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Motivation: Fractional Laplacian

The fractional Laplacian operator ∆α := −(−∆)α, 0 < α < 1, is a
non-local operator. Analytically, it can be interpreted in two ways, for
f : Rd → R:

I (−∆)αf (x) = Cd,α
∫
Rd

f (x)−f (y)
|x−y|d+2α dy , where Cd,α is a normalization

constant;
I (̂−∆)αf (ξ) = |ξ|2α f̂ (ξ).



Analytic work

In 2007, Caffarelli-Silvestre realized ∆α as the trace on Rd of
∇ · (x1−2α

d+1 ∇) in Rd × R+, up to a constant, i.e., for a function
f : Rd → R, consider the extension u : Rd × [0,∞)→ R that satisfies{

u(x1, · · · , xd ,0) = f (x1, · · · , xd )

div(x1−2α
d+1 ∇(u)) = ∆u + 1−2α

xd+1
∂d+1u = 0

It can be shown that up to a constant factor

lim
xd+1→0+

x1−2α
d+1 ∂d+1u(x1, · · · , xd+1) = −(−∆)αf (x1, · · · , xd ).

This reduction enabled them to use tools from elliptic differential
operators to study problems for fractional Laplacians. For example
using (local) pde methods, they proved a Harnack inequality and a
boundary Harnack inequality for ∆α.



Probabilistic Approach

In fact, this relation has been known to probabilists for quite a while.
Recall that ∆α is the infinitesimal generator of a 2α-stable process.

Theorem (Molchanov-Ostrovskii, 1969)
Let Xt be a one-dimensional diffusion process on the half-line [0,∞)
(reflected at 0) with generating operator

Lα =
1
2

d2

dx2 +
1− 2α

2x
d

dx
,0 < α < 1, (1)

and let St be its inverse local time at zero, then St is an α-stable
subordinator.
If we let Bt be a d-dimensional Brownian motion independent of Xt ,
then Zt := BSt can be viewed as the trace process on Rd of the
diffusion process (Bt ,Xt ) in the upper half space Rd × R+, and it is a
rotationally symmetric 2α-stable process on Rd .



Interesting Questions
I What kind of non-local operator can be realized as the trace of

differential operator in upper half space of one dimension higher?

I Can we represent all the subordinate Brownian motions as
traces of processes in the upper half space?

I What kinds of subordinators can be realized as inverse local
times of diffusions?

I A more modest question: what potential theoretical property can
we get for the trace process on Rd , which is obtained from a
(reflected) diffusion process in Rd × [0,∞)?
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Answer to the first and second Questions

Frank Knight proved that any subordinator can be realized as the
inverse local times of a generalized diffusion.

Theorem (F. Knight, 1981)
Let X be a generalized diffusion on R and let St be its inverse local
time at zero. Then the Lévy measure ν(dx) of St has a complete
monotone density ν(x) with respect to Lebesgue measure.

Conversely, given any Lévy measure satisfying the above condition,
there exists a generalized diffusion such that ν is the Lévy measure of
its inverse local time at zero.
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(Partial) Answer to the third Question

Only very limited cases have been discussed and explicit diffusions
were explored, including Molchanov-Ostrovskii’s paper.

I S. A. Molchanov, E. Ostrovskii, Symmetric stable processes as
traces of degenerate diffusion processes, 1969;

I C.Donati-Martin, M. Yor, Some explicit Krein representations of
certain subordinators, including the Gamma process, 2005;

I C. Donati-Martin, M. Yor, Further examples of explicit Krein
representations of certain subordinators, 2006.

Even some simple processes, (for example, mixed BM+stable
processes), haven’t been realized as the traces of diffusions.



Theorem
Suppose (Ω,F ,P) is a probability space, Xt is a diffusion process, reflecting
at 0, determined locally by the generator

L = a(x)
d2

dx2 + b(x)
d
dx
.

Let Lt be the local time of Xt at 0. Its inverse local time St = inf{s : Ls > t} is
a Lévy process (called subordinator). Denote its Laplace exponent by φ(λ).
Note that for t ≥ 0, St is a stopping time for {Ft}. Now define

dQx

dPx
=

exp(−mSt )

Ex [exp(−mSt )]
on FSt . (2)

Then
(i) (2) defines a new probability measure Qx on F∞ in a consistent way;

(ii) Under Q, the original diffusion X , write as X (m) for emphasis, is a
diffusion determined by the generator

L(m) = L+ 2a(x)
ρ′m(x)

ρm(x)

d
dx
, x > 0.

where ρm(x) = Ex [exp(−mT0)] and T0 is the first hitting time at 0 for Xt .

(iii) Denote by S(m)
t , φ(m)(λ) the inverse local time for X (m)

t at 0 and its
Laplace exponent, respectively. Then

φ(m)(λ) = φ(λ+ m)− φ(m).



Remarks
1. If we know a subordinator, St , with Lévy measure ν(x), is the

inverse local time at 0 for a diffusion, then we can realize another
subordinator, S(m)

t , with Lévy measure ν(m)(x) = e−mxν(x), as
the inverse local time for some diffusion.

2. ρm(x) here can be viewed as the unique solution to{
(L −m)ρm = 0;

ρm(0) = 1, ρm(∞) = 0.

3. If X (α)
t is a Bessel process on [0,∞), determined by

L(α) =
1
2

d2

dx2 +
1− 2α

2x
d
dx
, 0 < α < 1.

By the above remark, for every m > 0, ρm(x) = dαK̂α(
√

2mx),
where K̂α = xαKα and Kα is a modified Bessel function of the
second kind. The inverse local time of X (m) is the relativistic
α-stable subordinator.



Comparison Theorem
Suppose (Ω,F ,P) is a probability space, Xt and Yt are diffusions,
reflecting at 0, and determined by the local generator

LX =
1
2

d2

dx2 + b(x)
d
dx

;

LY =
1
2

d2

dx2 + B(x)
d
dx
.

If X0 ≤ Y0 and f (x) = B(x)− b(x) ≥ 0 and satisfies the condition

sup
x>0

Ex

[ ∫ T

0
|f (Xt )|2dt

]
<∞, for any fixed time T > 0. (3)

Suppose SX
t , SY

t are the corresponding inverse local times at 0, then
SX

t ≤ SY
t , P-a.s.



Sketch of proof.

I Use Girsanov transform to define a new measure, Q. And
(Z X ,Q)

d
= (Z Y ,P), Z X ,Z Y are zero sets.

I Mt := e−T01{T0≤t} −
∫ t

0 e−sdLX
s is a P-martingale, and

Q-martingale as well.

I (LX
t ,Q)

d
= (LY

t ,P).
I Using Hausdorff measure of zero sets and classic comparison

theorem, LY
t ≤ LX

t , P-a.s.



A Counterexample
For Bessel processes with the generator

L(α) =
1
2

d2

dx2 +
1− 2α

2x
d
dx
.

With 0 < β < α < 1 and X (α)
0 ≤ X (β)

0 , we only have X (α)
t ≤ X (β)

t .
S(α)

t ≤ S(β)
t is not true , because their Laplace exponents,

cαλα ≤ cβλβ does not hold for all λ > 0.



Corollary
Suppose Xt ,Yt are as described in Comparison Theorem, φX and φY

are Laplace exponents of inverse local times, respectively. Then
φY − φX is completely monotone.
Sketch of proof:

I By regenerative embedding theory, φY/φX is completely
monotone.

I By Comparison Theorem, 0 ≤ φX ≤ φY .

I

(
φY

φX − 1
)
φX = φY − φX is completely monotone.



Perturbed Bessel processes

Recall that a relativistic α-stable subordinator can be viewed as the
inverse local time of the diffusion X (α,m)

t , locally determined by

L(α,m) =
1
2

d2

dx2 +

(
1− 2α

2x
+

K̂ ′α(
√

2mx)

K̂α(
√

2mx)

)
d
dx
, for x > 0. (4)

Lemma
For m ≥ 0, 0 < α < 1,

K̂ ′α(
√

2mx)

K̂α(
√

2mx)
∼

{
−mαΓ(1−α)

2α−1Γ(α)
x2α−1 as x → 0+;

−
√

2m as x →∞,
(5)

We would then achieve two main properties for a broad type of
perturbed Bessel processes.



Comparison theorem for inverse local times

Theorem
Let Yt be a diffusion process on [0,∞) determined by the local
generator

L =
1
2

d2

dx2 +

(
1− 2α

2x
− f (x)

)
d
dx
,

where

0 ≤ f (x) .

{
1 ∨ x2α−1, for 0 < α < 1/2;

1 ∧ x2α−1, for 1/2 ≤ α < 1.

Let St be the inverse local time for Yt at 0. Then there is a constant
m > 0 so that S(α,m)

t ≤ St ≤ S(α)
t , P-a.s.



Application: Green function estimates

Theorem
Let Bt be a d-dimensional Brownian motion independent of Yt , and
µ(x) be the density of the Lévy measure of trace process BSt . Denote
the density of the Lévy measure of symmetric 2α-stable process by
µ(α)(x). Then j(x) = µ(α)(x)− µ(x) ≥ 0, and there exists a constant
C such that for |x | ≤ 1,

j(x) ≤ C|x |−d+2−2α.

Let D ⊂ Rd be a bounded connected Lipschitz open set. Denote
Green functions of D for trace processes by GD(x , y) and G(α)

D (x , y),
respectively. Then there exists a constant C1 = C1(d , α,D,C) such
that

C−1
1 G(α)

D (x , y) ≤ GD(x , y) ≤ C1G(α)
D (x , y),

for x , y ∈ D.



Thank you!
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