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Freidlin-Wentzell approach to LDT
Consider the SDE

dX = b(X)dt+
p
"�(X)dW (t)

where W (t) is a Wiener process and " measures the noise amplitude.

The forward Kolmogorov equation associated with this SDE is

@t⇢ = r ·
⇣
�b⇢+ "

2r(a⇢)
⌘
, a(x) = (��T )(x)

Using a WKB-type ansatz ⇢(x, t) = exp
⇣
�"�1�(x, t)

⌘
, to leading order

in ", �(x, t) satisfies the Hamilton-Jacobi equation

@t�+H(x,r�) = 0, H(x, ✓) = b(x) · ✓ + 1
2✓ · a(x)✓

Variational representation formula for the solution

�(x, t) = inf
{'(s),s2[0,t] :

'(0)=x0,'(t)=x}

1
2

Z t

0
|'̇� b(')|2ads, |u|2a = u · a�1(')u



The role of the Quasi-Potential (QP)

LDP also important for long time behavior via the solution of H(x,r�) =
0, which defines the quasipotential

�(x, y) = inf
T>0

inf
{'(t),t2[0,T ] :

'(0)=x,'(T )=y}

1
2

Z T

0
|'̇� b(')|2adt

Quasipotential plays roughly the same role as the standard potential,
and is important on long time-scales, T ⇣ exp("�1C) for some C > 0.

For example, around stable fixed point xa of ẋ = b(x), the nonequilibrium
stationary density is

⇢(x) ⇣ exp
⇣
�"�1�(xa, x)

⌘

and if xa, xb are two adjacent stable fixed points of ẋ = b(x), the mean
first passage time from xa to xb is

⌧(xa, xb) ⇣ exp
⇣
"�1�(xa, xb)

⌘



NB: the case of Systems in Detailed-Balance
First exit time for gradient systems:

For systems of the type

dX = �rU(X)dt+
p
" dW (t)

• Quasipotential reduces to potential U(x).

• Mimimizer of action (aka maximum likelihood path, MLP) reduces to
mimimum energy path (MEP), that is, geometric location of heteroclinic
orbits joining two minima via a saddle point.

A MEP can be characterized geometrically as a curve �⇤ satisfying

0 = [rU ]?

where [·]? denotes the perpendicular projection to the curve.
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Illustration: Allen-Cahn equation in 2D
Example: Allen-Cahn in one- and two-dimensions (Faris & Jona-Lasiinio (1d); E, Ren
& V.-E.)

Allen-Cahn energy for u : [0,1]2 7! R:

E(u) =
Z

[0,1]2

�

1
2�|ru|2 + 1

4��1(1� u2)2
�

dx

with Dirichlet boundary condition: u = +1 on the right and left edges of [0,1]2,
u = �1 on top and bottom ones.

Two minimizers of the Allen-Cahn energy

Two minimizers of the Allen-Cahn energy

Simulations by W. Ren
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FIGURE 4.1. The minimum action paths from .u; v/ D .!1; 0/ to
.u; v/ D .1; 0/ for the Maier-Stein model (4.1) shown on the top of
the flow lines of the deterministic velocity field (gray lines). The param-
eters are ˇ D 1 (left panel) and ˇ D 10 (right panel). When ˇ D 1, the
minimum action path is simply the heteroclinic orbit joining .˙1; 0/ via
.0; 0/; when ˇ D 10, nongradient effects take over, and the minimum
action path is different from the heteroclinic orbit.

When the noise amplitude " is small, (4.1) displays bistability. Any initial con-
dition with u < 0 is rapidly attracted toward a small neighborhood of .u; v/ D
.!1; 0/, whereas any initial condition with u > 0 is rapidly attracted toward a
small neighborhood of .u; v/ D .1; 0/. As a result, the equilibrium distribution
of the process defined by (4.1) is concentrated in small neighborhoods around
.˙1; 0/ and the process switches between these two regions only rarely. When
it does so, large deviations theory tells us that, with probability 1 in the limit as
" ! 0, the trajectory remains in an arbitrarily small tube around the miminizer '?

of OS.'/ connecting .u; v/ D .!1; 0/ to .u; v/ D .1; 0/ or the other way around—
in other words, the minimum action curve '? is the maximum-likelihood pathway
of switching (see Section 2.2). In addition, large deviations theory tells us that the
frequency of these hopping events is roughly exp.!"!1 OS.'?//.

Maier and Stein studied (4.1) for various values of ˇ. They noted that the
minimum action path from .u; v/ D .!1; 0/ to .u; v/ D .1; 0/ is the heteroclinic
orbit joining these two points via .u; v/ D .0; 0/ when ˇ " ˇcrit D 4 (this is
consistent with the system not being too far from the gradient regime in these
cases). However, when ˇ > ˇcrit D 4, the piece of the minimum action path in the
region u < 0 (i.e., in the basin of attraction of .u; v/ D .!1; 0/ by the deterministic
dynamics) stops being the heteroclinic orbit. Some intuition for why this change
of behavior occurs can be gained by looking at the deterministic flow lines shown
in Figure 4.1. Here we confirm these results using our method to find the minimum
action path, as shown in Figure 4.1.

GEOMETRIC MINIMUM ACTION METHOD 1083

To show that r Q!. O#/ D 0, consider first the case ! > 0. Pick any i 2 f1; : : : ; ng
and use that at " D O# we have h D 0 and h! D !'0:

@!i

!hh! ; h
!1
!!
h! i ! 2h

h'0; h!1
!!
'0i

"1=2ˇ̌
ˇ̌
!D O#

D
!

1

2.: : : /1=2
@!i

hh! ; h
!1
!!
h! i ! 2h

h'0; h!1
!!
'0i

"ˇ̌
ˇ̌
!D O#

D 1

2!
h'0; h!1

!! '
0i!2

h#
hh! ; .@!i

h!1
!! /h! i C 2hT! h

!1
!! h!!i

! 2h!i„ ƒ‚ …
D0

$
h'0; h!1

!! '
0i

!
#
hh! ; h

!1
!! h! i ! 2h„ƒ‚…

D0

$
h'0; .@!i

h!1
!! /'

0i
iˇ̌
ˇ
!D O#

D 1

2!
h'0; h!1

!! '
0i!2

h
hh! ; .@!i

h!1
!! /h! ih'0; h!1

!! '
0i

! hh! ; h
!1
!! h! ih'0; .@!i

h!1
!! /'

0i
iˇ̌
ˇ
!D O#

D 0:

The case ! D 0 can be treated by checking that the function hh! ; h
!1
!!
h! i ! 2h as

well as its first two derivatives vanish at " D O# , so that its square root is of order
o.j O#p ! O#j/. !

4 Examples

4.1 SDE: The Maier-Stein Model
As a first test for our method, we use the following example of a diffusion

process (SDE) first proposed by Maier and Stein [12]:

(4.1)

(
du D .u ! u3 ! ˇuv2/dt C p

" dWu.t/

dv D !.1C u2/v dt C p
" dWv.t/

where Wu and Wv are independent Wiener processes and ˇ > 0 is a parameter.
(In [12], Maier and Stein use two parameters: #, which we set to 1 in this treat-
ment, and ˛, which we call ˇ in order to avoid confusion with the variable used to
parametrize the path '.˛/.)

For all values of ˇ > 0, the SDE (4.1) has two stable equilibrium points at
.u; v/ D .˙1; 0/ and an unstable equilibrium point at .u; v/ D .0; 0/ (see Fig-
ure 4.1). The drift vector field

(4.2) b.u; v/ D
!
u ! u3 ! ˇuv2

!.1C u2/v

"

is the gradient of a potential if and only if ˇ D 1.

▷ Example from Maier & Stein

Detailed-balance holds only for β = 1 
 
For other values, the MLP is no longer  the reversed of the deterministic path

What if the dynamics is not in detailed-
balance?



The role of the Quasi-Potential (QP)

LDP also important for long time behavior via the solution of H(x,r�) =
0, which defines the quasipotential

�(x, y) = inf
T>0

inf
{'(t),t2[0,T ] :

'(0)=x,'(T )=y}

1
2

Z T

0
|'̇� b(')|2adt

Quasipotential plays roughly the same role as the standard potential,
and is important on long time-scales, T ⇣ exp("�1C) for some C > 0.

For example, around stable fixed point xa of ẋ = b(x), the nonequilibrium
stationary density is

⇢(x) ⇣ exp
⇣
�"�1�(xa, x)

⌘

and if xa, xb are two adjacent stable fixed points of ẋ = b(x), the mean
first passage time from xa to xb is

⌧(xa, xb) ⇣ exp
⇣
"�1�(xa, xb)

⌘



Geometric interpretation and  
Numerical counterpart

�(x, y) = inf
T>0

inf
{'(t),t2[0,T ] :

'(0)=x,'(T )=y}

1
2

Z T

0
|'̇� b(')|2adt

= inf
{'(t),t2[0,T ] :

'(0)=x,'(T )=y}

Z T

0
(|'̇|a|b(')|a � h'̇, b(')ia) dt

Reduce calculation of the quasipotential to that of a geodesic in a
(degenerate) Finsler metric.

Numerical counterpart: geodesic can be identified in practice by moving
a parametrized curve in configuration space

) String method (gradient systems) and Minimum action method

(non-gradient systems). (E, Ren & V.-E.; Heymann & V.-E.)



Allen-Cahn/Cahn-Hilliard System
Consider the SDE system

d� = (
1

↵
Q(�� �3)� �)dt+

p
"dW

with � = (�1,�2) and the matrix Q = ((1,�1), (�1,1)).

This system does not satisfy detailed balance, as its drift is made of
two gradient terms with incompatible mobility operators (namely Q and
Id). Long-lasting effects of small random perturbations 17

Fig. 2 Allen-Cahn/Cahn-
Hilliard toy ODE model,
a = 0.01. The arrows denote
the direction of the deter-
ministic flow, the color its
magnitude. The white dashed
line corresponds to the slow
manifold. The solid line
depicts the minimizer, the
dashed line the heteroclinic
orbit. Markers are located at
the fixed points (circle: stable;
square: saddle).
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4.2.1 Reduced Allen-Cahn/Cahn-Hilliard model

0.0 0.2 0.4 0.6 0.8 1.0

s

10

�5

10

�4

10

�3

10

�2

10

�1

10

0

10

1

10

2

d
S

minimizer, S ⇡ 7.44 · 10�3

string, S ⇡ 1.98

�1.0 �0.5 0.0 0.5 1.0

�1

�1.0

�0.5

0.0

0.5

1.0

�

2

↵ = 10

�3

↵ = 10

�2

↵ = 0.1

↵ = 0.5

↵ = 1

↵ = 1.1

↵ = 1.2

Fig. 3 Left: Action density along the path for the 2-dimensional reduced model. Path parameter
is normalized to s 2 (0,1). For the second half of the transition, the action density is zero. Right:
Minimizers of the action functional for different values of a . For a ! 0, the minimizer approaches
the slow manifold. Note that the switch to a straight line minimizer happens at a finite value a ⇡
1.12.

Consider the SDE system

df = (

1
a

Q(f �f

3
)�f)dt +

p
edW (55)

with f = (f1,f2) and the matrix Q = ((1,�1),(�1,1)). This system does not sat-
isfy detailed balance, as its drift is made of two gradient terms with incompatible



Allen-Cahn/Cahn-Hilliard System

Consider the SDE system

d� = (
1

↵
Q(�� �3)� �)dt+

p
"dW

with � = (�1,�2) and the matrix Q = ((1,�1), (�1,1)).

This system does not satisfy detailed balance, as its drift is made of
two gradient terms with incompatible mobility operators (namely Q and
Id).

Consider next the SPDE

�t =
1

↵
P (�xx + �� �3)� �+

p
✏⌘(x, t)

where P is an operator with zero spatial mean and ⌘(x, t) a spatio-
temporal white-noise.
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Fig. 4 The configurations A,B,S,X in space: fA and fB are the two stable fixed points, fS is the
unstable fixed point on the separatrix in between. At point fX , the slow manifold intersects the
separatrix.

For P = �∂

2
x the system is a mixture of a stochastic Allen-Cahn [2] and Cahn-

Hilliard [7] equation. Here we will consider P(f) = f ��
R

f dx, which is similar
in most aspects discussed below but simpler to handle numerically. We are again
interested in situations where a is small, and the time scales associated with V1
and V2 differ significantly. In this case it will turn out that transition pathways are
very different from the heteroclinic orbits, in that the separatrix between the basins
of attraction is approached far from the unstable critical point of the deterministic
system. This behavior is reminiscent of the 2-dimensional example discussed above,
but in an SPDE setting.

The fixed points of the deterministic (e = 0) dynamics of system (56) are the
solutions of

P(kfxx +f �f

3
)�af = 0 . (59)

The only constant solution of this equation is the trivial fixed point f(x) = 0,
whose stability depends on a and k . In the following, we choose a = 10�2 and
k = 2 ·10�2, in which case f(x) = 0 is unstable. The two stable fixed points ob-
tained by solving (59) for these values of a and k are depicted in Fig. 4 as fA and
fB, with fA =�fB. An unstable fixed point configuration on the separatrix between
fA and fB is also shown as fS.

For finite but small a , the deterministic part of (56) has a “slow manifold” made
of the solutions of

P(kfxx +f �f

3
) = 0 . (60)
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Fig. 5 Transition pathways between two stable fixed points of equation (56) in the limit e ! 0.
Left: heteroclinic orbit, defining the deterministic relaxation dynamics from the unstable point
S down to either A or B. Right: Minimizer of the geometric action, defining the most probable
transition pathway from A to B, following the slow manifold up to X , where it starts to nearly
deterministically travel close to the separatrix into S.

On this manifold the motion is driven solely by changing the mean via the slow
terms, �f +

p
e h(x, t), on a time-scale of order O(1) in a . After two integrations

in space, (60) can be written as

kfxx +f �f

3
= l (61)

where l is a parameter: As a result the slow manifold can be described as one-
parameter families of solutions parametrized by l 2 R – in general there is more
than one family because the manifold can have different branches corresponding to
solutions of (59) with a different number of domain walls. The configuration labeled
as fX in Fig. 4 shows the field at the intersection of one of these branches with the
separatrix. Since the deterministic drift along the slow manifold is small compared
to the O(1/a) drift induced by the Cahn-Hilliard term, one expects that the most
probable transition pathway will use this manifold as channel to escape the basin
of attraction of the stable fixed points fA or fB. This intuition is confirmed by the
numerics, as shown next.

Fig. 5 (left) shows the heteroclinic orbit connecting the two stable fixed points
fA and fB to the unstable configuration fS. The mean is preserved along this or-
bit, which involves a nucleation event at the boundaries followed by domain wall
motion through the domain. The unstable fixed point fs, denoted by S, which also
demarcates the position at which the separatrix is crossed, is the spatially symmetric
configuration with a positive central region and two negative regions at the bound-
ary. Locations A and B label the two stable fixed points fA and fB.

In contrast, Fig. 5 (right) shows the minimizer of the geometric action, which
is the most probable transition path as e ! 0. It was computed via the algorithm
outlined in Sec. 3.6, with L =

1
a

Pk∂

2
x � Id and R(u) = 1

a

P(u� u3
). Starting at the

fixed point A the minimizer takes a very different path than the heteroclinic orbit:



Allen-Cahn/Cahn-Hilliard System

Consider the SDE system

d� = (
1

↵
Q(�� �3)� �)dt+

p
"dW

with � = (�1,�2) and the matrix Q = ((1,�1), (�1,1)).

This system does not satisfy detailed balance, as its drift is made of
two gradient terms with incompatible mobility operators (namely Q and
Id).

Consider next the SPDE

�t =
1

↵
P (�xx + �� �3)� �+

p
✏⌘(x, t)

where P is an operator with zero spatial mean and ⌘(x, t) a spatio-
temporal white-noise.
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Fig. 6 Projection of the heteroclinic orbit and the minimizer of the action functional into a 2-
dimensional plane. The x-direction is proportional to its component in the direction of the initial
condition fA while the y-direction corresponds to its spatial mean. The stable fixed points are
located at A and B, the unstable fixed point at S. The separatrix is the straight line

R
f(x)fA(x)dx =

0. The heteroclinic orbit (light) travels A ! S ! B in a horizontal line with vanishing mean, while
the minimizer (dark) travels first along the slow manifold (dashed) A ! X and then tracks the
separatrix from X to S.

It first moves the domain wall, at vanishing cost for a ! 0, without nucleation. At
the point X the motion changes, tracking closely the separatrix towards the unstable
point S. From this point onward, S ! B, the transition path then follows the hete-
roclinic orbit, which is the deterministic relaxation path. In this respect, the SPDE
model (56) resembles closely the 2-dimensional model (55).

To further illustrate this resemblance, we choose to project the minimizer and the
heteroclinic orbit onto two coordinates,

1. its mean
R

f(x)dx, which resembles the direction f1 + f2 of the 2-dimensional
model, and

2. its component in the direction of the initial (or final) state,
R

f(x)fA(x)dx, which
corresponds to the direction f1 �f2 of the 2-dimensional model.

The transition path and the heteroclinic projected in these reduced coordinates are
depicted in Fig. 6. Note that this figure is not a schematic, but the actual projection of
the heteroclinic orbit and the minimizer of Fig. 5 according to (i) and (ii) above. The
separatrix is the straight line

R
f(x)fA(x)dx = 0. The movement of the minimizer

(dark) closely along the slow manifold (dashed), A ! X , and the separatrix, X ! S,
(which is also part of the slow manifold) into S highlights its difference with the
heteroclinic orbit (light). The configurations at the points A,B,S and X are depicted
in Fig. 4, while Fig. 7 shows the action density dS along the transition path. Note
that this quantity becomes close to zero already at X , because the minimizer follows
closely the separatrix from X to S, and this motion is therefore quasi-deterministic.
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Fig. 7 Action along the min-
imizer. Note that the action
is non-zero climbing up the
slow-manifold, but diminishes
to zero already at X when it
approaches the separatrix,
before it reaches S.
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The numerical parameters we used in these computations are Ns = 100, Nx = 26,
h = 10�1.

4.3 Burgers-Huxley model

As a second example involving an SPDE, we consider

ut +auux �kuxx = f (u,x, t)+
p

eh(x, t) . (62)

where a > 0 and k > 0 are parameters, and we impose periodic boundary condi-
tion on x 2 [0,1]. Without the term f (u,x, t), this is the stochastic Burgers equation
which arises in a variety of fields, in particular in the context of compressible gas
dynamics, traffic flow, and fluid dynamics. With the reaction term f (u,x, t) added
this equation is referred to as the (stochastic) Burgers-Huxley equation [42] , which
has has been used e.g. to describe the dynamics of neurons. The addition of a re-
action term makes it possible to obtain multiple stable fixed points. As a particular
case, we will consider (62) with

f (u,x, t) =�u(1�u)(1+u) (63)

so that u
+

= 1 and u� = �1 are the two stable fixed point of the deterministic
dynamics. We are interested in the mechanism of the noise-induced transitions be-
tween these points.

When a = 0, the system is in detailed balance and therefore the forward and
backward reaction follow the same path. The potential associated with the reaction
term (63) is symmetric under u !�u, and both states are equally probable. In con-
trast, when a 6= 0 it is not obvious a priori whether u

+

and u� are equally probable,
since the non-linearity breaks the spatial symmetry, leading to a steepening of neg-
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Fig. 5 Transition pathways between two stable fixed points of equation (56) in the limit e ! 0.
Left: heteroclinic orbit, defining the deterministic relaxation dynamics from the unstable point
S down to either A or B. Right: Minimizer of the geometric action, defining the most probable
transition pathway from A to B, following the slow manifold up to X , where it starts to nearly
deterministically travel close to the separatrix into S.

On this manifold the motion is driven solely by changing the mean via the slow
terms, �f +

p
e h(x, t), on a time-scale of order O(1) in a . After two integrations

in space, (60) can be written as

kfxx +f �f

3
= l (61)

where l is a parameter: As a result the slow manifold can be described as one-
parameter families of solutions parametrized by l 2 R – in general there is more
than one family because the manifold can have different branches corresponding to
solutions of (59) with a different number of domain walls. The configuration labeled
as fX in Fig. 4 shows the field at the intersection of one of these branches with the
separatrix. Since the deterministic drift along the slow manifold is small compared
to the O(1/a) drift induced by the Cahn-Hilliard term, one expects that the most
probable transition pathway will use this manifold as channel to escape the basin
of attraction of the stable fixed points fA or fB. This intuition is confirmed by the
numerics, as shown next.

Fig. 5 (left) shows the heteroclinic orbit connecting the two stable fixed points
fA and fB to the unstable configuration fS. The mean is preserved along this or-
bit, which involves a nucleation event at the boundaries followed by domain wall
motion through the domain. The unstable fixed point fs, denoted by S, which also
demarcates the position at which the separatrix is crossed, is the spatially symmetric
configuration with a positive central region and two negative regions at the bound-
ary. Locations A and B label the two stable fixed points fA and fB.

In contrast, Fig. 5 (right) shows the minimizer of the geometric action, which
is the most probable transition path as e ! 0. It was computed via the algorithm
outlined in Sec. 3.6, with L =

1
a

Pk∂

2
x � Id and R(u) = 1

a

P(u� u3
). Starting at the

fixed point A the minimizer takes a very different path than the heteroclinic orbit:



Bistable Reaction Network

Consider the bi-stable chemical reaction network

A
k0⌦
k1

X, 2X +B
k2⌦
k3

3X

with rates ki > 0, and where the concentrations of A and B are held
constant.

Its dynamics can be modeled as a Markov jump process (MJP) with
generator

(LRf)(n) = A+(n) (f(n� 1)� f(n)) +A�(n) (f(n+1)� f(n))

with the propensity functions
8
<

:
A+(n) = k0V + (k2/V )n(n� 1)

A�(n) = k1n+ (k3/V 2)n(n� 1)(n� 2) .



Bistable Reaction Network

Denote by c = n/V the concentration of X, and normalize it by a typical
concentration, ⇢ = c/c0. Set " = 1/(c0V ) and rescale time by ":

(LR
✏ f)(⇢) =

1

✏

✓
a+(⇢) (f(⇢� ✏)� f(⇢)) + a�(⇢) (f(⇢+ ✏)� f(⇢))

◆
,

where
8
<

:
a+(⇢) = �0 + �2⇢

2

a�(⇢) = �1⇢+ �3⇢
3 .

Large deviation principle can be formally obtained via WKB analysis,
that is, by setting f(⇢) = e✏

�1G(⇢) and expanding in ". To leading
order in ✏, this gives an Hamilton-Jacobi operator associated with an
Hamiltonian that is also the one rigorously derived in LDT:

H(⇢,#) = a+(⇢)(e# � 1) + a�(⇢)(e�# � 1) .



Bistable Reaction Network

Consider N neighboring reaction compartments, each well-stirred, but
with random jumps possible between neighboring compartments.

Denote by ⇢i the concentration in the i-th compartment and refer to the
vector ⇢⇢⇢ as the complete state, ⇢⇢⇢ =

PN
i=0 ⇢iêi. In this case, we obtain a

di↵usive part of the generator, LD, coupling neighboring compartments.
For a di↵usivity D, it is

(LDf)(⇢⇢⇢) =
D

✏

NX

i=1
⇢i

⇣
f(⇢⇢⇢� ✏êi + ✏êi�1) + f(⇢⇢⇢� ✏êi + ✏êi+1)� 2f(⇢⇢⇢)

⌘
.

The process associated with this generator also admits a large deviation
principle with Hamiltonian

HD(⇢⇢⇢,###) = D
NX

i=1
⇢i

⇣
e#i�1�#i + e#i+1�#i � 2

⌘
,

Full Hamiltonian becomes

H(⇢⇢⇢,###) = HD(⇢⇢⇢,###) +
NX

i=1
HR(⇢i,#i)

, where HR(⇢i,#i) is the reactive Hamiltonian which is summed up over
all the compartments.
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Fig. 15 Bi-Stable reaction-diffusion model with N = 2 reaction cells. Show are the forward (red)
and backward (green) transitions between the two stable fixed points, in comparison to the hetero-
clinic orbit (dashed). The flow-lines depict the deterministic dynamics, their magnitude is indicated
by the background shading.

Fig. 16 Action densities
for the bi-stable reaction-
diffusion model. Depicted
are the actions corresponding
to the forward (solid) and
backward (dashed) minimizer
(dark) and heteroclinic (light)
orbit.
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4.7 Slow-fast systems

In contrast to a large deviation principle arising in the limit of small noise or large
number of particles, a different class of Hamiltonians arises for systems with a slow
variable X evolving on a timescale O(1) and a fast variable Y on a time scale O(a):

Ẋ = f (X ,Y ) (81a)

dY =

1
a

b(X ,Y )dt +
1p
a

s(X ,Y )dW . (81b)



Continuous limit in space

Rescale

⇢j ! h⇢(jh), ✓j ! ✓(jh), a±(⇢j) ! ha±(⇢(jh))

In the limit h ! 0, if we scale D ! Dh�2 we arrive at

Hd(⇢, ✓) = D
Z ⇣

⇢|@x✓|2 + ✓@2x⇢
⌘
dx .
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Figure 19. Spatially continuous Schlögl model, forward transition, for D = 6, N
t

=
512, N

x

= 32. The location of the saddle point is marked with a dashed line.
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Fast-Slow Systems

Systems with a slow variable X evolving on a timescale O(1) and a fast
variable Y on a time scale O(↵):

Ẋ = f(X,Y )

dY =
1

↵
b(X,Y )dt+

1
p
↵
�(X,Y )dW.

Limit behavior captured by Law of large numbers (LLN):

˙̄X = F (X̄) where F (x) = lim
T!1

1

T

Z T

0
f(x, Yx(⌧)) d⌧

Small deviations captured by Central Limit Theorem (CLT); large de-
viation captured by LDP with the Hamiltonian

H(x,#) = lim
T!1

1

T
logE exp

 

#
Z T

0
f(x, Yx(t)) dt

!

,



Fast-Slow Systems - Example

34 Tobias Grafke, Tobias Schäfer and Eric Vanden-Eijnden
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Fig. 17 Coupled slow-fast system ODE model for D = 1.0. Left: The arrows denote the direction
of the deterministic flow, the shading its magnitude. The solid line depicts the minimizer, the
dashed line the relaxation paths from the saddle. Markers are located at the fixed points (circle:
stable; square: saddle). Right: Action density along the minimizers for the two trajectories up to
the saddle, with normalized path parameter s 2 (0,1).

This example is interesting for our purpose not only because the Hamiltonian is
non-quadratic, but furthermore because of the existence of a forbidden region J >

g

2
/(2s) where the Hamiltonian is not defined.
Additionally increasing the number of degrees of freedom by combining two in-

dependent multi-stable slow-fast systems and coupling them by a spring with spring
constant D, the full system reads

8
>>>>>><

>>>>>>:

Ẋ1 = Y 2
1 �b1X1 �D(X1 �X2)

Ẋ2 = Y 2
2 �b2X2 �D(X2 �X1)

dY1 =� 1
a

g(X1)Y1dt +
sp
a

dW1

dY2 =� 1
a

g(X2)Y2dt +
sp
a

dW2 .

(86)

The Hamiltonian for the LDT for this system is

H(x1,x2,J1,J2) = h(x1,J1)+h(x2,J2)+ h�—U(x1,x2),Ji , (87)

for U(x,y) = 1
2 D(x � y)2 and h(x,J) defined as in equation (85). The choice

g(X) = (X � 5)2
+ 1 ensures two stable fixed points. The deterministic dynamics

of this system (i.e. the evolution of the averaged slow variables) are depicted as
white arrows in figure 17 (left). To stress the important portion of the transition tra-
jectory, the plot is focused only on the initial state up to the saddle. Compared are
the minimizer and the heteroclinic orbits connecting the stable fixed points to the
saddle point. The corresponding actions are shown in figure 17 (right). The specific
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non-quadratic, but furthermore because of the existence of a forbidden region J >
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/(2s) where the Hamiltonian is not defined.
Additionally increasing the number of degrees of freedom by combining two in-
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constant D, the full system reads
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The Hamiltonian for the LDT for this system is

H(x1,x2,J1,J2) = h(x1,J1)+h(x2,J2)+ h�—U(x1,x2),Ji , (87)

for U(x,y) = 1
2 D(x � y)2 and h(x,J) defined as in equation (85). The choice

g(X) = (X � 5)2
+ 1 ensures two stable fixed points. The deterministic dynamics

of this system (i.e. the evolution of the averaged slow variables) are depicted as
white arrows in figure 17 (left). To stress the important portion of the transition tra-
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the minimizer and the heteroclinic orbits connecting the stable fixed points to the
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Long-lasting effects of small random perturbations 33

Examples of systems with large timescale separation a ⌧ 1 are ubiquitous in nature,
and usually one is interested mostly in the long-time behavior of the slow variables.
In particular, we are concerned with situations where the slow dynamics exhibits
metastability. We want to use our algorithm to compute transition pathways in this
setup for the limit of infinite time scale separation.

In the limit as a ! 0, the fast variables reach statistical equilibrium before any
motion of the slow variables, and these slow variables only experience the average
effect of the slow ones. This behavior can be captured by the following deterministic
limiting equation which is akin to a law of large numbers (LLN) in the present
context and reads

˙̄X = F(X̄) where F(x) = lim
T!•

1
T

TZ

0

f (x,Yx(t))dt (82)

Here Yx(t) is the solution of (81b) for X(t) = x fixed [19, 3, 30, 6]. For small but
finite a , the slow variables also experience fluctuations through the fast variables.
In particular, the statistics of x = (X � X̄)/

p
a on O(1) time scales can be described

by a central limit theorem (CLT) as small Gaussian noise on top of the slow mean X̄ .
The CLT scaling, however, is inappropriate to describe the fluctuations of the slow
variables that are induced by the effect of the fast variables on longer time scales
and may, for example, lead to transitions between stable fixed points of the limiting
equation in (82). In particular, the naive procedure of constructing an SDE out of
the LLN and CLT to then compute its LDT fails. Instead, the transitions in the limit
of a ! 0 are captured by an LDP with the Hamiltonian

H(x,J) = lim
T!•

1
T

logEexp

0

@
J

TZ

0

f (x,Yx(t))dt

1

A
, (83)

Except for the special case f (x,y) = r(x) + s(y)y (linear dependence on the fast
variable), the Hamiltonian (83) is non-quadratic in q . As a consequence no S(P)DE
with Gaussian noise exists for the slow variable which has an LDP to describe the
transitions correctly.

The implicit nature of the Hamiltonian (83), in particular containing an expecta-
tion, complicates numerical procedures to compute its associated minimizers. Yet,
in the non-trivial case of a quadratic dependence of the slow variable on the fast
ones, for example, 8

<

:

Ẋ = Y 2 �bX

dY =� 1
a

g(X)Y dt +
sp
a

dW
(84)

one indeed does obtains an explicit formula for the Hamiltonian (83) (as derived in
[6])

h(x,J) =�bxJ +

1
2

✓
g(x)�

q
g

2
(x)�2s

2
J

◆
. (85)
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non-quadratic, but furthermore because of the existence of a forbidden region J >
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/(2s) where the Hamiltonian is not defined.
Additionally increasing the number of degrees of freedom by combining two in-
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Ẋ1 = Y 2
1 �b1X1 �D(X1 �X2)
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The Hamiltonian for the LDT for this system is

H(x1,x2,J1,J2) = h(x1,J1)+h(x2,J2)+ h�—U(x1,x2),Ji , (87)

for U(x,y) = 1
2 D(x � y)2 and h(x,J) defined as in equation (85). The choice

g(X) = (X � 5)2
+ 1 ensures two stable fixed points. The deterministic dynamics
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constant D, the full system reads
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Ẋ1 = Y 2
1 �b1X1 �D(X1 �X2)
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The Hamiltonian for the LDT for this system is

H(x1,x2,J1,J2) = h(x1,J1)+h(x2,J2)+ h�—U(x1,x2),Ji , (87)

for U(x,y) = 1
2 D(x � y)2 and h(x,J) defined as in equation (85). The choice

g(X) = (X � 5)2
+ 1 ensures two stable fixed points. The deterministic dynamics

of this system (i.e. the evolution of the averaged slow variables) are depicted as
white arrows in figure 17 (left). To stress the important portion of the transition tra-
jectory, the plot is focused only on the initial state up to the saddle. Compared are
the minimizer and the heteroclinic orbits connecting the stable fixed points to the
saddle point. The corresponding actions are shown in figure 17 (right). The specific



• LDT can guide the development of numerical tools that bypass the brute-force 
integration of SPDE. 
• Gives rough estimate of probability, along with the path of maximum likelihood by 
which the event occurs. 
• Applicable to systems in detailed-balance or not, on finite or unbounded time intervals.  

• Can be integrated in importance sampling procedures and data assimilation 
techniques. 
• Can also be used in other context, e.g. to understand stochastic resonance effects in 
excitable media, phase transition in unbounded domains, etc. 

• More challenging are situations where LDT does not apply directly because entropic 
effects are non-negligible. 

Conclusions



Some other applications

▷ Thermally induced magnetization reversal in submicron ferromagnetic elements
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with Weinan E and Weiqing Ren

Practical side of LDT - Dynamics 
can be reduced to a Markov jump 
process on energy map, whose 
nodes are the energy minima and 
whose edges are the minimum 
energy paths. 

▷ Hydrophobic collapse of a polymeric chain  
    by dewetting transition

Rate limiting step is entropic - 
creation of a water bubble

with Tommy Miller and David Chandler



Beyond LDT - when entropy matters

• LDT can fail if entropic effects matter  
   - many alternative paths for the event,  
     with lower probability individually, but large one globally.  

• These situations require a more general approach to rare event analysis. 
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