dt + G2(t, v(t)) dw̄Q2(t),

with v(s) = y , where

w̄Q2(t) =


wQ2

1 (t), if t ≥ 0,

wQ2
2 (−t), if t < 0,

for two independent Q2-Wiener processes, wQ2
1 (t) and wQ2

2 (t).

The process v x(·; s, y) ∈ Lp(Ω;C ([s,T ];E )) is a mild solution if

v x(t; s, y) = Uα(t, s)y +

∫ t

s
Uα(t, r)B2(r , x , v x(r ; s, y)) dr

+

∫ t

s
Uα(t, r)G2(r , v x(r ; s, y)) dw̄Q2(r).
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We prove that

for any x , y ∈ and for any p ≥ 1 and s < T ,
there exists a unique mild solution

v x(·; s, y) ∈ Lp(Ω;C ((s,T ];E ) ∩ L∞((s,T );E )).

We prove also that there exists δ > 0 such that for any x , y ∈ E
and p ≥ 1

E |v x(t; s, y)|pE ≤ cp
(

1 + e−δp(t−s) |y |pE + |x |pE
)
, s < t.
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The fast equation in R

An adapted process v x ∈ Lp(Ω;C (R;E )) is a mild solution of the
equation above in R if, for every s < t,

v x(t) = Uα(t, s)v x(s) +

∫ t

s
Uα(t, r)B2(r , x , v x(r)) dr

+

∫ t

s
Uα(t, r)G2(r , v x(r)) dw̄Q2(r).
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We prove that if α > 0 is large enough and/or Lg2 is small enough,
for any t ∈ R and x ∈ E

there exists ηx(t) ∈ Lp(Ω;E ), for all p ≥ 1,

such that
lim

s→−∞
E |v x(t; s, y)− ηx(t)|pE = 0,

for any y ∈ E and t ∈ R.

Moreover, for every p ≥ 1 there exists some δp > 0 such that

E |v x(t; s, y)− ηx(t)|pE ≤ cp e
−δp(t−s)

(
1 + |x |pE + |y |pE

)
.

Finally, ηx is a mild solution in R of the fast equation.
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The evolution system of probabilities

For any fixed x ∈ E , we define the transition evolution operator

Px
s,t ϕ(y) = Eϕ(v x(t; s, y)), s < t, y ∈ E ,

where ϕ ∈ Bb(E ).

For any t ∈ R and x ∈ E , we set

µxt := L(ηx(t)).

We show that the family {µxt }t∈R defines an evolution system of
probability measures on E for the fast equation.

This means that µxt is a probability measure on E , for any t ∈ R,
and for every ϕ ∈ Cb(E )∫

E
Px
s,tϕ(y)µxs (dy) =

∫
E
ϕ(y)µxt (dy), s < t.
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Notice that, due to the previous estimates, for any p ≥ 1 we have

sup
t∈R

E |ηx(t)|pE ≤ cp
(
1 + |x |pE

)
, x ∈ E ,

so that

sup
t∈R

∫
E
|y |pE µ

x
t (dy) ≤ cp

(
1 + |x |pE

)
.

Moreover, we prove that for any R > 0 there exists cR > 0 such
that

x1, x2 ∈ BE (R) =⇒ sup
t∈R

E |ηx1(t)− ηx2(t)|2E ≤ cR |x1 − x2|2E .
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The key limiting result

Under the conditions above,

lim
s→−∞

Px
s,tϕ(y) =

∫
E
ϕ(y)µxt (dy),

for any ϕ ∈ Cb(E ).

Moreover, if ϕ ∈ C 1
b (E ),∣∣∣∣Px

s,tϕ(y)−
∫
E
ϕ(z)µxt (dz)

∣∣∣∣ ≤ ‖ϕ‖C1
b (E) e

−δ1(t−s) (1 + |x |E + |y |E ) .

Finally, if {νxt }t∈R is another evolution family of measures for the
same equation, such that

sup
t∈R

∫
E
|y |E νxt (dy) <∞,

then
νxt = µxt , t ∈ R, x ∈ E .
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Almost periodic functions

Let (X , dX ) and (Y , dY ) be two complete metric spaces. For any
bounded function f : R→ Y and ε > 0, we define

T (f , ε) = {τ ∈ R : dY (f (t + τ), f (t)) < ε, for all t ∈ R} .

- A continuous function f : R→ Y is said to be almost periodic
if, for all ε > 0 there exists a number lε > 0 such that

T (f , ε) ∩ [a, a + lε] 6= ∅, a ∈ R.

- Let F ⊂ X and, for any x ∈ F , let f (·, x) : R→ Y be a
continuous function. The family of functions {f (·, x)}x∈F is
said uniformly almost periodic if for any ε > 0 there exists
lε > 0 such that⋂

x∈F
T (f (·, x), ε) ∩ [a, a + lε] 6= ∅, a ∈ R.
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The important consequence of almost periodicity

- There exists the mean value in Y of any almost periodic
function f : R→ Y , that is

∃ lim
T→∞

1

T

∫ T

0
f (s) ds ∈ Y .

Moreover, for every t ∈ R

lim
T→∞

1

T

∫ t+T

t
f (s) ds = lim

T→∞

1

T

∫ T

0
f (s) ds,

uniformly with respect to t ∈ R.

- If {f (·, x)}x∈F is a uniformly almost periodic family of
functions, with F ⊂ X , then

∃ lim
T→∞

1

T

∫ t+T

t
f (s, x) ds = lim

T→∞

1

T

∫ T

0
f (s, x) ds,

uniformly with respect to t ∈ R and x ∈ F .

S. Cerrai Averaging for non-autonomous slow-fast systems of SPDEs



Almost periodicity of the evolution family of measures

We assume the following conditions on γ(t) and the coefficients
b2(t, ξ, σ) and g2(t, ξ, σ).

- The function γ : R→ (0,∞) is periodic.

- For every R > 0, the families of functions

BR :=
{
b2(·, ξ, σ) : ξ ∈ D̄, σ ∈ BR2(R)

}
,

GR :=
{
g2(·, ξ, σ) : ξ ∈ D̄, σ ∈ BR(R)

}
are both uniformly almost periodic.

Under these conditions, it is easy to check that for any R > 0 the
family of functions

{B2(·, x , y) : (x , y) ∈ BE×E (R)} , {G2(·, y) : y ∈ BE (R)} ,

are both uniformly almost periodic.
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In Da Prato-Tudor (1995), SPDEs with periodic and almost
periodic coefficients are studied and it is proven that if

- γ(·) is periodic,

- the family of functions

{B2(·, x , y) : (x , y) ∈ BE×E (R)} , {G2(·, y) : y ∈ BE (R)} ,

are both uniformly almost periodic, for any R > 0,

- the family of measures {µxt }t∈R is tight in P(E ),

then the mapping

t ∈ R 7→ µxt ∈ P(E ) is almost periodic.
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In fact, we prove that if α is sufficiently large and/or Lg2 is
sufficiently small, there exists θ > 0 such that for any p ≥ 1 and
for any x ∈ E

sup
t∈R

E |ηx(t)|p
Cθ(D̄)

≤ cp
(
1 + |x |pE

)
.

In particular, the family of measures

ΛR := {µxt ; t ∈ R, x ∈ BE (R)} ,

is tight in P(E ), for any R > 0.

In view of Da Prato-Tudor result, this implies that the mapping

t ∈ R 7→ µxt ∈ P(E ),

is almost periodic, for any fixed x ∈ E .
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The averaged equation

We first show that for every compact set K ⊂ E , the family of
functions {

t ∈ R 7→
∫
E
B1(x , z)µxt (dz) ∈ E : x ∈ K

}
is uniformly almost periodic.

Due to the almost periodicity of the family above, we can define

B̄(x) := lim
T→∞

1

T

∫ T

0

∫
E
B1(x , y)µxt (dy) dt, x ∈ E .

Notice that this, together with the estimates we have for B1, yields

|B̄(x)|E ≤ c
(
1 + |x |m1

E

)
.
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The fundamental limit

If α is sufficiently large and/or Lg2 is sufficiently small, there exist
some constants κ1, κ2 ≥ 0 such that for any T > 0, s ∈ R and
x , y ∈ E

E
∣∣∣∣ 1

T

∫ s+T

s
B1(x , v x(t; s, y)) dt − B̄(x)

∣∣∣∣2
E

≤ c

T

(
1 + |x |κ1

E + |y |κ2
E

)
+ α(T , x),

for some mapping α : [0,∞)× E → [0,+∞) such that

sup
T>0

α(T , x) ≤ c
(
1 + |x |m1

E

)
, x ∈ E ,

and, for any compact set K ⊂ E ,

lim
T→∞

sup
x∈K

α(T , x) = 0.
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The mapping B̄ : E → E is locally Lipschitz-continuous. Moreover,
for any x , h ∈ E and δ ∈ Mh〈

B̄(x + h)− B̄(x), δ
〉
E
≤ c (1 + |h|E + |x |E ) .

Here Mh denotes a suitable subset of the subdifferential of the
norm of h.

Thus, we can introduce the averaged equation

du(t) =
[
Au(t) + B̄(u(t))

]
dt + G (u(t)) dwQ1(t), u(0) = x ∈ E .

In view of the nice properties of B̄,

the equation above admits a unique mild solution
ū ∈ Lp(Ω;Cb((0,T ];E )).
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The averaging limit

Fix x ∈ C θ(D̄), for some θ > 0, and y ∈ E . Then, if α is large
enough and/or Lg2 is small enough, for any T > 0 and η > 0 we
have

lim
ε→0

P

(
sup

t∈ [0,T ]
|uε(t)− ū(t)|E > η

)
= 0,

where ū is the solution of the averaged equation.
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A few comments about the proof

For any h ∈ D(A) and ε > 0, we have∫
D
uε(t, ξ)h(ξ) dξ =

∫
D
x(ξ)h(ξ) dξ +

∫ t

0

∫
D
uε(s, ξ)Ah(ξ) dξ ds

+

∫ t

0

∫
D
B̄(uε(s, ·))(ξ)h(ξ) dξ ds +

∫ t

0

∫
D

[G1(uε(s)h](ξ)dwQ2(s, ξ)

+

∫ t

0

∫
D

(
B1(uε(s), vε(s))(ξ)− B̄(uε(s))(ξ)

)
h(ξ) dξ ds.
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Therefore, due to the tightness of the family {L(uε)}ε∈ (0,1] in
P(C ([0,T ];E )), we have to prove

lim
ε→0

E sup
t∈ [0,T ]

|Rε(t)|E = 0,

where

Rε(t) :=

∫ t

0

∫
D

(
B1(uε(s), vε(s))(ξ)− B̄(uε(s))(ξ)

)
h(ξ) dξ ds.

S. Cerrai Averaging for non-autonomous slow-fast systems of SPDEs



Clearly, the limit

lim
ε→0

E sup
t∈ [0,T ]

|Rε(t)|E = 0, (4)

is a consequence of the fundamental result

E
∣∣∣∣ 1

T

∫ s+T

s
B1(x , v x(t; s, y)) dt − B̄(x)

∣∣∣∣2
E

≤ c

T

(
1 + |x |κ1

E + |y |κ2
E

)
+ α(T , x)→ 0, as T →∞.

(5)

But going from (5) to (4), is not painless. We use here the
Khasminskii method of localization in time, but this requires first a
truncation procedure for the coefficients and some uniform
estimates.
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Thank You
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