Universality of the Stochastic Bessel Operator

 $\begin{array}{ll} \text{Brian Rider} \\ \text{Patrick Waters} & \leftarrow \text{ me} \\ 5/9/16 \end{array}$

Laguerre-type β -ensembles

Distribution on $0 < \lambda_1 < \lambda_2 < \ldots < \lambda_n$:

$$dP_n(\lambda) = C|\operatorname{Vand}(\lambda)|^{\beta} \prod_{k=1}^n \lambda_k^{\frac{\beta}{2}(a+1)-1} e^{-n\beta V(\lambda_k)} d\lambda_k$$

- \blacksquare a > -1 and $\beta \geq 1$.
- V is a polynomial such that $V(\lambda^2)$ is uniformly convex.
- In the literature typically $V(\lambda) = \lambda/2$ "Pure Laguerre case"

We prove for any fixed k = 1, 2, 3, ... that $\lambda_1, ..., \lambda_k$ converge in distribution to the squares of the smallest k singular values of

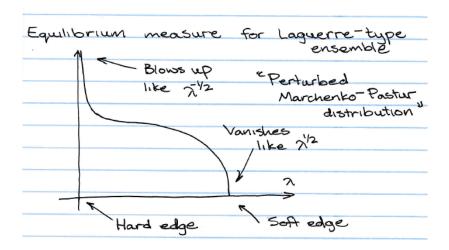
$$\sqrt{x}\frac{d}{dx} + \frac{a+1}{2\sqrt{x}} + \beta^{-1/2}b_x'$$

with Dirichlet boundary condition at x = 0.

"Universel" the limit does not depend on the second of the second

"Universal" – the limit does not depend on $\it V$.

Equilibrium measure for Laguerre-type ensembles



Starting point of our project:

- Propose a random bi-diagonal matrix with e-val's of BB^t distributed $dP_n(\lambda)$
- In the cases $\beta=1,2,4$ the bi-diagonal model should be similar to the classical Laguerre ensembles by Householder transformations

Bidiagonal matrix model

Bidiagonal and tridiagonal matrices:

$$B_n = \begin{pmatrix} x_1 & & & \\ -y_1 & x_2 & & & \\ & \ddots & \ddots & \\ & & -y_{n-1} & x_n \end{pmatrix}.$$

Bidiagonal matrix model

Bidiagonal and tridiagonal matrices:

$$B_{n} = \begin{pmatrix} x_{1} & & & & \\ -y_{1} & x_{2} & & & \\ & \ddots & \ddots & \\ & & -y_{n-1} & x_{n} \end{pmatrix}.$$

Spectral map:

$$e_n^t(B_nB_n^t-zI)^{-1}e_n=\int_{\mathbb{R}}\frac{d\mu(w)}{w-z},\qquad \mu=\sum_{k=1}^nq_k^2\delta_{\lambda_k}$$
 $(x,y)\mapsto(\lambda,q)$

Bidiagonal matrix model (cont'd)

• If B_n has this distribution:

$$dP_n(x,y) = C \exp(-n\beta H(x,y)) \prod_k dx_k dy_k$$

$$H(x,y) = \text{tr } V(BB^t) - \sum_k \frac{k+a-\beta^{-1}}{n} \log x_k$$

$$-\sum_k \frac{k-\beta^{-1}}{n} \log y_k$$

then the eigenvalues of $B_n B_n^t$ have distribution $dP_n(\lambda)$.

Why this model?

Relation to the classical models $\beta=1,2,4$

Case $\beta = 1, 2, 4$

■ Let L be a random $n \times (n + a)$ matrix with entries in \mathbb{R}, \mathbb{C} or \mathbb{H} and distribution

$$dP_n(L) = Ce^{-n\beta \operatorname{tr} V(LL^{\dagger})} dL,$$

then $dP_n(\lambda)$ is the distribution of squares of the singular values of L.

Case $\beta = 1, 2, 4$

Let M be a random positive definite $n \times n$ symmetric/Hermitian/self-dual matrix (entries in $\mathbb{R}/\mathbb{C}/\mathbb{H}$) and distribution

$$dP_n(M) = Ce^{-n\beta \operatorname{tr} V(M)} \det(M)^{\frac{\beta}{2}(a+1)-1} dM,$$

then $dP_n(\lambda)$ is the distribution of the eigenvalues of M.

$\begin{array}{c} \mathsf{Random} \ \mathsf{matrix} \to \mathsf{Random} \ \mathsf{diff'l} \\ \mathsf{operator} \end{array}$

Matrix \rightarrow finite rank operator on $L^2[0,1]$

Embed \mathbb{R}^n into $L^2(\mathbb{R})$:

$$e_k(x) = n^{1/2} \mathbb{1}_{\left[\frac{k-1}{n}, \frac{k}{n}\right]}(x)$$

Matrix \rightarrow finite rank operator on $L^2[0,1]$

Embed \mathbb{R}^n into $L^2(\mathbb{R})$:

$$e_k(x) = n^{1/2} \mathbb{1}_{\left[\frac{k-1}{n}, \frac{k}{n}\right]}(x)$$

Induces mapping from matrices to linear operators:

$$M \cdot f(x) = \begin{pmatrix} e_1(x) \\ \vdots \\ e_n(x) \end{pmatrix}^t M \begin{pmatrix} \langle f, e_1(x) \rangle \\ \vdots \\ \langle f, e_n(x) \rangle \end{pmatrix}$$

Edelman and Sutton 2006: "From random matrices to stochastic operators"

Main idea: bidiagonal and tridiagonal models for β -ensembles look like random differential operators.

Example: pure Laguerre case $V(\lambda) = \lambda/2$

$$nB_n " \to " \sqrt{x} \frac{d}{dx} + \frac{a+1}{2\sqrt{x}} + \beta^{-1/2} b_x'$$

(Stochasic Bessel Operator)

Why random differential operators?

Differential operator:

$$n\begin{pmatrix} 1 & & & \\ -1 & 1 & & \\ & \ddots & \ddots & \\ & & -1 & 1 \end{pmatrix} \begin{pmatrix} f(1/n) \\ f(2/n) \\ \vdots \\ f(1) \end{pmatrix} \approx \begin{pmatrix} f'(1/n) \\ f'(2/n) \\ \vdots \\ f'(1) \end{pmatrix}$$

$$n\begin{pmatrix} 1 & & \\ -1 & 1 & \\ & \ddots & \ddots \\ & & -1 & 1 \end{pmatrix}$$
" \rightarrow " $\frac{d}{dx}$ with b.c.'s $f(0) = 0$

Why random differential operators? (cont'd)

White noise:

$$n^{-1/2} egin{pmatrix} N[0,1] & & & & \\ & \ddots & & \\ & & N[0,1] \end{pmatrix} egin{pmatrix} f(1/n) \\ dots \\ f(1) \end{pmatrix} pprox egin{pmatrix} (b_{1/n} - b_0)f(1/n) \\ dots \\ (b_{(n-1)/n} - b_1)f(1) \end{pmatrix}$$
 $n^{1/2} egin{pmatrix} N[0,1] & & & \\ & \ddots & & \\ & & N[0,1] \end{pmatrix}$ " $ightarrow$ " b_x'

Literature on Stochastic Bessel/Airy operators

Ramirez and Rider 2008: "Diffusion at the random matrix hard edge"

Laguerre case $V(\lambda) = \lambda/2$.

Rigorous proof that

$$k$$
 smallest singular val's of singular val's of $\sqrt{x} \frac{d}{dx} + \frac{a+1}{2\sqrt{x}} + \beta^{-1/2} b_x'$

(Stochasic Bessel Operator)

Krishnapur, Rider and Virag 2013: "Universality of the Stochastic Airy Operator"

Hermite-type β -ensemble:

$$dP_n(\lambda) = C|\operatorname{Vand}(\lambda)|^{\beta} \prod_{k=1}^n e^{-n\beta V(\lambda_k)} d\lambda_k,$$

V is a convex polynomial.

Krishnapur, Rider and Virag 2013: "Universality of the Stochastic Airy Operator"

Hermite-type β -ensemble:

$$dP_n(\lambda) = C|\operatorname{Vand}(\lambda)|^{\beta} \prod_{k=1}^n e^{-n\beta V(\lambda_k)} d\lambda_k,$$

V is a convex polynomial.

Rigorous proof that

$$k$$
 largest e-val's of scaled tridiagonal model $\Longrightarrow \frac{k \text{ largest e-val's of}}{-\frac{d^2}{dx^2} + x + \frac{2}{\sqrt{\beta}}b_x'}$

(Stochasic Airy Operator)

Hard vs. soft edge

Soft edge

- SAO acts on functions with domain $[0, \infty)$
- $\bullet e_k(x) = n^{1/6} \mathbb{1}_{[(j-1)n^{-1/3}, jn^{-1/3}]}(x)$
- $n^{-1/3}$ proportion of rows determine behavior on $[0, n^{1/3}]$

Hard vs. soft edge

Soft edge

- SAO acts on functions with domain $[0, \infty)$
- $\bullet e_k(x) = n^{1/6} \mathbb{1}_{[(j-1)n^{-1/3}, jn^{-1/3}]}(x)$
- $n^{-1/3}$ proportion of rows determine behavior on $[0, n^{1/3}]$

Hard edge

- SBO acts on functions with domain [0,1]
- $e_k(x) = n^{1/2} \mathbb{1}_{[(j-1)n^{-1}, jn^{-1}]}(x)$
- Any fraction of the rows determine behavior on same fraction of domain.

Statement of our theorem

Universality of the Stochastic Bessel Operator

Polynomial potential: $V(\lambda) = \sum g_m \lambda^m$, with $V(\lambda^2)$ unif. convex

Universality of the Stochastic Bessel Operator

Polynomial potential: $V(\lambda) = \sum g_m \lambda^m$, with $V(\lambda^2)$ unif. convex Define two auxiliary functions:

$$s=\sum g_m m {2m\choose m} \phi(s)^{2m} \quad (\phi= ext{unique pos. real sol'n})$$
 $heta(s)=\left(rac{1}{c}\int_0^s rac{du}{\phi(u)}
ight)^2 \qquad (c ext{ s.t. } heta(1)=1).$

Universality of the Stochastic Bessel Operator (cont'd)

With the following embedding of \mathbb{R}^n into $L^2[0,1]$:

$$e_k(s) = \left(\theta\left(\frac{k}{n}\right) - \theta\left(\frac{k-1}{n}\right)\right)^{-1/2} \mathbb{1}_{\left[\theta\left(\frac{k}{n}\right), \theta\left(\frac{k-1}{n}\right)\right]}(s),$$

then

Integral operator with kernel
$$(nB_n)^{-1} \rightarrow \underset{t < s}{\mathbb{1}} \frac{1}{\sqrt{s}} \left(\frac{t}{s}\right)^{a/2} \exp \int_t^s \frac{db_w}{\sqrt{\beta w}}$$

 Convergence in distribution w.r.t. Hilbert-Schmidt norm + extra domination condition.

Comments on universality of SBO statement

■ This implies smallest k singular values of nB_n converge in distribution to those of SBO.

Outline of our proof

Formula for the integral kernel (finite n)

Forget about θ , and use embedding with mesh size 1/n. Integral kernel for B_n^{-1} :

$$(B_n^{-1}f)(s) = \int_0^1 K_n(s,t)f(t) dt$$

$$K_n(s,t) = \mathbb{1}_{\lfloor tn \rfloor \le \lfloor sn \rfloor} \frac{1}{X_{\lfloor sn \rfloor}} \exp \sum_{k=\lfloor tn \rfloor}^{\lfloor sn \rfloor - 1} \log \frac{Y_k}{X_k}$$

Goal: Compute limit of $nK_n(s,t)$ as a functional of Br. Mo.

Random integral kernel:

$$K_n(s,t) = \mathbb{1}_{\lfloor tn \rfloor \leq \lfloor sn \rfloor} \frac{1}{X_{\lfloor sn \rfloor}} \exp \sum_{k=\lfloor tn \rfloor}^{\lfloor sn \rfloor - 1} \log \frac{Y_k}{X_k}$$

Components of our proof

- **1** Second order asymptotics as $n \to \infty$ for mode x^o, y^o of distribution on $\{X_k, Y_k : k = 1, ..., n\}$
- 2 CLT for $\sum_{k=|tn|}^{n} \log \frac{Y_k/y_k^o}{X_k/x_k^o}$
- 3 Additional tightness estimate
- 4 With the above 3 things, an argument of Rider and Ramirez '08 finishes the proof.

Second order asymptotics for x^o, y^o

LLN for X_{sn} , Y_{sn} (First order asymptotics)

Measure on X_k, Y_k :

$$dP_n(x,y) = C \exp(-n\beta H(x,y)) dx dy$$

$$H(x,y) = \text{tr } V(B_n B_n^t) - \sum_{n} \left(\frac{i+a-\beta^{-1}}{n} \log x_k + \frac{i-\beta^{-1}}{n} \log y_k \right)$$

LLN for X_{sn} , Y_{sn} (First order asymptotics)

Measure on X_k, Y_k :

$$dP_n(x,y) = C \exp(-n\beta H(x,y)) dx dy$$

$$H(x,y) = \text{tr } V(B_n B_n^t) - \sum_{n} \left(\frac{i+a-\beta^{-1}}{n} \log x_k + \frac{i-\beta^{-1}}{n} \log y_k \right)$$

Continuum limit approximation, find "coarse minimizer" of H:

$$X_{sn}, Y_{sn} \rightarrow \phi(s), \qquad s = \sum g_m m {2m \choose m} \phi(s)^{2m}.$$

For context, in the Laguerre case $\phi(s) = \sqrt{s}$.

How to get second order asymptotics of the mode?

Candidate for fine approximation of mode:

$$x_k^o = \phi(k/n) + n^{-1}x^{(1)}(k/n) + O(n^{-2})$$

= $x^{\dagger}(k/n)$ (and same for y_k^o)

Since *H* is uniformly convex:

$$\|(x^{o}, y^{o}) - (x^{\dagger}, y^{\dagger})\|_{2} \le c_{u}^{-1} \|\nabla H(x^{\dagger}, y^{\dagger})\|_{2}$$

Method: compute n^0 and n^{-1} terms of ∇H at the candidate minimizer; define $x^{(1)}(s)$, $y^{(1)}(s)$ so that these terms vanish.

Lattice paths

$$(B_nB_n^t)_{ii}^m = \sum_{\text{paths of length }2m} {}^{\text{contribution}}_{\text{of path}}$$

$$\begin{pmatrix} x_1 \\ -y_1 \\ \vdots \\ -y_{n-1} \\ x_n \end{pmatrix} \begin{pmatrix} x_1 - y_1 \\ \vdots \\ -y_{n-1} \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ -y_{n-1} \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 - y_$$

Main ingredient for 2^{nd} order asymptotics of x^o, y^o

$$\frac{\partial H}{\partial x_{i}}(x^{\dagger}, y^{\dagger}) = \sum_{m=1}^{d} g_{m} \left[A_{m} \phi^{2m-1} + \frac{1}{n} \phi^{2m-2} \left(B_{m} x^{(1)} + C_{m} y^{(1)} + D_{m} \phi' \right) \right]
- \frac{i + a - \beta^{-1}}{n \phi} + \frac{i x^{(1)}}{n^{2} \phi^{2}} + O\left(n^{-2}\right).$$

The functions $\phi, \phi', x^{(1)}$ and $y^{(1)}$ are all evaluated at i/n, and

$$\begin{split} A_m = & m \binom{2m}{m}, & B_m = \frac{2m^2 - 2m + 1}{2m - 1} m \binom{2m}{m}, \\ C_m = & \frac{2m^2 - 2m}{2m - 1} m \binom{2m}{m}, & D_m = & -\frac{m^2 - m}{2m - 1} m \binom{2m}{m}. \end{split}$$

Result of drift calculation

$$\lim_{n \to \infty} \sum_{i=nt}^{ns} \log \frac{x_i^o}{y_i^o} = \int_t^s \frac{x^{(1)}(\tau) - y^{(1)}(\tau)}{\phi(\tau)} d\tau$$

$$= \dots$$

$$= \left(\frac{a}{2} + \frac{1}{4}\right) \log \frac{\theta(t)}{\theta(s)} - \frac{1}{2} \log \frac{\phi(t)}{\phi(s)}.$$

Recall that $\phi(k/n)$ is the LLN behavior of x_k, y_k and

$$\theta(s) = \left(\frac{1}{c} \int_0^s \frac{du}{\phi(u)}\right)^2$$

CLT for noise term in integral kernel

Analysis of the integral kernels

$$\sum_{k=tn}^{sn} \log \frac{X_k}{Y_k} \approx \overbrace{-\left(a + \frac{1}{2}\right) \log \frac{\theta(s)}{\theta(t)} + \frac{1}{2} \log \frac{\phi(s)}{\phi(t)}}^{\text{From 2}^{\text{nd}}} + \sum_{k=tn}^{sn} \underbrace{\frac{X_k - x_k^o - Y_k + y_k^o}{\phi(k/n)}}_{\text{Approximately centered RV}}$$

 $(x_k^o, y_k^o \text{ is the minimizer of } H)$

$$K_n(s,t) = \mathbb{1}_{\lfloor tn \rfloor \leq \lfloor sn \rfloor} \frac{1}{X_{\lfloor sn \rfloor}} \exp \sum_{k=\lfloor tn \rfloor}^{\lfloor sn \rfloor - 1} \log \frac{Y_k}{X_k}$$

For all $\delta \in (0,1]$ we prove the following convergence in distribution with respect to the Skorokhod topology on $D[\delta,1]$:

$$\sum_{k=tn}^n \log \frac{X_k/x_k^o}{Y_k/y_k^o} \implies \frac{1}{\sqrt{\beta}} \int_{\theta(t)}^1 \frac{db_\tau}{\sqrt{\tau}}.$$

CLT for fluctuation term

$$\operatorname{Var}(X_k - Y_k) \approx \frac{2\phi(k/n)}{n\beta \int_0^{k/n} \frac{du}{\phi(u)}}$$

$$\sum_{k=tn}^{sn} \frac{X_k - x_k^o - Y_k + y_k^o}{\phi(k/n)} \implies \left(\int_t^s \frac{2d\tau}{\beta\phi(\tau) \int_0^\tau \frac{du}{\phi(u)}} \right)^{1/2} N[0, 1]$$

$$= \frac{1}{\beta} \int_{\theta(t)}^{\theta(s)} \frac{db_\tau}{\sqrt{\tau}}$$

Properties of the measure

$$dP_n(x,y) = C \exp(-n\beta H(x,y)) dx dy$$

$$H(x,y) = \text{tr } V(B_n B_n^t) - \sum_{n} \left(\frac{i+a-\beta^{-1}}{n} \log x_k + \frac{i-\beta^{-1}}{n} \log y_k \right)$$

- Concentration of measure inequality
- Decay of covariances
- Approximate translation symmetry of measure

Local interactions

Notation:

- $Z_{2k-1} = X_k, Z_{2k} = Y_k.$
- $I = \{i_0, \dots, i_1\}$ (consecutive set of index variables)
- $Z_j = q_j$ $j \in \partial I$ (boundary values on ∂I)

Local interactions

Notation:

- $Z_{2k-1} = X_k, Z_{2k} = Y_k.$
- $I = \{i_0, \dots, i_1\}$ (consecutive set of index variables)
- $\partial I = \{i_0 d, \dots, i_0 1\} \cup \{i_1 + 1, \dots, i_1 + d\}$
- $Z_j = q_j$ $j \in \partial I$ (boundary values on ∂I)

Then the conditional measure $dP(\cdot|q)$ is independent of $\{Z_k : k \notin I \cup \partial I\}$

Decay of dependence of conditional minimizers on boundary values

Notation:

- $Z_{2k-1} = X_k, Z_{2k} = Y_k.$
- $I = \{i_0, \dots, i_1\}$ (consecutive set of index variables)
- $Z_j = q_j$ $j \in \partial I$ (boundary values on ∂I)
- z^q = mode of conditional measure on $\{Z_k : k \in I\}$ given q

Decay of dependence of conditional minimizers on boundary values

Notation:

- $Z_{2k-1} = X_k, Z_{2k} = Y_k.$
- $I = \{i_0, ..., i_1\}$ (consecutive set of index variables)
- $Z_j = q_j$ $j \in \partial I$ (boundary values on ∂I)
- z^q = mode of conditional measure on $\{Z_k : k \in I\}$ given q

$$|z_i^q - z_i^o| \le C \max_{j \in \partial I} \left(|z_j^q - z_j^o| e^{-r|i-j|} \right)$$

Decay of covariances

Notation:

- $I = \{i_0, \ldots, i_1\}, J = \{j_0, \ldots, j_1\}$
- $F \in \sigma\{Z_k : k \in I\}, G \in \sigma\{Z_k : k \in J\}$

We believe the following to be true:

$$Cov(F, G) \leq Ce^{-r \operatorname{distance}(I,J)}$$

Decay of covariances

Notation:

- $I = \{i_0, \ldots, i_1\}, J = \{j_0, \ldots, j_1\}$
- $F \in \sigma\{Z_k : k \in I\}, G \in \sigma\{Z_k : k \in J\}$

We believe the following to be true:

$$Cov(F, G) \leq Ce^{-r \operatorname{distance}(I,J)}$$

We are able to prove the following:

Under reasonable assumptions on F, G and if distance(I, J) > C' log n, then

$$Cov(F, G) \leq Cn^{-5/4} \max(|\mathbb{E}F|, |\mathbb{E}G|)$$
.

Concentration of measure

The following is surprisingly non-trivial to prove:

$$P\{\|X, Y - x^{o}, y^{o}\|_{\infty} > r\} < Ce^{-cnr^{2}}$$

The ingredients one has to work with are:

Gaussian domination for a subset of the variables:

$$P\{\|X, Y - x^o, y^o\|_2 > r\} < P\{\|G\|_2 > r\}$$

 $G = \text{Vector of indep. } N[0, (n\beta c_u)^{-1/2}] \text{ RV's}$

■ Borel type inequality of Ledoux

$$P\{F > \mathbb{E}[F] + r\} \le \exp\left(\frac{n\beta c_u r^2}{2\kappa^2}\right)$$

Summary of CLT proof

$$\sum_{k=tn}^{n} \log \frac{X_k/x_k^o}{Y_k/y_k^o} \implies \frac{1}{\sqrt{\beta}} \int_{\theta(t)}^{1} \frac{db_{\tau}}{\sqrt{\tau}}.$$

- Use a Bernstein blocking argument
- Approximate characteristic functions for one increment with steepest descent calculation
- Use decay of covariances to prove finite distributions have approx. indep. increments
- Upgrade to FCLT using moment condition from Billingsley Convergence of Probability Measures

${\bf Additional\ domination/tightness} \\ {\bf property}$

The RV's κ_n defined by

$$\kappa_n = \sup_{C_0 \log(n)/n < t < 1} \frac{\sum_{k=nt}^n \log \left(\frac{X_k/x_k^o}{Y_k/y_k^o} \right)}{\left(-\log t \right)^{3/4}},$$

are tight.