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Laguerre-type [B-ensembles

Distribution on 0 < A1 < Ao < ... < Aps

n é _
dPp(X) :C|Vand()\)|5 H )\E(a—i-l) le_n’BV(A")d/\k
k=1

ma>-land g >1
m V is a polynomial such that V(\?) is uniformly convex.

m In the literature typically V(\) = A/2 “Pure Laguerre case”



We prove for any fixed k =1,2,3,... that

A1, ..., Ak converge in distribution to the squares of
the smallest k singular values of
a+1 1/
N

e

with Dirichlet boundary condition at x = 0.

“Universal” — the limit does not depend on V.



Equilibrium measure for Laguerre-type ensembles

Ec?u\\\oV'LUM measure  for  Laguerre” (=L
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Starting point of our project:

m Propose a random bi-diagonal matrix with e-val's of BB*
distributed dP,(\)

m In the cases § = 1,2, 4 the bi-diagonal model should be
similar to the classical Laguerre ensembles by Householder
transformations



I ——
Bidiagonal matrix model

Bidiagonal and tridiagonal matrices:

X1
-y X2

—Yn—-1 Xn



I ——
Bidiagonal matrix model

Bidiagonal and tridiagonal matrices:

X1
B, — Y1 X2
—Yn—-1 Xn
Spectral map:
t t -1 dp(w) . 2
ef(B,Bt — zI) e, :/R . k= ;qkéxk

(x:y) =X 9)



Bidiagonal matrix model (cont'd)

m If B, has this distribution:

dPa(x,y) =C exp(—nBH(x, y)) [ ] dx dy«
k

_ g1
H(x,y) =tr V(BB") — Z % log X
k

n

k—p1
-3 log yi
P

then the eigenvalues of B,B} have distribution dP,(\).



Why this model?

Relation to the classical models
5=1,2,4



Case =1,2.4

m Let L be a random n x (n+ a) matrix with entries in R, C or
H and distribution

dPy(L) =Ce " VLD g

then dP,()\) is the distribution of squares of the singular
values of L.



Case =1,2.4

m Let M be a random positive definite n X n
symmetric/Hermitian/self-dual matrix (entries in R/C/H)
and distribution

dPp(M) =Ce=m8tr V(M) der( M) 5 (@+1)-1 g,

then dP,()\) is the distribution of the eigenvalues of M.



Random matrix — Random diff’l
operator



Matrix — finite rank operator on L2[0, 1]

Embed R" into L2(R):




Matrix — finite rank operator on L2[0, 1]

Embed R" into L2(R):

ek(x) = nl/zll[k_175](x)

n

Induces mapping from matrices to linear operators:

< f,ei(x) >

en(x) < en(x) >



Edelman and Sutton 2006: “From random matrices to
stochastic operators”

Main idea: bidiagonal and tridiagonal models for 3-ensembles look
like random differential operators.

Example: pure Laguerre case V() = /2

a+1

—1/2b/
AL

PR T
X

(Stochasic Bessel Operator)



Why random differential operators?

Differential operator:

1 f(1/n) f'(1/n)
-1 1 f(2/n) N f'(2/n)
-1 1 f(:l) (1)
1
n - 1 “—>”di)l<with b.c.'s f(0) =0
-1 1




Why random differential operators? (cont'd)

White noise:

(’V[O, 1] ) (f(l/n)) ((bl/n bo)f(l/n))
n—1/2 : ~ :
N[0, 1] f(1) (b(n-1)/n — b1)f(1)
N[0, 1]
I b,
N[O, 1]



Literature on Stochastic Bessel /Airy
operators



Ramirez and Rider 2008: “Diffusion at the random matrix
hard edge”

Laguerre case V(\) = \/2.
Rigorous proof that

k smallest singular val's of
a+1
2y/x

k smallest

singular val's of nB, - \/;di + + 8712y,
X

(Stochasic Bessel Operator)



Krishnapur, Rider and Virag 2013: “Universality of the
Stochastic Airy Operator”

Hermite-type (-ensemble:

dPa(A) =C[Vand(A)|” T eV d,
k=1

V is a convex polynomial.



Krishnapur, Rider and Virag 2013: “Universality of the
Stochastic Airy Operator”

Hermite-type (-ensemble:

dPa(A) =C[Vand(A)|” T eV d,
k=1

V is a convex polynomial.
Rigorous proof that

k largest e-val's of

d? 2
+ x + —=b},

- %

k largest e-val's of

scaled tridiagonal model

(Stochasic Airy Operator)



Hard vs. soft edge

Soft edge
m SAO acts on functions with domain [0, o0)
u ek(X) = n1/6:ﬂ.[071)n71/3,jn71/3](X)

m n~1/3 proportion of rows determine behavior on [0, n'/3]



Hard vs. soft edge

Soft edge

m SAO acts on functions with domain [0, o0)

m e(x) = 00y )13 13 (X)

m n~1/3 proportion of rows determine behavior on [0, n'/3]
Hard edge

m SBO acts on functions with domain [0, 1]

m e (x) = 2L )1 jo1y(X)

m Any fraction of the rows determine behavior on same fraction

of domain.



Statement of our theorem



Universality of the Stochastic Bessel Operator

Polynomial potential: V(\) = 3" gnA™, with V/(A\?) unif. convex



Universality of the Stochastic Bessel Operator

Polynomial potential: V(\) = 3" gnA™, with V/(A\?) unif. convex
Define two auxiliary functions:

s Zngm(2mm> #(s)®>™ (¢ = unique pos. real sol'n)

0(s) = (i /0 ¢‘z’:)>2 (c st. (1) = 1),




Universality of the Stochastic Bessel Operator (cont'd)

With the following embedding of R™ into L2[0, 1]:

es)=(¢(5) 0 (5 1))71/2 L(s)o(52(5)

then

Integral operator with kernel
(an)il — 1 i (t>a/2 ex /S db,,
evels) TP Vaw

m Convergence in distribution w.r.t. Hilbert-Schmidt norm —+
extra domination condition.




Comments on universality of SBO statement

m This implies smallest k singular values of nB,, converge in
distribution to those of SBO.



Outline of our proof



Formula for the integral kernel (finite n)

Forget about 6, and use embedding with mesh size 1/n.
Integral kernel for B,!:

1
(B-1f)(s) = /O Kn(s, ) (t) dt
[sn]—1

Kn(S, t) :]l\_tn |<|sn|y XL exp Z |ng
k=|tn]

Goal: Compute limit of nKj,(s, t) as a functional of Br. Mo.



Random integral kernel:

|sn|—1
1
Kn(57 t) :]]-\_tnj<|_snj X|_s | exp E log 7:
" k=|tn|

Components of our proof
Second order asymptotics as n — oo for mode x°, y° of
distribution on {Xx, Yx: k=1,...,n}

Ye/yi

n
A CLT for Z IogX/ S
k/ Xy

k=|tn]
Additional tightness estimate

With the above 3 things, an argument of Rider and Ramirez
‘08 finishes the proof.



Second order asymptotics for x°, y°



LLN for X, Ys, (First order asymptotics)

Measure on X, Y:
dPy(x,y) =Cexp(—nBH(x, y)) dx dy

. _ p-1 -1
H(x,y) =tr V(B,B}) — Z <W3 log xi + ° f Iogyk>




LLN for X, Ys, (First order asymptotics)

Measure on X, Y:
dPy(x,y) =Cexp(—nBH(x, y)) dx dy

. _ p-1 -1
H(x,y) =tr V(B,B}) — Z <W3 log xi + ° f Iogyk>

Continuum limit approximation, find “coarse minimizer” of H:

Xsny Yen —&(5), 5 = ngm(%:) ()™,

For context, in the Laguerre case ¢(s) = +/s.



How to get second order asymptotics of the mode?

Candidate for fine approximation of mode:

x¢ =¢(k/n) + nxD(k/n) + O(n"2)
—xt(k/n) (and same for y?)

Since H is uniformly convex:
[(x°,y°) = (oD, < e (IVHEE YD,

Method: compute n® and n~! terms of VH at the candidate
minimizer; define x(!)(s), y(!)(s) so that these terms vanish.



Lattice paths

tym __ contribution
(Ban)ii - § of path

paths of length 2m




Main ingredient for 2" order asymptotics of x°, y°

6H 41,
¢ ng[ R (Bmx<”+cmy<”+om¢’)]

i+a—p"1 ix(M 5
o ne +n2¢2+0(” )

The functions ¢, ¢, x(1) and y() are all evaluated at i/n, and

2 2m? — 2 1 /2
A =m(" , Bm:wm m ,
m 2m—1 m
2m? —2m

2m m? —m 2m
Cpn=———— D, =— .
T 2m—1 m<m>’ m 2m—1m<m>




Result of drift calculation

0 = [ 200 =00
li log L = d
nivoe £ 18 yo / o(7) i

i=nt

:<;9 1>|o 6(t) 1I o(t)

2+4

g og .
0(s) 2 7 o(s)
Recall that ¢(k/n) is the LLN behavior of xk, yx and

CHE ¢C<Iluj))2




CLT for noise term in integral kernel



Analysis of the integral kernels

From 2" order asympt of x°, y°

1 0(s) , 1, &(s)
Zlogyk <a+2>lg9()+lg (1)

k=tn

N i X —x2 — Y +y?
¢(k/n)
Approximately centered RV

k=tn

(x2,yp is the minimizer of H)



|sn|—1

Kn(s, t) = ]lunqunJXL exp Y |0g*
k=|tn|

For all 6 € (0,1] we prove the following convergence in distribution
with respect to the Skorokhod topology on DId, 1]:

n

Xk/Xk
208y, e f/t) Ve




CLT for fluctuation term

2¢(k/n)
Var(Xk — Yk) ~ -
nB Jo/" g

sn

1/2
X — X2 — Y+ ¢ s 2dr o1
D T ( Bo(r) ;z)) (0,1]

S




Properties of the measure

dPy(x,y) =Cexp(—nBH(x, y)) dx dy

. —1 . -1
H(x,y) =tr V(B.BE) = > (’“n‘ﬁ log xi + L Iogyk>

n

m Concentration of measure inequality
m Decay of covariances

m Approximate translation symmetry of measure



Local interactions

Notation:
m Lop—1 = Xk, Lok = Yk
m / = {ip,..., 01} (consecutive set of index variables)

[ ] al:{io—d,...,io—1}U{i1+1,...,i1—|—d}
m Zi=q; j€ 0l (boundary values on 0/)



Local interactions

Notation:
m Lop—1 = Xk, Lok = Yk
m / = {ip,..., 01} (consecutive set of index variables)

[ ] 6/:{io—d,...,io—1}U{i1+1,...,i1—|—d}
m Zi=q; j€ 0l (boundary values on 0/)

Then the conditional measure dP(-|q) is
independent of {Z : k¢ 1UOl}



Decay of dependence of conditional minimizers on
boundary values

Notation:
m Lop—1 = Xk, Lok = Yk
m / = {ip,..., 01} (consecutive set of index variables)

[ ] 6/:{io—d,...,io—1}U{i1+1,...,i1—|—d}
m Zi=q; j€ 0l (boundary values on 0/)
m z9 = mode of conditional measure on {Zx : k € I} given ¢



Decay of dependence of conditional minimizers on
boundary values

Notation:
m Lop1 = Xk, Lok = Yk
m / = {ip,..., 01} (consecutive set of index variables)
w0l ={io—d,....io—1}U{iL+1,....01 +d}
m Zi=q; j€ 0l (boundary values on 0/)
m z9 = mode of conditional measure on {Zx : k € I} given ¢

z7 — z?| <Cmax (\z °|e J>
Jjeol



Decay of covariances

Notation:

| l:{i07"',i1}' J:{joa'-'ajl}
mFeo{Zc: kel}, Geo{Z,: ke J}
We believe the following to be true:

COV(F, G) < Ce™ " distance(/,J)



Decay of covariances

Notation:

| l:{i07"')i1}' J:{joa"'ajl}
mFeo{Zc: kel}, Geo{Z,: ke J}
We believe the following to be true:

COV(F7 G) < Ce™ " distance(/,J)

We are able to prove the following:

Under reasonable assumptions on F, G and if
distance(/, J) > C'log n, then

Cov(F, G) < Cn~>*max (|EF|, |[EG]).



Concentration of measure

The following is surprisingly non-trivial to prove:
P{IX,Y —x°,y°||,, >r} < Ce

The ingredients one has to work with are:

m Gaussian domination for a subset of the variables:

PAIXY =x®,y%ll, > r} < P{[IGl; > r}
G = Vector of indep. N[0, (nBc,) /%] RV's

m Borel type inequality of Ledoux

2
P{F > E[F] + r} <exp <nﬁ2:,2r >



Summary of CLT proof

n

o Xk/Xk
28 e = f/t)f

k=tn

m Use a Bernstein blocking argument

m Approximate characteristic functions for one increment with
steepest descent calculation

m Use decay of covariances to prove finite distributions have
approx. indep. increments

m Upgrade to FCLT using moment condition from Billingsley
Convergence of Probability Measures



Additional domination/tightness
property



The RV's k, defined by

> tog (3

k=nt

Kn = sup
! Co log(n)/n<t<1 (— log t)3/4

are tight.



