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Introduction Our Work

The Model
The Bak-Sneppen model is a simplified model of evolution
incorporating natural selection and spatial interaction between
species, first introduced in 1993.

Let N = number of species. The model is a discrete-time
Markov chain on the space [0,1]N .

1. The species are arranged in a circle and each has a fitness
value in [0,1]. Typically, the initial fitnesses are chosen
uniformly at random.

2. Natural Selection – At each time step, the species with
minimum fitness is replaced with a new uniform random
fitness.

3. Spacial Interaction – The two neighbors of the minimum
fitness species are also replaced with new uniform random
fitnesses.
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Example – N = 7 Initial Configuration

F0 = (0.9058,0.1270,0.6234,0.9134,0.0975,0.2785,0.8147)
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Example

F1 = (0.9058,0.1270,0.6234,0.1419,0.8003,0.4854,0.8147)
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Bacteria Experiments

• Lenski and collaborators cultivated populations of E. coli
for several years, 10,000+ generations. The E. coli
long-term experimental evolution project site:
mxyo.css.msu.edu/ecoli.

• Other researchers were able to show that that
Bak-Sneppen model qualitatively reproduces some of the
results on the relative fitness of the bacteria.

I. Bose and I. Chaudhuri. Bacterial evolution and Bak-Sneppen
model. Internat. J. Modern Phys. C, 12(5):675-685, 2001.
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Main Goal

We would like to find the stationary distribution for the fitnesses
of the species, πN.

Conjecture: As the number of species approaches infinity,
the individual species’ fitnesses become independent and
uniformly distributed on [fc ,1], where fc ≈ 2/3.
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Past Work

The conjecture is still open. Our work has focused on finding
the stationary distributions for small numbers of species.

• Recently, Eckhard Schlemm (Imperial College London)
derived the stationary distribution for 4 species (2012) and
differential equations for the stationary distribution for 5
species (2015). Note that 4 species is the smallest
non-trivial number of species you could consider.

• He uses the power method or von Mises iteration.
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The Time-Reversed Process

• F0,F1,F2, ... is the forwards chain. Start with F0 according
to the stationary distribution.

• Pick a large integer T . Reversed chain: FT−k ,0 ≤ k ≤ T .
• Why is this useful? The forwards chain and backward

chain have the same stationary distribution.
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The Time-Reversed Process

The update rule for the time-reversed process must:
• Choose a species at random
• Replace the fitnesses of the chosen species and its two

neighbors,subject to the constraint that the chosen species
is given the minimum fitness among all others.

Both the probabilities for choosing each species and the new
fitness values depend on the:
• current configuration of fitnesses
• the unknown stationary distribution, πN

We can use the latter property to determine properties of πN .
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Set-up

• Markov operator P on functions f : [0,1]N → R:

Pf (x) = E[f (Fk+1)|Fk = x ]

• Inner product:

〈f ,g〉πN
= EπN [f (X )g(X )]

• The Markov operator for time-reversed process, is the
adjoint Q:

〈f ,Pg〉πN
= 〈Qf ,g〉πN

.
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For Bak-Sneppen it’s easy to write down P
• If i is the position of the minimum fitness, define Ei as the

set of positions of species who are replaced.
• Thus Ei = {i − 1, i , i + 1}.
• Define Liy + Lc

i x = (x1, ..., xi−2, yi−1, yi , yi+1, xi+2, ..., xN).

Pf (x) =
∑
i∈ZN

1 {argmin(x) = i}
∫
[0,1]N

f (x + Li(u− x))du.
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Result
Forwards operator:

Pf (x) =
∑
i∈ZN

1 {argmin(x) = i}
∫
[0,1]N

f (x + Li(u− x))du.

Adjoint operator:

Qf (x) =
1

πN(x)

∑
i∈ZN

∫
[0,1]N

f (Liy + Lc
i x)1{argmin(Liy + Lc

i x) = i}

πN(Liy + Lc
i x)dy
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4 Species

Functional equation for N = 4 species:

π4(x) =
4∑

i=1

∫
[0,1]3

[1{argmin(yi−1, yi , yi+1, xi+2) = i}

π4(yi−1, yi , yi+1, xi+2)] dyi−1 dyi dyi+1

Keep in mind all index operations are mod 4.
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General Models

• We can look at more general models in which more than 3
species are replaced.

• If i is the position of the minimum fitness, define Ei as the
set of positions of species who are replaced.

• Traditional model: Ei = {i − 1, i , i + 1}.
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Functional equation for πN

Reminder: Liy + Lc
i x = (x1, ..., xi−2, yi−1, yi , yi+1, xi+2, ..., xN).

πN(x) =
∑

i∈Z/N

∫
[0,1]N

1{argmin(Liy+Lc
i x) = i}πN(Liy+Lc

i x)dy.
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Key Point

The stationary distribution is the sum of functions of the number
of non-replaced species.

Example: N = 6, Ei = {i − 1, i , i + 1, i + 2} (replace 4 species):
If

x = (x1, x2, x3, x4, x5, x6),

then

π6(x) = g(x1, x2) + g(x2, x3) + g(x3, x4) + g(x4, x5)

+ g(x5, x6) + g(x6, x1)

for some function g : [0,1]2 → R.
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Replace N − 1 species

If we replace N − 1 species, the stationary distribution is the
sum of functions of one variable, which results in an easy
differential equation to solve:

πN(x) =
(N − 1)(N − 2)

N

∑
i∈Z/N

1− (1− xi)
N−1

((1− xi)N−1 + N − 2)2

N = 4:
π4(x) =

3
2

∑
i∈Z/4

xi(3− xi(3− xi))

(3− xi(3− xi(3− xi))2

This matches Schlemm’s result.
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Replace N − 2 species

If we replace N − 2 species, the stationary distribution is the
sum of functions of two variables:

πN(x) =
∑

i∈Z/N

q(xi , xi+1).

We guessed the ansatz:

qN(u, v) = BN(u)GN(v) + AN(v),

for v < u. This leads to a coupled system of three second-order
ODEs that An,BN ,GN must satisfying. These involve
hypergeometric functions of the second kind.
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Larger numbers of non-replaced species

• For larger numbers, it becomes very challenging.
• We don’t expect that our method can be used to tackle the

big conjecture.
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Reduced Markov Chain

The non-replaced species form a Markov chain by themselves,
i.e. in the traditional model where 3 species are replaced, you
only need to keep track of N − 3 values to keep track of the
dynamics of all N species.
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Future Questions

1. We’ve seen that you can reduce the full chain to only keep
track of the non-replaced species. Are there any other
reductions?

2. When you replace N − 1 species, as N →∞, the fitnesses
remain independent and uniformly distributed on [0,1].
How many species must be replaced to see something
other than the uniform distribution on [0,1]?

3. For small numbers of replaced species, it appears from
simulations that as N →∞, the fitnesses become
independent and uniformly distributed on [fc ,1], where fc
decreases as the number of replaced species increases.



Introduction Our Work

Future Questions

1. We’ve seen that you can reduce the full chain to only keep
track of the non-replaced species. Are there any other
reductions?

2. When you replace N − 1 species, as N →∞, the fitnesses
remain independent and uniformly distributed on [0,1].
How many species must be replaced to see something
other than the uniform distribution on [0,1]?

3. For small numbers of replaced species, it appears from
simulations that as N →∞, the fitnesses become
independent and uniformly distributed on [fc ,1], where fc
decreases as the number of replaced species increases.



Introduction Our Work

Future Questions

1. We’ve seen that you can reduce the full chain to only keep
track of the non-replaced species. Are there any other
reductions?

2. When you replace N − 1 species, as N →∞, the fitnesses
remain independent and uniformly distributed on [0,1].
How many species must be replaced to see something
other than the uniform distribution on [0,1]?

3. For small numbers of replaced species, it appears from
simulations that as N →∞, the fitnesses become
independent and uniformly distributed on [fc ,1], where fc
decreases as the number of replaced species increases.



Introduction Our Work

Replace 1

Species
100 200 300 400 500 600 700 800 900 1000

F
it
n
es
s

0

0.2

0.4

0.6

0.8

1



Introduction Our Work

Replace 2
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Replace 3
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Replace 4
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Graph of fc
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Thank you

Questions?
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