


Long-Lasting Effects of
on Dynamical Systems

Random

Perturbations

Frontier Probabillity Days
Salt Lake City, 2016

Eric Vanden-Eiljnden
Courant Institute

Joint work with 1. Grafke and T. Schaefer



! Btbore v matemacacden Wincaafun W)

Aenwer Saler 0 Makoman

MLL Freidlin
A.D. Wentzell

Freidlin-Wentzell approach to LDT Kandom

of Dynamical
Systems
Secomd Edtion

Consider the SDE
dX = b(X)dt + eo (X)dW (t) # e

where W (t) is a Wiener process and € measures the noise amplitude.

The forward Kolmogorov equation associated with this SDE is

Op =V - (—bp + gV(ap)) ] a(z) = (co1)(z)

Using a WKB-type ansatz p(xz,t) = exp (—6_1C|>(a:,t)), to leading order
in e, ®(x,t) satisfies the Hamilton-Jacobi equation

0y + H(z, V) = 0, H(z,0) =b(z) -0+ 50 - a(z)0

Variational representation formula for the solution

_ . l t - 2 2 . 1
d(x,t) = {gp(s):?g[o,t] | 2/0 o — b(p)|5ds, ulf =u-a “(p)u
p(0)=z0,p(t)=x}



The role of the Quasi-Potential (QP)

LDP also important for long time behavior via the solution of H(z,V®) =
O, which defines the quasipotential

T
®(z,y) = inf inf l/ 5 — b)) |2dt
(z,y) = Inf, (o(t).tefor] : 2Jo o — bl

p(0)=z,o(T)=y}

Quasipotential plays roughly the same role as the standard potential,
and is important on long time-scales, T < exp(s_lC) for some C > 0.

For example, around stable fixed point x4 of £ = b(x), the nonequilibrium
stationary density is

p(x) < exp (—6_1¢(xa, az))

and if x4, xp, are two adjacent stable fixed points of z = b(x), the mean
first passage time from x4 to xy is

T(Zq,xp) X EXP <6_1<I>(a:a, a:b))



NB: the case of Systems in Detailed-Balance

For systems of the type
dX = —VU(X)dt + e dW (t)

e Quasipotential reduces to potential U(x).

e Mimimizer of action (aka maximum likelihood path, MLP) reduces to A
mimimum energy path (MEP), that is, geometric location of heteroclinic
orbits joining two minima via a saddle point. I

A MEP can be characterized geometrically as a curve '™ satisfying

1.5

0 = [VU]*

where [-]* denotes the perpendicular projection to the curve. o W

position
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llustration: Allen-Cahn equation in 2D

Allen-Cahn energy for u : [0, 1]? — R:

E(u) = /[ | (%(5|Vu|2 + %5_1(1 — u2)2) dx
0.1]?

with Dirichlet boundary condition: w = 41 on the right and left edges of [0, 1]>,
u = —1 on top and bottom ones.

Simulations by W. Ren | I




What If the dynamics is not in detailed-
balance?

| | du = (u—u:”—,Buvz)dt—l—\/Equ(f)
> Example from Maier & Stein dv = —(1 +u?)vdt + JedWy(t)

p=10
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Detailed-balance holds only for g = 1

For other values, the MLP is no longer the reversed of the deterministic path
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Geometric interpretation and
Numerical counterpart

T )
®(z,y) = Inf inf l/ ) — b(y)|2dt
(z,) >0 {p(t),te[0,T] : 2 Jo 0 (SO)ICL

0(0)=z,0(T)=y}

T

p— H f . a b 0 — . 7 b . dt
{SO(t),Itg[O,T]: /o (I¢lalb(@)]a = (@, b(¢))a)
©(0)=x,0(T)=y}

Reduce calculation of the quasipotential to that of a geodesic in a
(degenerate) Finsler metric.

Numerical counterpart: geodesic can be identified in practice by moving
a parametrized curve in configuration space

= String method (gradient systems) and Minimum action method
(non-gradient systems). (E, Ren & V.-E.; Heymann & V.-E.)




Allen-Cahn/Cahn-Hilliard System

Consider the SDE system

1
dp = (ZQ(¢ — ¢°) — $)dt + vedW
with ¢ = (¢1,9>) and the matrix Q = ((1,—-1),(—-1,1)).
This system does not satisfy detailed balance, as its drift is made of

two gradient terms with incompatible mobility operators (namely @ and
Id).

Fig. 2 Allen-Cahn/Cahn-
Hilliard toy ODE model, 10 o o
o = 0.01. The arrows denote '

the direction of the deter-

ministic flow, the color its 0.5
magnitude. The white dashed
line corresponds to the slow
manifold. The solid line
depicts the minimizer, the \
dashed line the heteroclinic

YNV
orbit. Markers are located at —0.5 t/ v N
the fixed points (circle: stable; ;’ S
square: saddle). ‘ .\
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Allen-Cahn/Cahn-Hilliard System

Consider next the SPDE

1
bt = —P(rgas + ¢ - ¢>) — ¢ + Ven(z,t)

where P is an operator with zero spatial mean and n(x,t) a spatio-
temporal white-noise.

bx ¢5 ~ =— dp

Fig. 5 Transition pathways between two stable fixed points of equation (56) in the limit € — O.
Left: heteroclinic orbit, defining the deterministic relaxation dynamics from the unstable point
S down to either A or B. Right: Minimizer of the geometric action, defining the most probable
transition pathway from A to B, following the slow manifold up to X, where it starts to nearly
deterministically travel close to the separatrix into S.

Fig. 4 The configurations A, B,S,X in space: ¢4 and ¢p are the two stable fixed points, @ is the
unstable fixed point on the separatrix in between. At point @x, the slow manifold intersects the
separatrix.




Allen-Cahn/Cahn-Hilliard System

Consider next the SPDE

1
bt = —P(rgas + ¢ - ¢>) — ¢ + Ven(z,t)

where P is an operator with zero spatial mean and n(x,t) a spatio-
temporal white-noise.
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Sistable Reaction Network

Consider the bi-stable chemical reaction network

ko ks
A= X, 2X 4+ B =3X
by ks

with rates k; > 0, and where the concentrations of A and B are held
constant.

Its dynamics can be modeled as a Markov jump process (MJP) with
generator

(Lf)(n) = Ap(n) (fF(n—1) = f(n)) + A_(n) (f(n + 1) — f(n))

with the propensity functions

Ap(n) =koV + (k2/V)n(n—1)
A_(n) =kin+ (k3/V)n(n—1)(n—-2).




Sistable Reaction Network

Denote by ¢ = n/V the concentration of X, and normalize it by a typical
concentration, p = c¢/cg. Set e = 1/(cgV) and rescale time by e:

LEN @) = —(a1() G0 —) = F() +a-(0) o+ — 1(6)) ).

where

ay(p) = Ao+ A2p?
a—(p) = A1p+A3p>.

lLarge deviation principle can be formally obtained via WKB analysis,
that is, by setting f(p) = e€ 'G(P) and expanding in . To leading
order in ¢, this gives an Hamilton-Jacobi operator associated with an

Hamiltonian that is also the one rigorously derived in LDT:

H(p,®) = at(p)(e’ —1) +a—(p)(e™’ - 1).




Sistable Reaction Network

Consider N neighboring reaction compartments, each well-stirred, but
with random jumps possible between neighboring compartments.

Denote by p; the concentration in the -th compartment and refer to the
vector p as the complete state, p = Zg\[:o p;€;. In this case, we obtain a
diffusive part of the generator, P, coupling neighboring compartments.
For a diffusivity D, it is

D N
(LPF)(p) == pi (f(p — €&+ €€i_1) + f(p — €& + €6i41) — 2f(p)) -
€ i=1

The process associated with this generator also admits a large deviation
principle with Hamiltonian

N
HP(p,9) =D Y p; (e’im17Vi 4 i+17%i — 2} |
1=1

Full Hamiltonian becomes

N
1=1




Sistable Reaction Network

111 string

forward minimizer

backward minimizer

Fig. 15 Bi-Stable reaction-diffusion model with N = 2 reaction cells. Show are the forward (red)
and backward (green) transitions between the two stable fixed points, in comparison to the hetero-
clinic orbit (dashed). The flow-lines depict the deterministic dynamics, their magnitude is indicated
by the background shading.




Continuous limit in space

Rescale

pj — hp(jh), 0; — 0(jh), a+(p;) — hat(p(jh))

In the limit A — 0, if we scale D — Dh—2 we arrive at

1%(p,0) = D [ (pl0a0]? + 002p) da
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Fast-Slow Systems

Systems with a slow variable X evolving on a timescale O(1) and a fast
variable Y on a time scale O(a):

X = f(X,Y)
1 1

Limit behavior captured by Law of large numbers (LLN):

X =F(X) where F(z)= T||—>m % OTf(.CU,Ygg(T))dT

Small deviations captured by Central Limit Theorem (CLT); large de-
viation captured by LDP with the Hamiltonian

1 T
H(z,9) = lim —l0gEexp (19/0 f(:p,Yx(t))dt> |




Fast-Slow Systems - Example

():(1 =Y —BiXi —D(X; — X2) H(x1,x2,91,0) = h(x1,%1) +h(x2,%2) + (=VU(x1,x2),0),
X =Y} — BoXo —D(X> — X)) 1
1 c U(x,y) = 5D(x —y)?
dY; = ——vy(X)Yidt + —dW ’ 2!
1 a?’( 1) Y1dt + NG 1

_ ! o h(x,9) = —Bxo + 3 (Y() - /12 (1) ~ 2079 )
\de = a}/(Xz)det—l— \/&dWZ : ( )

¥(X)=(X-5)*+1

minimizer, S &~ 2.00 - 103

e string, S ~ 1.04 - 1072

e—iNlMIizer

= =  string
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Conclusions ‘

® | DT can guide the development of numerical tools that bypass the brute-force
integration of SPDE.

® Gives rough estimate of probability, along with the path of maximum likelihood by
which the event occurs.

® Applicable to systems in detailed-balance or not, on finite or unbounded time intervals.

® Can be integrated in importance sampling procedures and data assimilation
techniques.

® Can also be used in other context, e.q. to understand stochastic resonance effects in
excitable media, phase transition in unbounded domains, etc.

® \lore challenging are situations where LDT does not apply directly because entropic
effects are non-negligible.



Some other applications

> Thermally induced magnetization reversal in submicron ferromagnetic elements
. Ll 4 4 .
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1
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Practical side of LDT - Dynamics
can be reduced to a Markov jump < ol
Process on energy map, whose
nodes are the energy minima and
whose edges are the minimum
energy paths.
—1

> Hydrophobic collapse of a polymeric chain
by dewetting transition

with Weinan E and Weiqing Ren
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Rate limiting step is entropic -
creation of a water bubble
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BSeyond LD T - when entropy matters

® | DT can fail if entropic effects matter

- many alternative paths for the event,
with lower probability individually, but large one globally.

® These situations require a more general approach to rare event analysis.
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