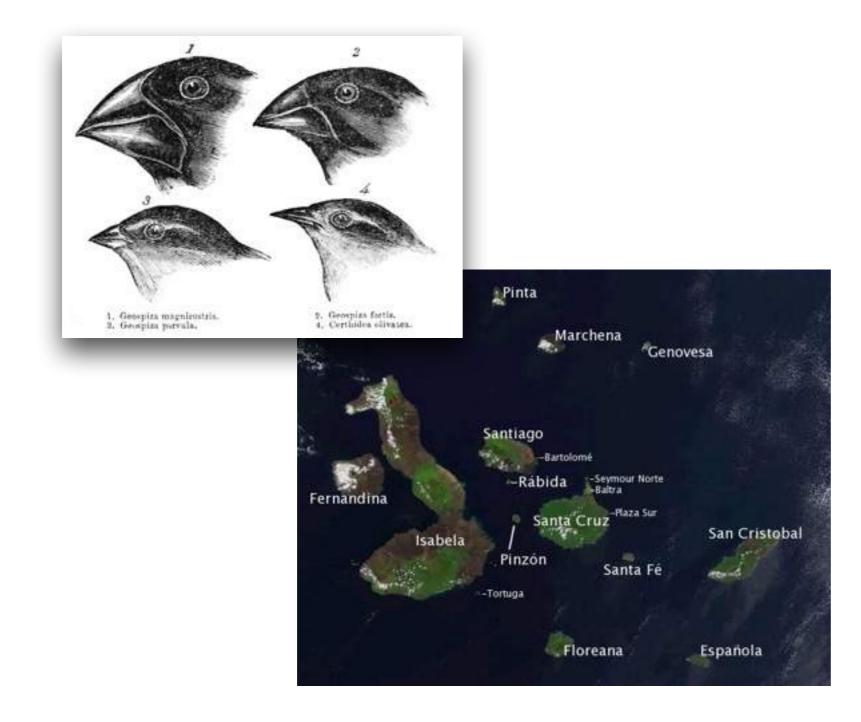


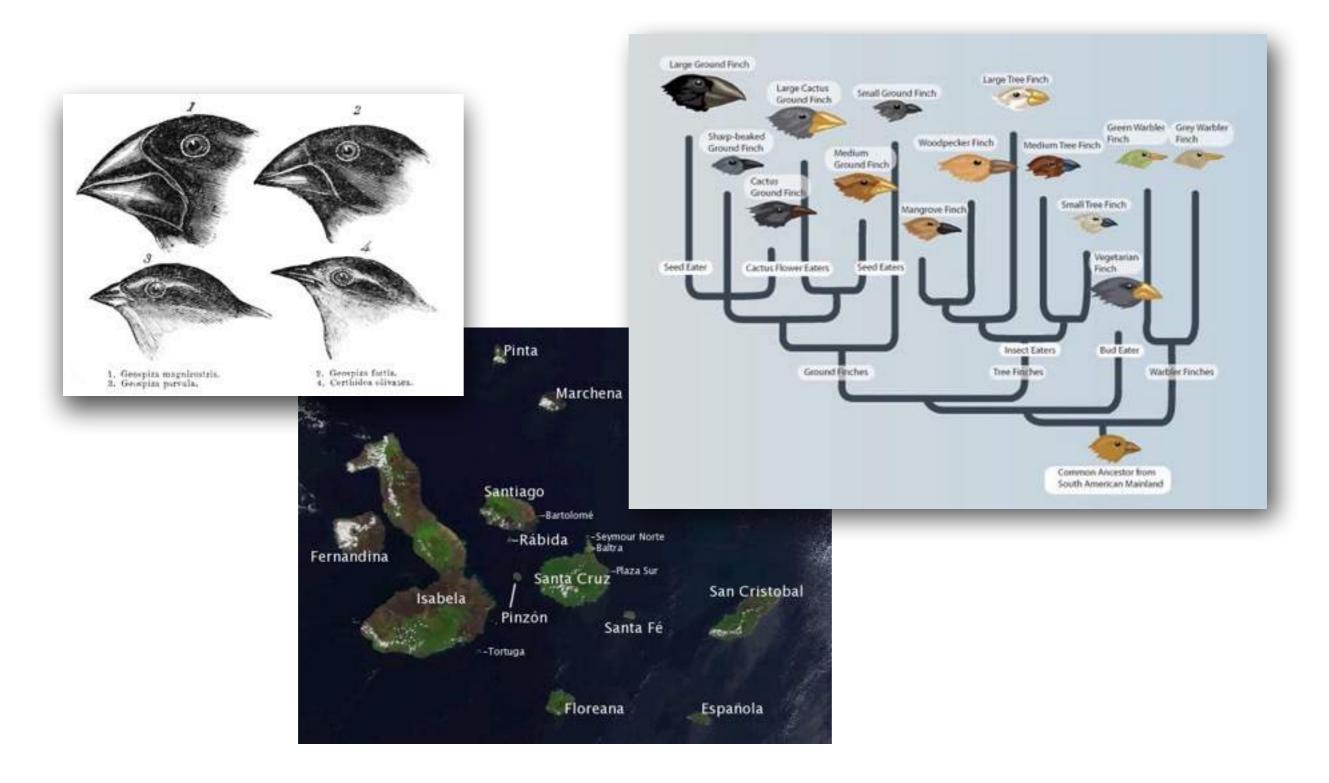
Mathematics of the Tree of Life From Genomes to Phylogenetic Trees and Beyond

Sébastien Roch Department of Mathematics UW-Madison

Darwin's finches



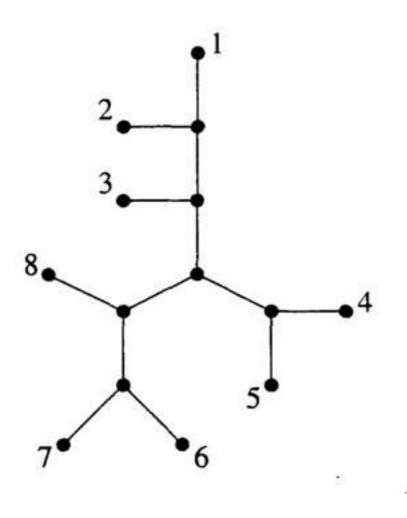
Darwin's finches



Phylogenetic X-trees

Definition

An *X*-tree is a pair $(T; \phi)$ where *T* is a tree and $\phi : X \to V(T)$ is a labeling such that $deg(v) \le 2 \implies v \in \phi(X)$. It is a *phylogenetic X*-tree if ϕ is a bijection into the leaves.



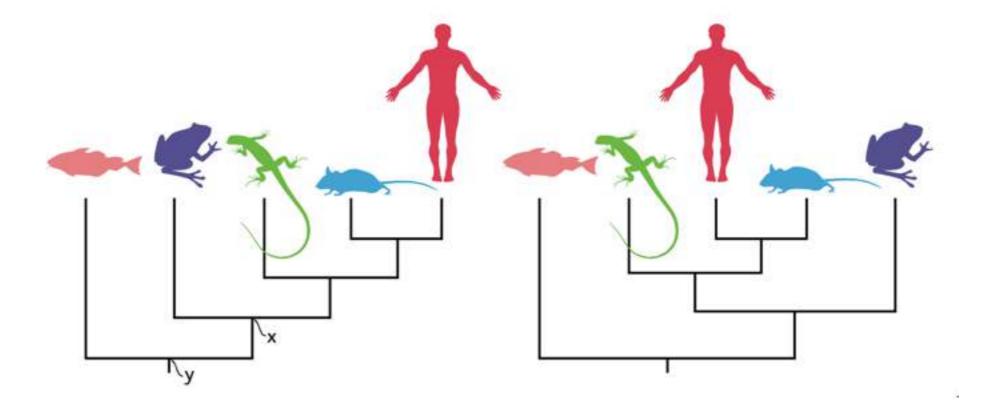
Phylogenetic X-trees

Definition

An *X*-tree is a pair $(T; \phi)$ where *T* is a tree and $\phi : X \to V(T)$ is a labeling such that $\deg(v) \le 2 \implies v \in \phi(X)$. It is a *phylogenetic X*-tree if ϕ is a bijection into the leaves.

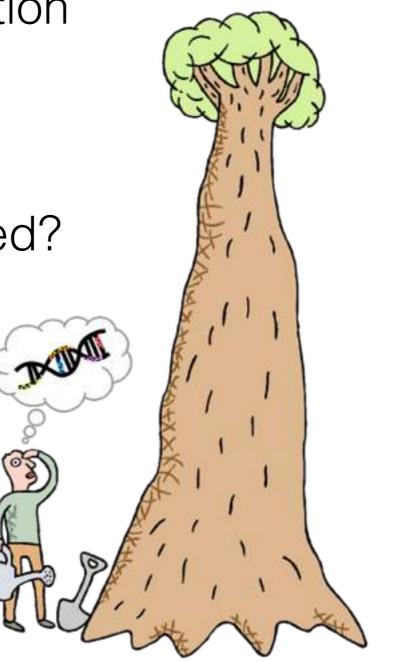
Definition

Two X-trees $(T_1; \phi_1)$ and $(T_2; \phi_2)$ are *isomorphic* if there is a graph isomorphism ψ between T_1 and T_2 such that $\phi_2 = \psi \circ \phi_1$.

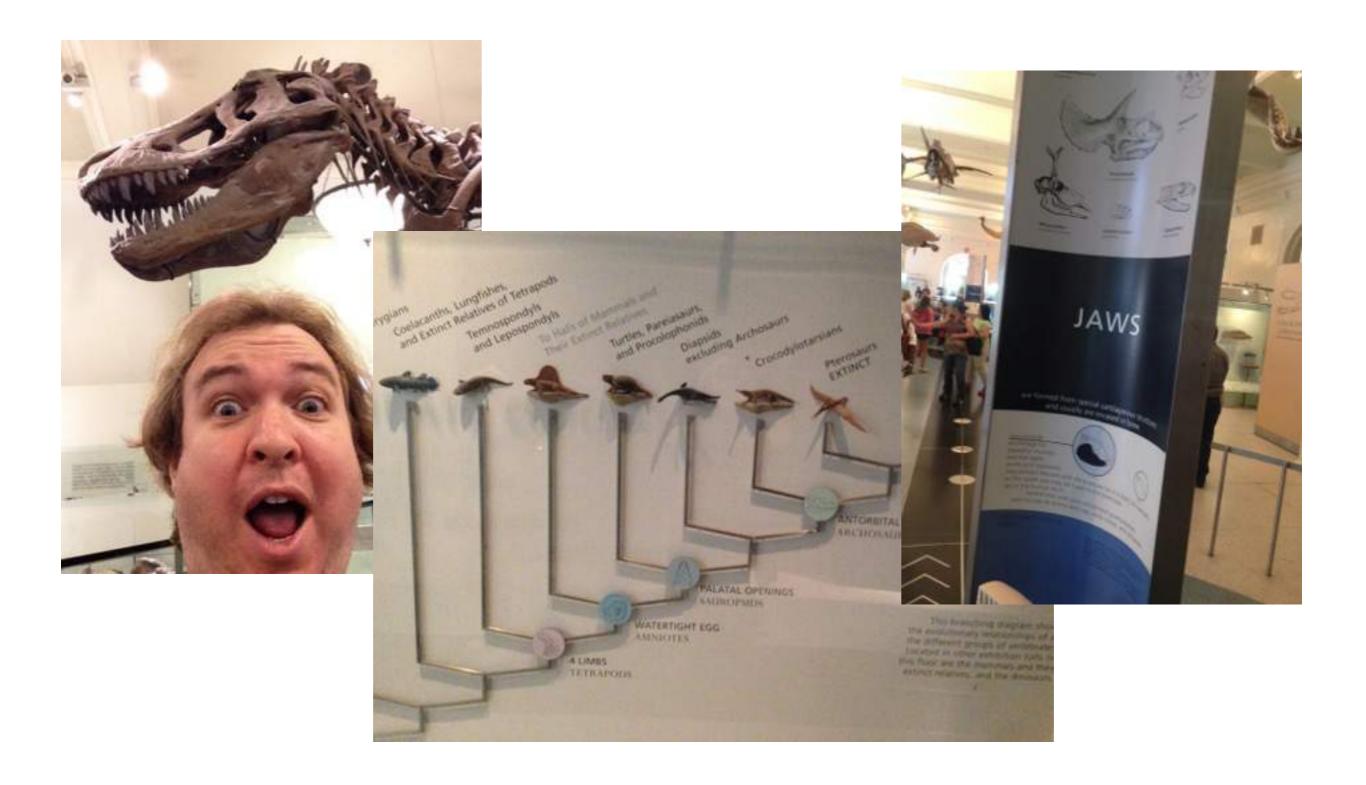


So how is the Tree of Life inferred?

- I. From Darwin's finches to HIV evolution
- II. Pre-genomics era
- III. Transition: How much data do I need?
- **IV. More data, more problems**
- V. Is the Tree of Life even a tree?



Pre-genomics era



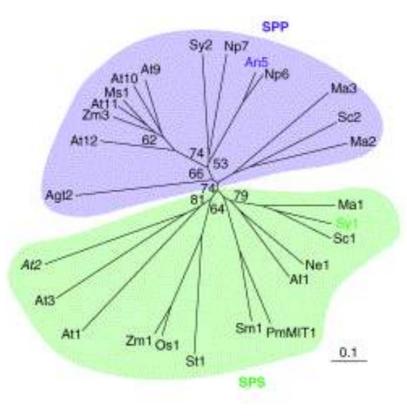
Compatible splits

Definition An X-split A|B is a bipartition of X into non-empty subsets A, B.

Definition

A pair of X-splits $A_1|B_1$ and $A_2|B_2$ is *compatible* if at least one of the sets $A_1 \cap A_2$, $A_1 \cap B_2$, $B_1 \cap A_2$, or $B_1 \cap B_2$ is the empty set.

Theorem (Splits-equivalence theorem; Buneman (1971)) A set of X-splits is induced by an X-tree iff it is compatible.



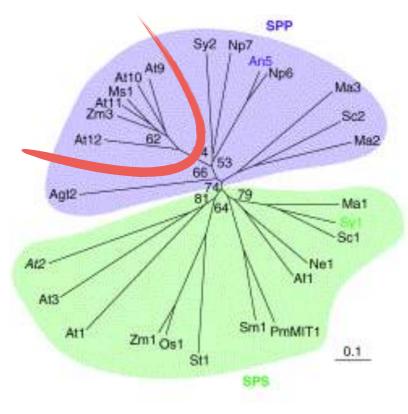
Compatible splits

Definition An X-split A|B is a bipartition of X into non-empty subsets A, B.

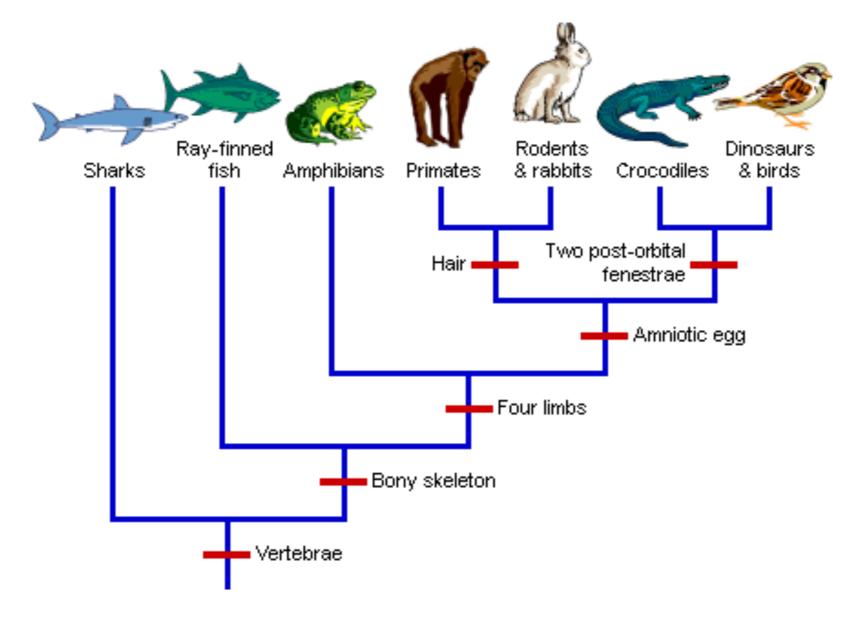
Definition

A pair of X-splits $A_1|B_1$ and $A_2|B_2$ is *compatible* if at least one of the sets $A_1 \cap A_2$, $A_1 \cap B_2$, $B_1 \cap A_2$, or $B_1 \cap B_2$ is the empty set.

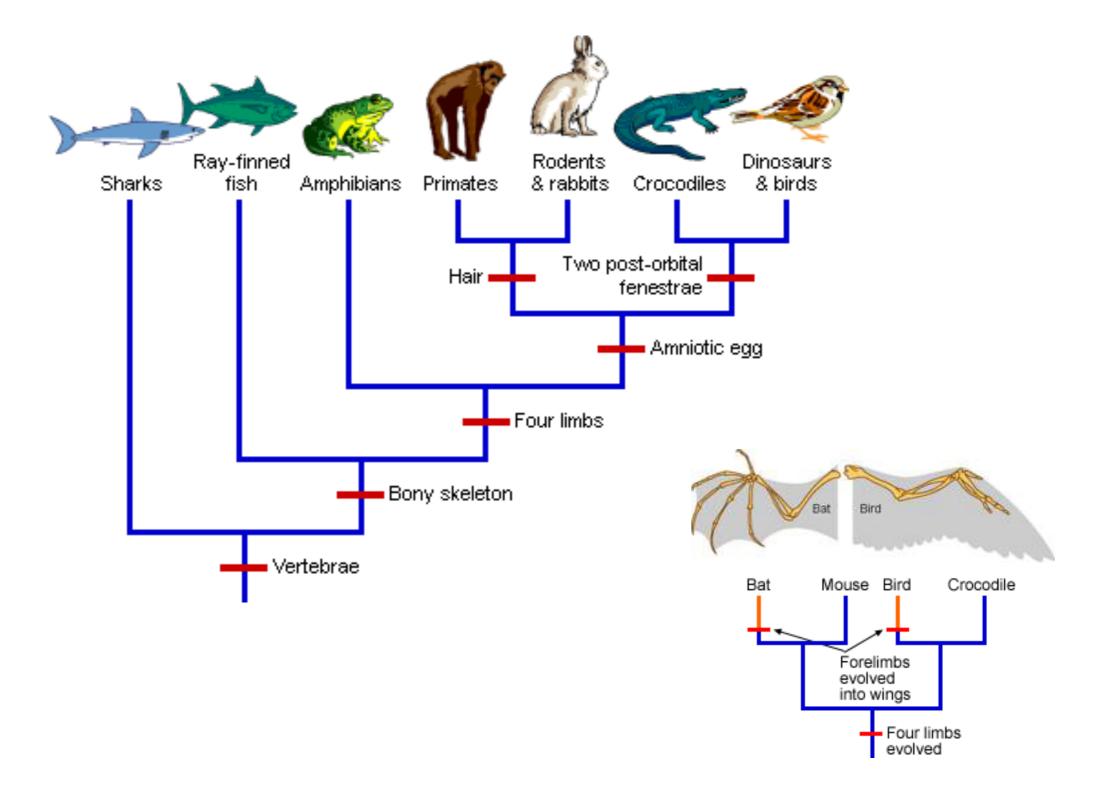
Theorem (Splits-equivalence theorem; Buneman (1971)) A set of X-splits is induced by an X-tree iff it is compatible.



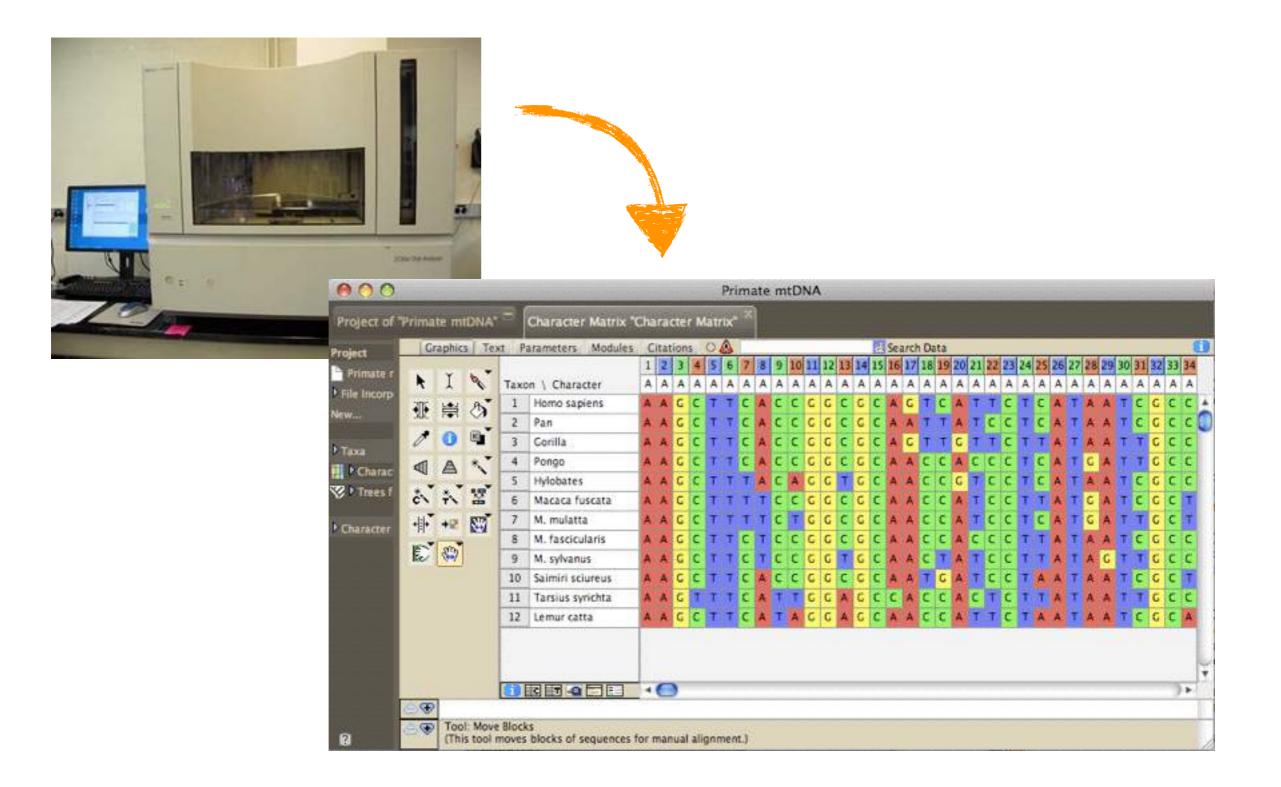
Synapomorphies & homoplasies



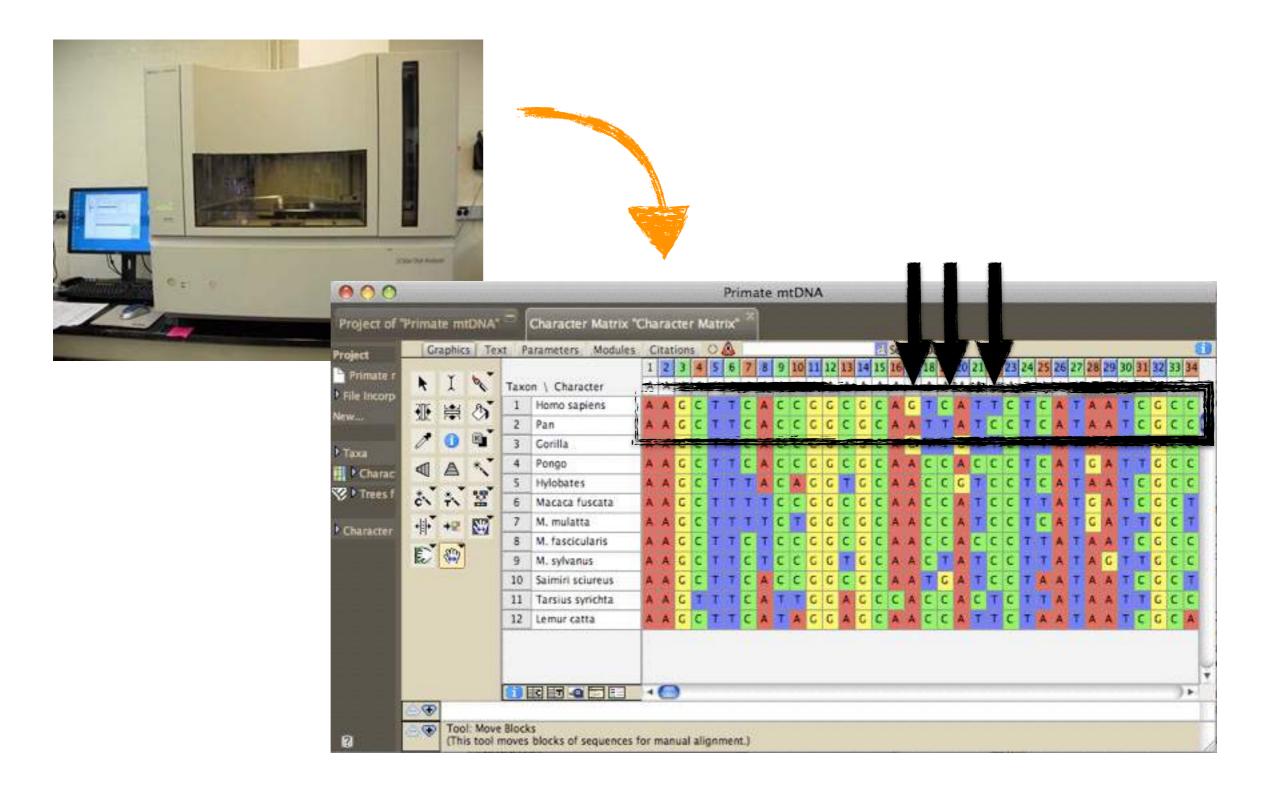
Synapomorphies & homoplasies



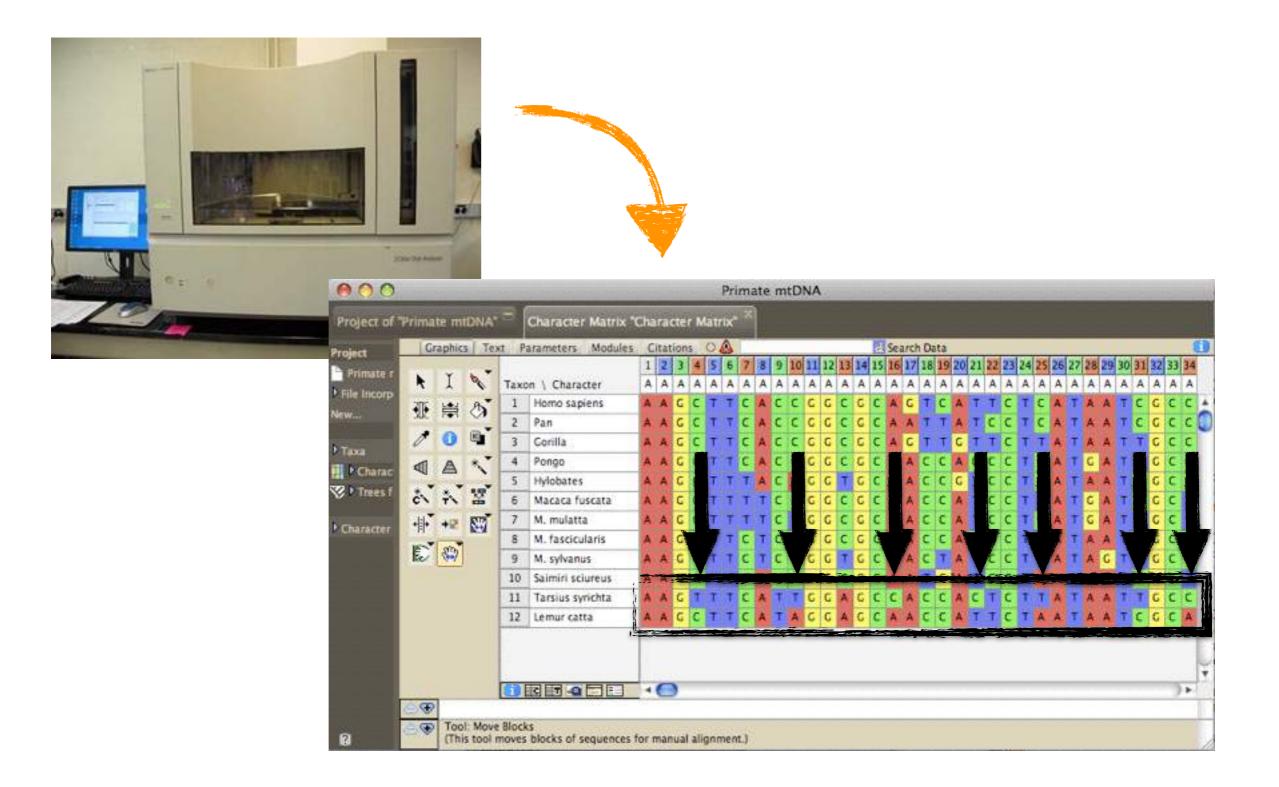
Molecular systematics



Molecular systematics



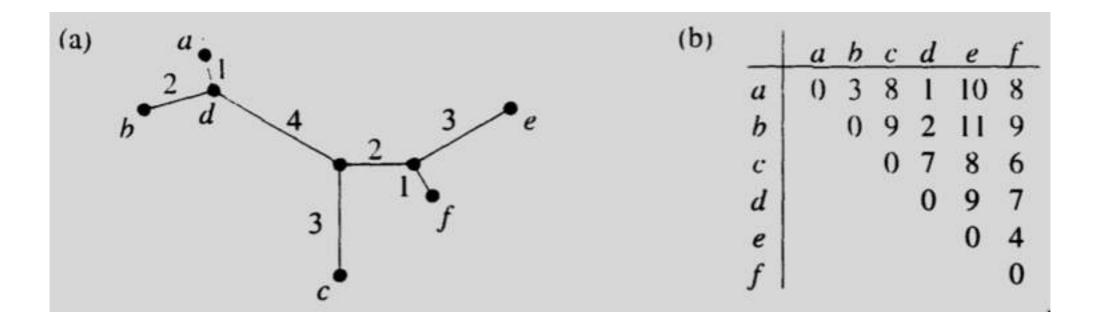
Molecular systematics



Definition

A function $\delta : X \times X \to \mathbb{R}$ is a *tree metric* if there is an X-tree $\mathcal{T} = (T; \phi)$ and a weighting $w : E(T) \to \mathbb{R}_+$ such that for all x, y

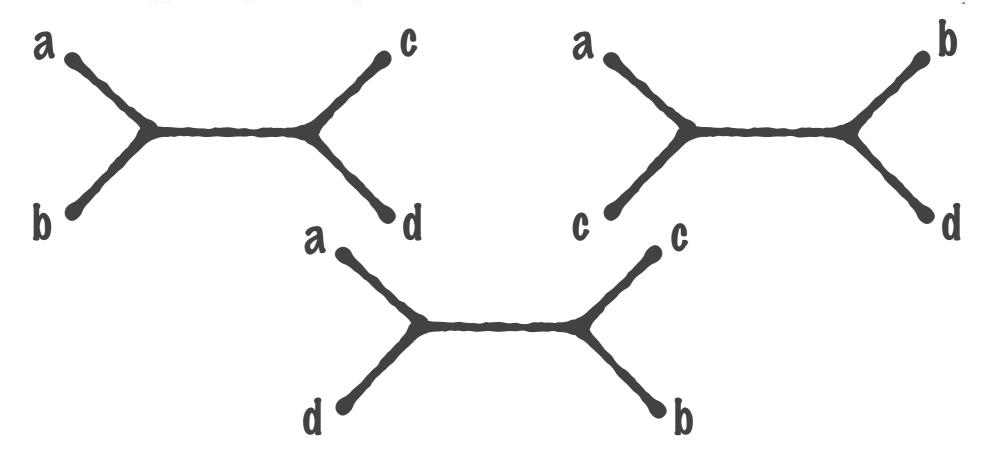
$$\delta(x,y) = d_{(\mathcal{T};w)}(x,y) := \sum_{e \in P(\mathcal{T};x,y)} w(e),$$



Definition

A function $\delta : X \times X \to \mathbb{R}$ is a *tree metric* if there is an X-tree $\mathcal{T} = (T; \phi)$ and a weighting $w : E(T) \to \mathbb{R}_+$ such that for all x, y

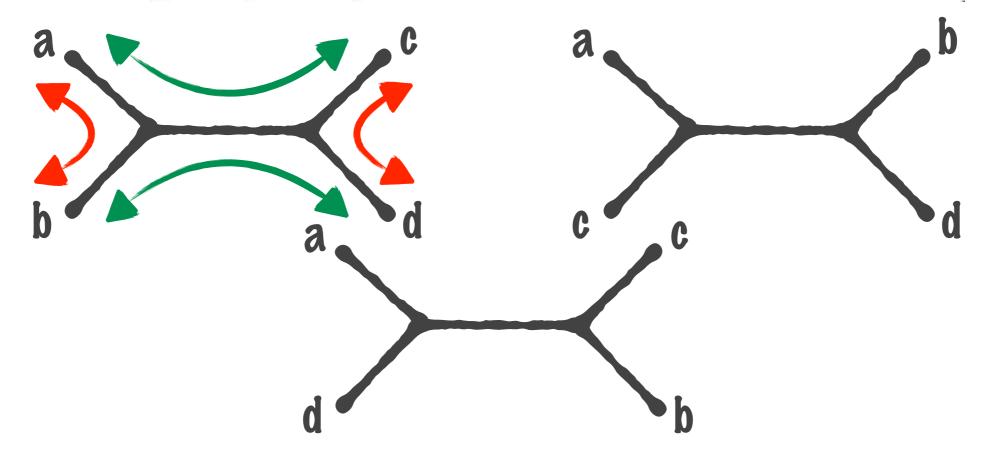
$$\delta(x,y) = d_{(\mathcal{T};w)}(x,y) := \sum_{e \in P(\mathcal{T};x,y)} w(e),$$



Definition

A function $\delta : X \times X \to \mathbb{R}$ is a *tree metric* if there is an X-tree $\mathcal{T} = (T; \phi)$ and a weighting $w : E(T) \to \mathbb{R}_+$ such that for all x, y

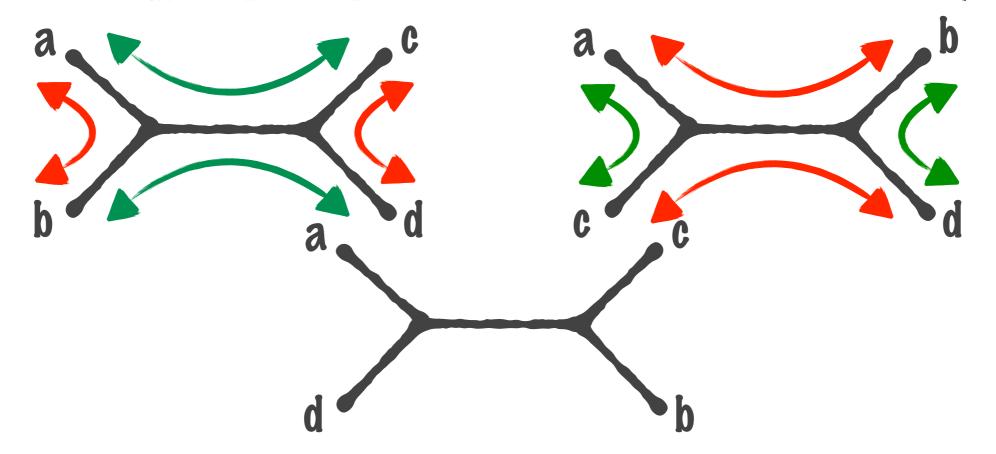
$$\delta(x,y) = d_{(\mathcal{T};w)}(x,y) := \sum_{e \in P(\mathcal{T};x,y)} w(e),$$



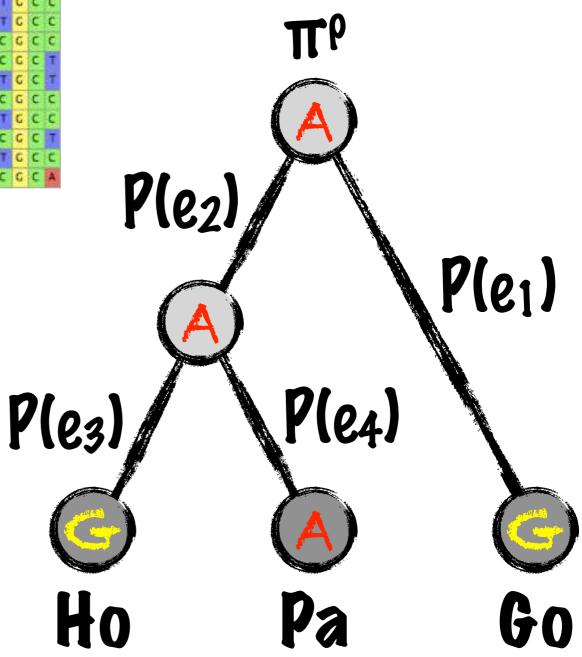
Definition

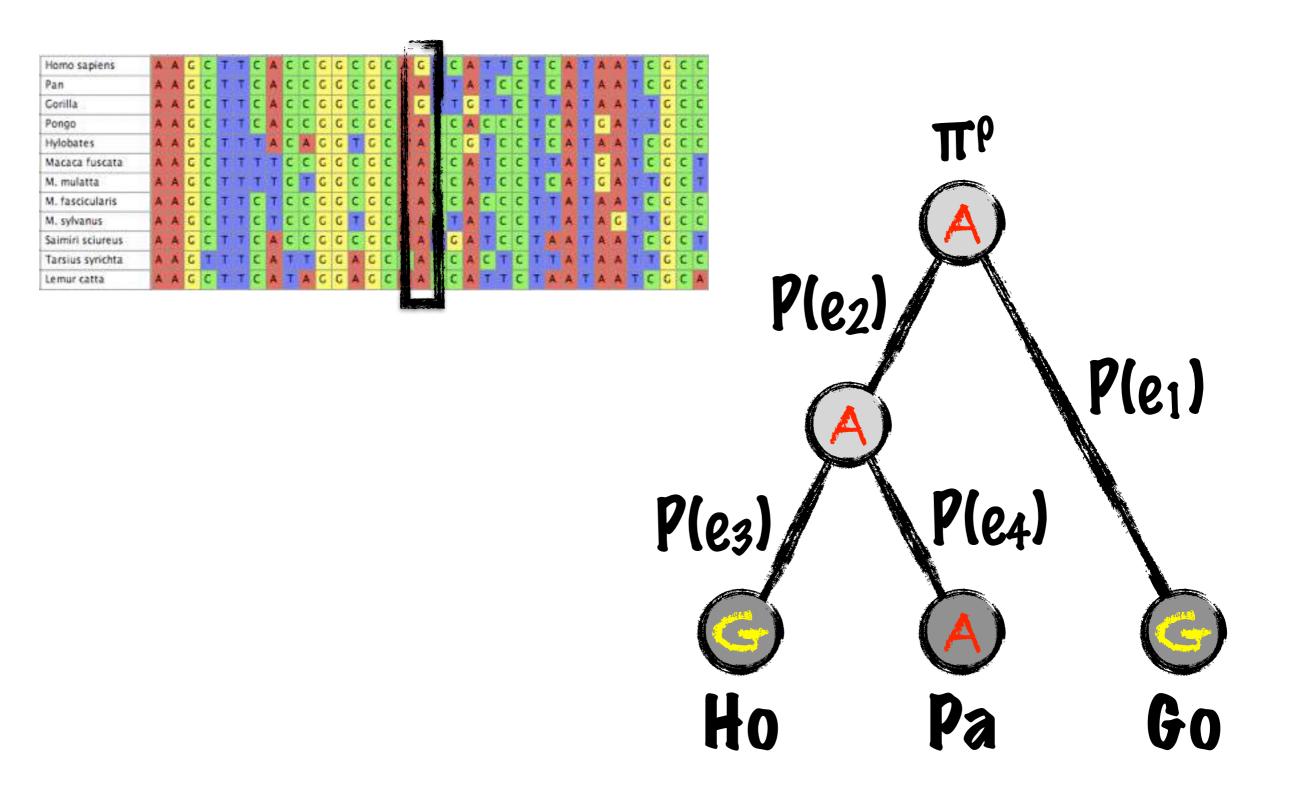
A function $\delta : X \times X \to \mathbb{R}$ is a *tree metric* if there is an X-tree $\mathcal{T} = (T; \phi)$ and a weighting $w : E(T) \to \mathbb{R}_+$ such that for all x, y

$$\delta(x,y) = d_{(\mathcal{T};w)}(x,y) := \sum_{e \in P(\mathcal{T};x,y)} w(e),$$



Homo sapiens	A	A	G	C	T	T	C	A	c	C	C	G	C	C	C	A	G	T	C	A	T	T	с	T	C	A	T	A	A	T	c	G	c	Ċ
Pan	A	A	G	c	т	T	c	A	с	с	¢	G	С	C	С	A	A	т	Т	A	T	C	с	τ	C	A	т	A	A	т	С	G	c	С
Gorilla	A	A	G	C	Т	T	C	A	c	с	G	G	¢	C	c	A	C	T	Т	C	T	Т	¢	T	Т	A	т	A	A	т	T	C	c	C
Pongo	A	A	G	C	T	T	C	A	c	C	C	G	C	C	C	A	A	C	C	A	C	C	с	T	C	A	T	C	A	T	T	C	¢	c
Hylobates	A	A	G	C	T	T	T	A	c	A	C	G	T	G	C	A	A	C	C	G	T	C	c	T	C	A	Ť	A	A	T	C	G	C	C
Macaca fuscata	A	A	C	C	T	T	T	T	c	C	G	G	С	C	c	A	A	c	C	A	T	c	с	T	T		T	C	A	Т	C	G	с	T
M. mulatta	A	A	G	C	т	Т	т	T	c	T	G	G	c	G	C	A	A	с	C	A	T	C	с	T	C	A	T	G	A	T	T	C	с	т
M. fascicularis	A	A.	G	c	Т	т	С	т	C	С	Ç	G	С	G	C	A	A	C	C	A	c	C	с	т	T		T	A	A	т	C	G	с	С
M. sylvanus	A	A	G	C	T	T	c	T	C	c	G	G	T	G	C	A	A	C	T	A	T	C	C	T	T	A	т	A	G	T	T	G	c	C
Saimiri sciureus	A	A	G	C	T	7	C	A	c	c	G	C	c	C	C	A	A	T	G	4	т	C	с	T	A	A	T	A	A	T	C	C	C	T
Tarsius syrichta	A	A	G	T	T	Т	c	A	T	T	C	G	A	G	C	C	A	C	C	A	C	T	C	Ŧ	Т	A	Ŧ	A	A	1	T	G	C	C
Lemur catta	A	A	G	C	T	T	C	A	T	A	C	C	A	C	C	A	A	C	c	A	T	Т	c	T	A	A	Ŧ	A	A	T	¢	G	С	A





Definition

Let $\mathcal{T} = (T; \phi)$ be a phylogenetic X-tree with root ρ . Let π^{ρ} be a distribution over $C = \{A, C, G, T\}$ and, for each $e \in E(T)$ (away from the root), let $P(e) = [P(e)_{\alpha,\beta}]$ be a Markov transition matrix over C. Let $\theta = (\pi^{\rho}; P(e), e \in E(T))$. The distribution of a state vector $\chi : X \to C$ at the leaves is defined as

$$p_{\chi}^{\mathcal{T}}(\theta) := \sum_{\substack{\bar{\chi}: V(T) \to C \\ \bar{\chi} \circ \phi = \chi}} \pi_{\bar{\chi}(\rho)}^{\rho} \prod_{e=(u,v) \in E(T)} P(e)_{\bar{\chi}(u), \bar{\chi}(v)}.$$

A natural choice is $P(e) = e^{\mu_e t_e Q}$ for a fixed rate matrix Q.

																1																	
Homo sapiens	A	A	G	C	T	T	C	A	c	c	c	G	С	G	C .	G	11111	C	A	T	T	с	T	C	A	T	A	A	T	c	G	c	C
Pan	A	A	G	c	т	T	c	A	c	с	¢	G	С	C	С	A	-	Т	A	T	C	с	τ	c	A	т	A	A	т	С	G	c	C
Gorilla	A	A	G	C	T	T	C	A	с	с	G	G	¢	C	C	C		T	G	T	т	¢	T	т	A	т	A	A	т	T	C	c	C
Pongo	A	A	G	C	T	T	C	A	c	C	C	G	C	C	C	A	I	C	A	C	C	С	T	C	A	7	C		T	T	C	C	C
Hylobates	A	A	G	C	T	T	T	A	c	A	C	G	T	G	C	1 A	I	C	C	T	С	C	T	c	A	T	A	A	T	C	G	C	C
Macaca fuscata	A	A	C	C	T	T	Ŧ	T	c	С	G	G	С	C	C	A		C	A	T	С	с	T	T		T	C	A	T	C	G	С	1
M. mulatta	A	A	G	c	т	Т	т	T	c	T	G	G	c	G	C	A	I	c	A	T	С	с	T	C	A	T	G	A	T	T	C	c	1
M. fascicularis	A	A	G	c	Т	т	с	т	c	с	Ģ	C	С	G	С	A		С	A	c	С	с	т	т		T	A	A	т	c	G	с	ç
M. sylvanus	A	A	G	C	T	T	c	T	c	c	G	G	Т	G	C	A		T	A	T	С	C	T	τ	A	т	A	G	T	T	G	C	C
Saimiri sciureus	A	A	C	C	Ť	7	C	A	c	c	G	G	С	C	C	A		G	A	т	C.	с	T	A	A	7	A	A	T	C	C	C	F
Tarsius syrichta	A	A	G	T	T	Т	c	A	T	T	C	G	A	C	C	A		C	A	C	T	С	T	Т	A	T	A	A	1	T	G	c	C
Lemur catta	A	A	G	C	T	T	C	A	Ť	A	C	G	A	C	C	A	隆	c	A	T	т	C	T	A	A	Ŧ	Å	A	T	C	G	C	A

Definition

Let $\mathcal{T} = (T; \phi)$ be a phylogenetic X-tree with root ρ . Let π^{ρ} be a distribution over $C = \{A, C, G, T\}$ and, for each $e \in E(T)$ (away from the root), let $P(e) = [P(e)_{\alpha,\beta}]$ be a Markov transition matrix over C. Let $\theta = (\pi^{\rho}; P(e), e \in E(T))$. The distribution of a state vector $\chi : X \to C$ at the leaves is defined as

$$p_{\chi}^{\mathcal{T}}(\theta) := \sum_{\substack{\bar{\chi}: V(T) \to C \\ \bar{\chi} \circ \phi = \chi}} \pi_{\bar{\chi}(\rho)}^{\rho} \prod_{e=(u,v) \in E(T)} P(e)_{\bar{\chi}(u), \bar{\chi}(v)}.$$

A natural choice is $P(e) = e^{\mu_e t_e Q}$ for a fixed rate matrix Q.

						1		1													1-		1		(. 2		
omo sapiens	A	G		TT	C	4	C	C	G	С	G	C .	L C		C	A	T	T	C	TC		T		T	4	G	Ċ	
Ln:	A /	G C		τт	С		C	С	G	С	C	С	A		т	A	T	C	с	тс		т		т		G	С	
orilla	A 1	G 0	1	ТТ	C		C	G	G	c	C	с	C		Т	C	T	T	c	TT		т		A T		C	C	k columns
ongo	A	G C		ТТ	C		C	C	G	C	C	C	A		C	A	C	C	с	TC		7	-	T		C	C	
lobates	A /	G		τт	T		C .	C	G	T	G	C	A		C	G	T	C	c	TC		т	-	T		G	C	
acaca fuscata	A	G C	1	1 1	T	K	C	G	G	С	C	c	A		C	A	T	С	с	TT		T		T	ľ	G	T	5
. mulatta	A .	GC		τт	т		C	G	G	c	G	с	A	I	C	A	T	C	с	TC		Т		T		G	Т	-
fascicularis	A	G C		тт	C		C	Ģ	ç	С	G	С	A		С	A	c	C	с	TT		т	7	T		G	C	
. sylvanus	A .	GC		TT	C	1	C	G	G	T	G	C	A	a a a a a a a a a a a a a a a a a a a	Т	A	T	C	C	TT		T	C	т		G	C	lettel agreenter
imiri sciureus	A	G (TΤ	C		C	G	C	c	C	C	A		G	4	т	C.	с	Т		T	1	T		C	T	k i.i.d. samples
arsius syrichta	A .	G		τī	C		T	C	G	A	G	C	A		C	A	c	T	С	T T		Ŧ		T		C	C	
mur catta	A /	GÓ	T	тт	C		т	G	C	A	C	C	A		c	A	T	T	с	T A		Ŧ		T		G	A	
						1	5-57						La													-	U	-

Back to tree metrics

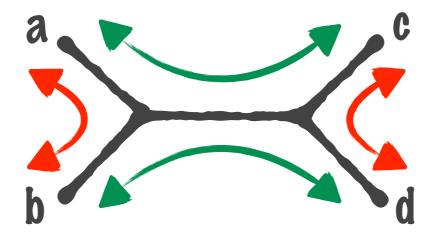
Definition

Let F^{xy} be the matrix whose entries correspond to the joint distribution at the leaves $\phi(x)$ and $\phi(y)$. The *log-det distance* is

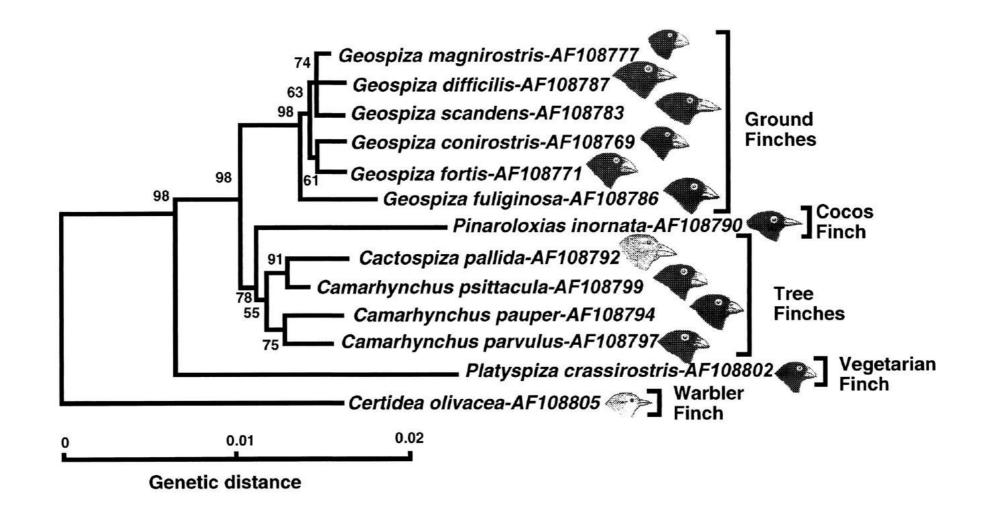
 $\delta(\mathbf{x},\mathbf{y}) = -\log(\det(F^{\mathbf{x}\mathbf{y}})).$

Theorem (Steel, AML (1994))

Assume $\pi^{\rho} > 0$ and $|\det P(e)| \neq 0, 1$ for all e. Then the log-det distance is a tree metric with corresponding X-tree T.



Back to Darwin's finches



NJ tree of combined cytb and cr sequences. (From: Akie Sato et al. PNAS 1999;96:5101-5106)

Identifiability

Recall:

$$\boldsymbol{p}_{\chi}^{\mathcal{T}}(\theta) := \sum_{\substack{\bar{\chi}: \, V(T) \to C \\ \bar{\chi} \circ \phi = \chi}} \pi_{\bar{\chi}(\rho)}^{\rho} \prod_{\boldsymbol{e}=(u,v) \in E(T)} P(\boldsymbol{e})_{\bar{\chi}(u),\bar{\chi}(v)}.$$

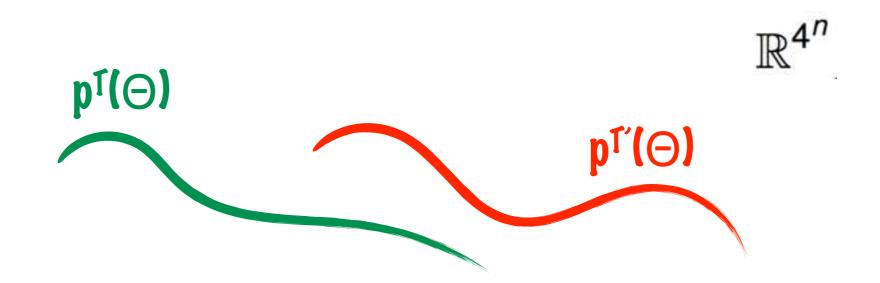
Let *n* be the number of leaves.

Definition

We say that the model is *identifiable* if, whenever $(\mathcal{T}; \theta) \neq (\mathcal{T}'; \theta')$, we have $p^{\mathcal{T}}(\theta) \neq p^{\mathcal{T}'}(\theta')$ as vectors in \mathbb{R}^{4^n} .

Theorem (Steel, AML (1994); Chang, MB (1996)) If $\pi^{\rho} > 0$ and $|\det P(e)| \neq 0, 1$ for all e, the model is identifiable (up to degeneracies).

Identifiability



Definition

We say that the model is *identifiable* if, whenever $(\mathcal{T}; \theta) \neq (\mathcal{T}'; \theta')$, we have $p^{\mathcal{T}}(\theta) \neq p^{\mathcal{T}'}(\theta')$ as vectors in \mathbb{R}^{4^n} .

Theorem (Steel, AML (1994); Chang, MB (1996)) If $\pi^{\rho} > 0$ and $|\det P(e)| \neq 0, 1$ for all e, the model is identifiable (up to degeneracies).

Likelihood-based inference

Definition

Given sequences of length k, i.e., $(\chi^i)_{i=1}^k$, the maximum likelihood estimator (MLE) is

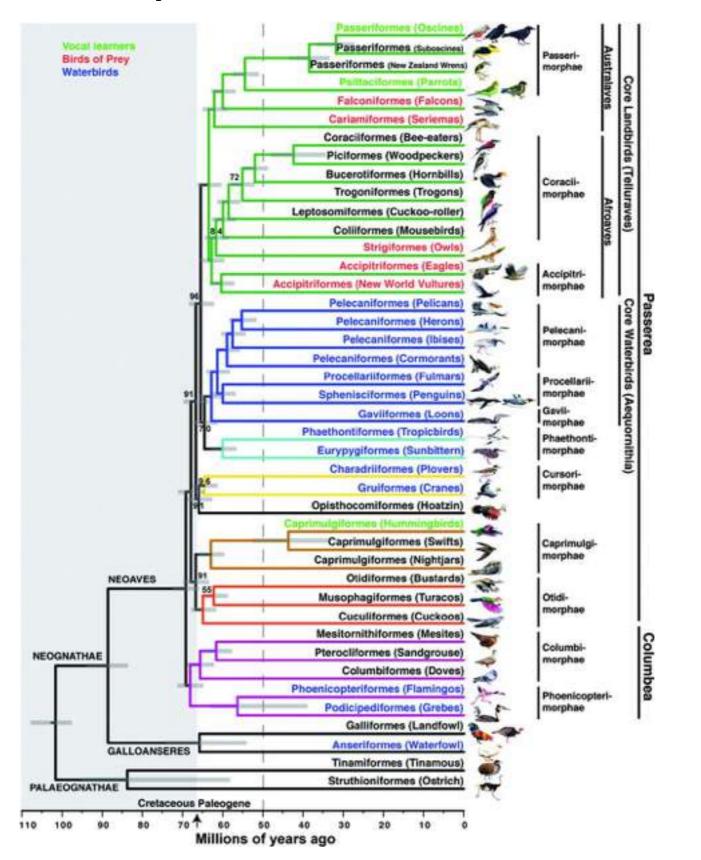
$$\hat{\mathcal{T}} \in \arg \max \left\{ \prod_{i=1}^{k} p_{\chi^{i}}^{\mathcal{T}}(\theta) : \mathcal{T}, \theta \in \Theta \right\}.$$

Theorem (Chang, MB (1996)) The MLE is consistent, i.e., $\hat{\mathcal{T}} \rightarrow \mathcal{T}$ as $k \rightarrow +\infty$.

Theorem (Chor-Tuller, JACM (2006); Roch, TCBB (2006)) Computing the MLE is NP-hard.

How much data do I need?

Adaptive radiation

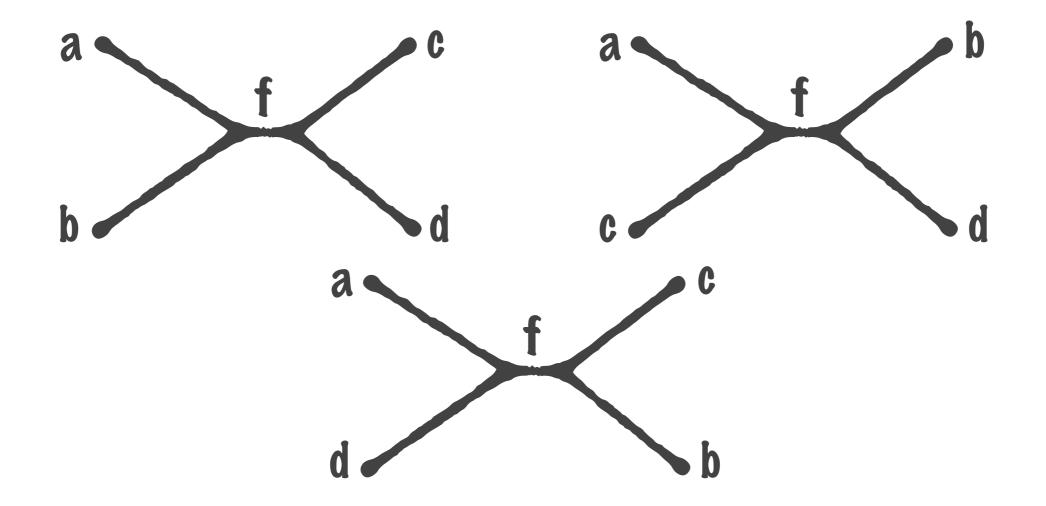


Genome-scale phylogeny of birds. (From: Erich D. Jarvis et al. Science 2014;346:1320-1331)

Short branches

Theorem (Steel & Székely, SIDMA (2002))

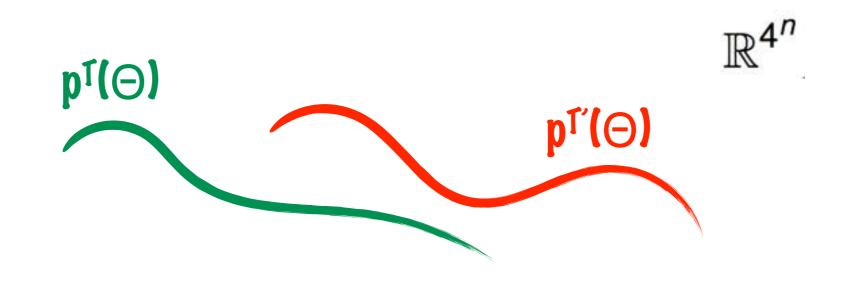
Under the symmetric 2-state Markov model on four taxa with internal branch of weight f, reconstructing the phylogeny with high probability requires $k = \Omega(f^{-2})$ as $f \to 0$.



Short branches

Theorem (Steel & Székely, SIDMA (2002))

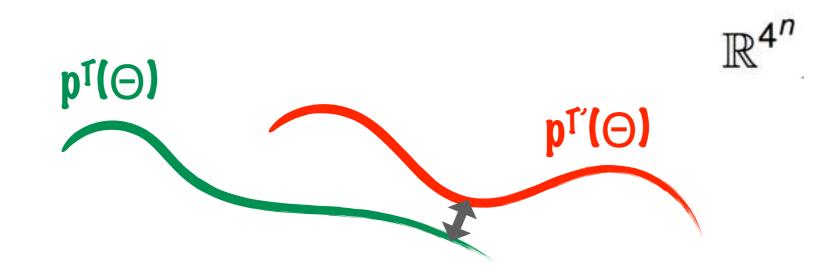
Under the symmetric 2-state Markov model on four taxa with internal branch of weight f, reconstructing the phylogeny with high probability requires $k = \Omega(f^{-2})$ as $f \to 0$.



Short branches

Theorem (Steel & Székely, SIDMA (2002))

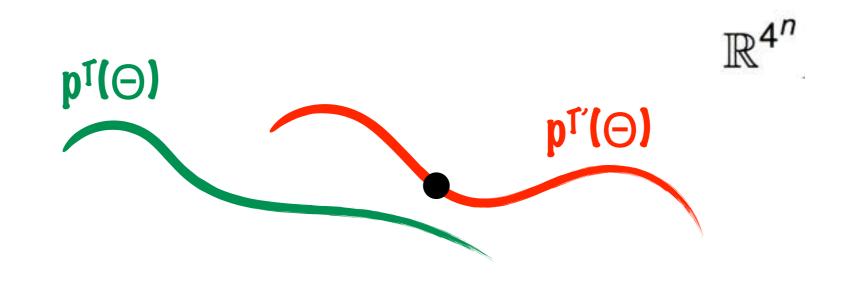
Under the symmetric 2-state Markov model on four taxa with internal branch of weight f, reconstructing the phylogeny with high probability requires $k = \Omega(f^{-2})$ as $f \to 0$.



Short branches

Theorem (Steel & Székely, SIDMA (2002))

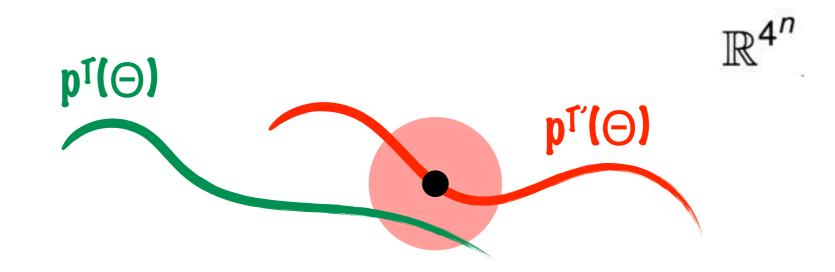
Under the symmetric 2-state Markov model on four taxa with internal branch of weight f, reconstructing the phylogeny with high probability requires $k = \Omega(f^{-2})$ as $f \to 0$.



Short branches

Theorem (Steel & Székely, SIDMA (2002))

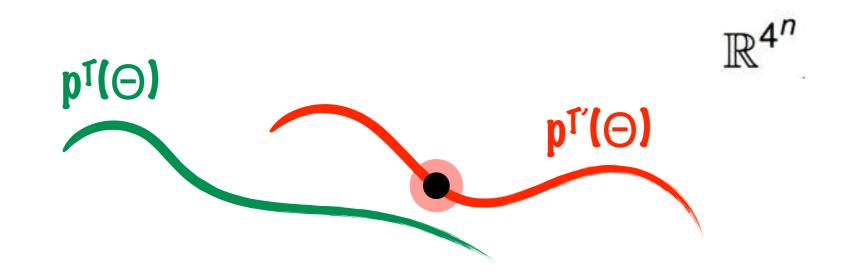
Under the symmetric 2-state Markov model on four taxa with internal branch of weight f, reconstructing the phylogeny with high probability requires $k = \Omega(f^{-2})$ as $f \to 0$.



Short branches

Theorem (Steel & Székely, SIDMA (2002))

Under the symmetric 2-state Markov model on four taxa with internal branch of weight f, reconstructing the phylogeny with high probability requires $k = \Omega(f^{-2})$ as $f \to 0$.



Depth

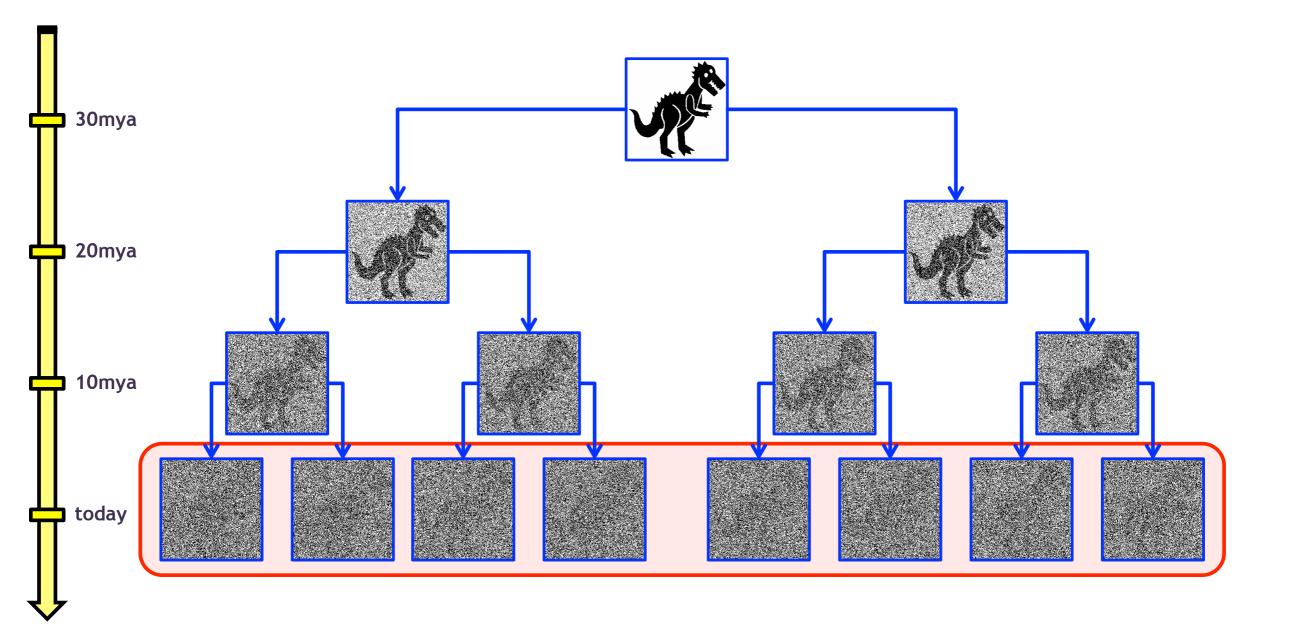
A special case of a more general phenomenon:

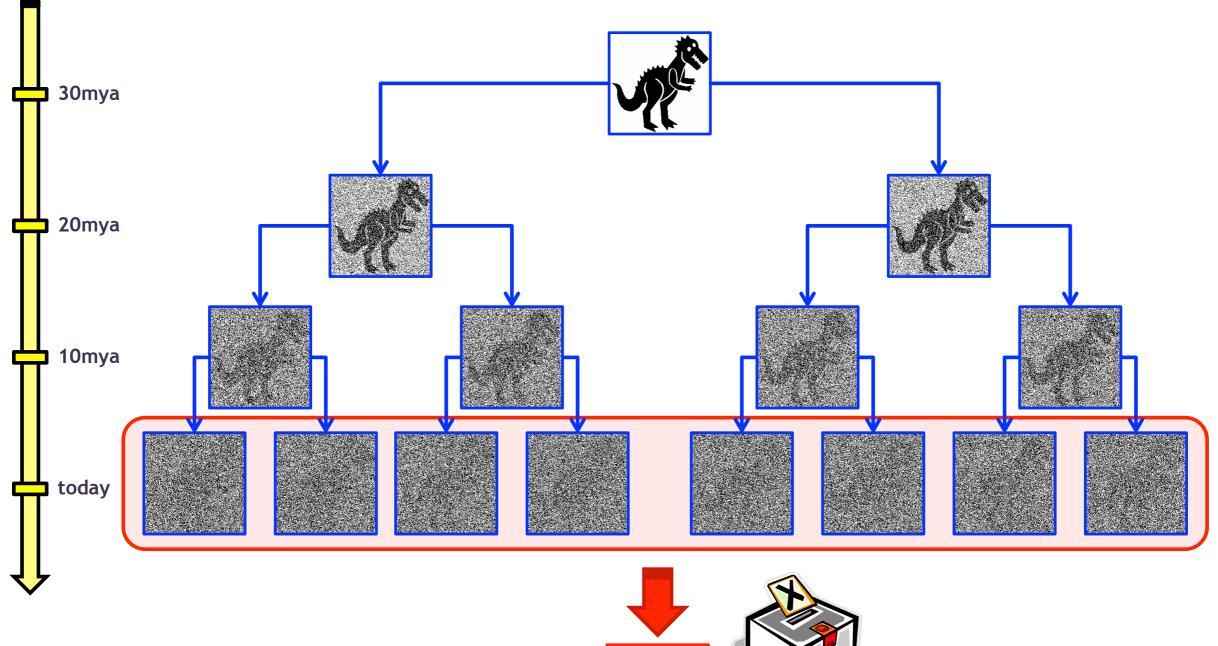
Theorem (Mossel, TAMS (2004))

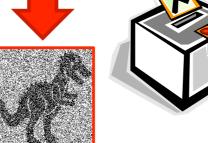
Under the symmetric 2-state Markov model on n taxa with branches of weight f, reconstructing the phylogeny with high probability requires in general

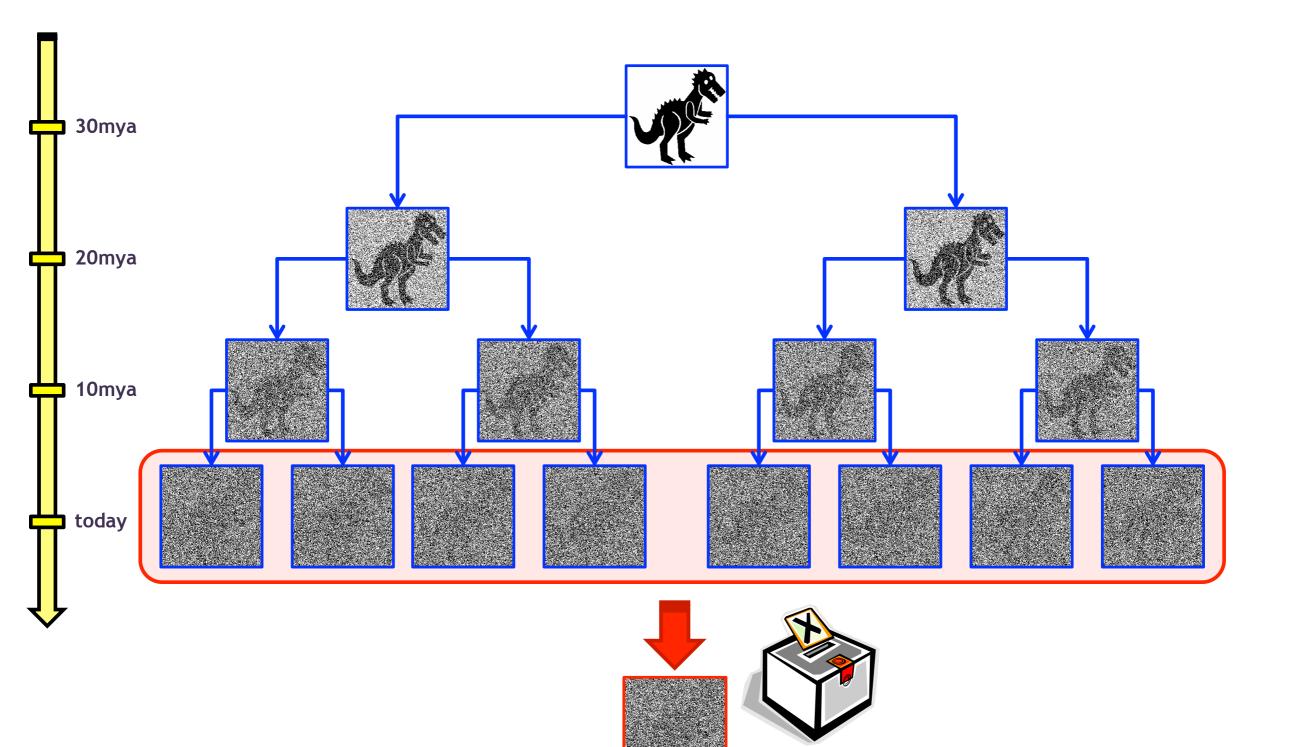
$$k = \begin{cases} \Theta(f^{-2} \log n), & \text{if } f < f^*, \\ n^{\Theta(f)}, & \text{if } f \ge f^*. \end{cases}$$

Matched for MLE (Roch & Sly (2015)) and some tree metric methods (Roch, Science (2010)). In contrast, NJ requires an exponential in *n* amount of data.









More data, more problems

Next-generation sequencing

Concatenating genes

Concatenating genes

supergene of Length mk

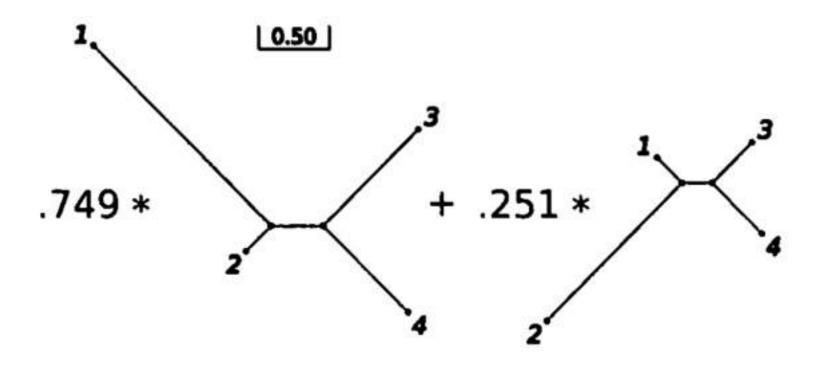
Concatenating genes



supergene of length mk

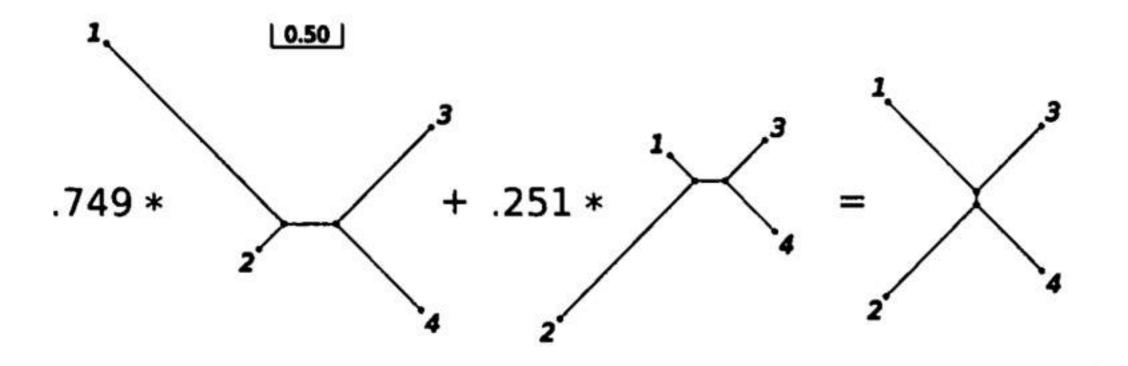
Using algebraic geometry (Sturmfels & Sullivant, JCB (2005)):

Theorem (Matsen & Steel, SB (2007))



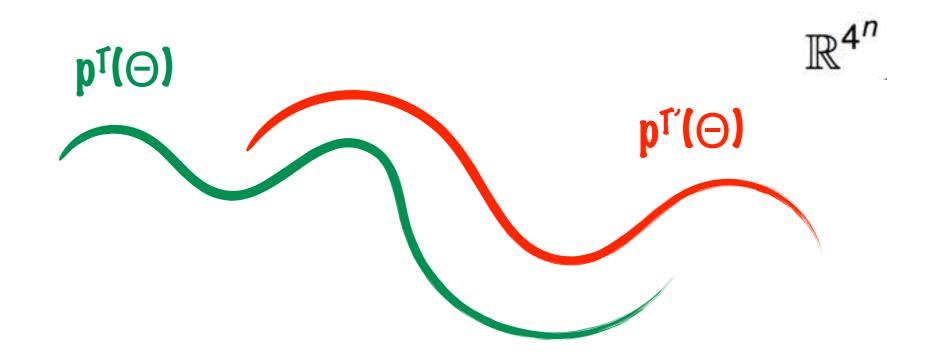
Using algebraic geometry (Sturmfels & Sullivant, JCB (2005)):

Theorem (Matsen & Steel, SB (2007))



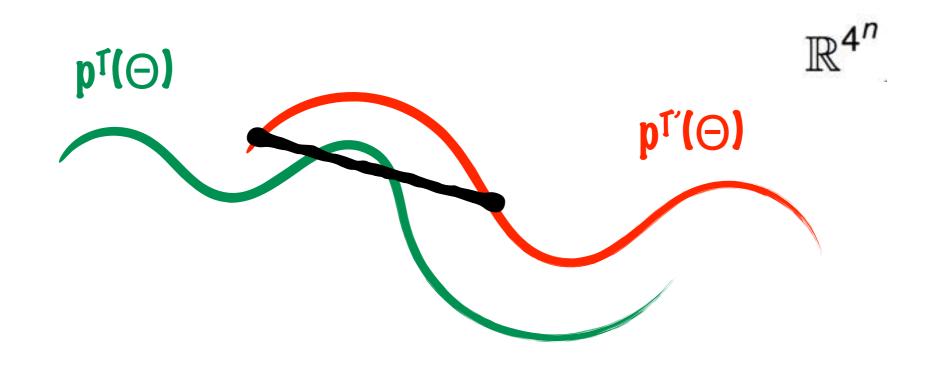
Using algebraic geometry (Sturmfels & Sullivant, JCB (2005)):

Theorem (Matsen & Steel, SB (2007))

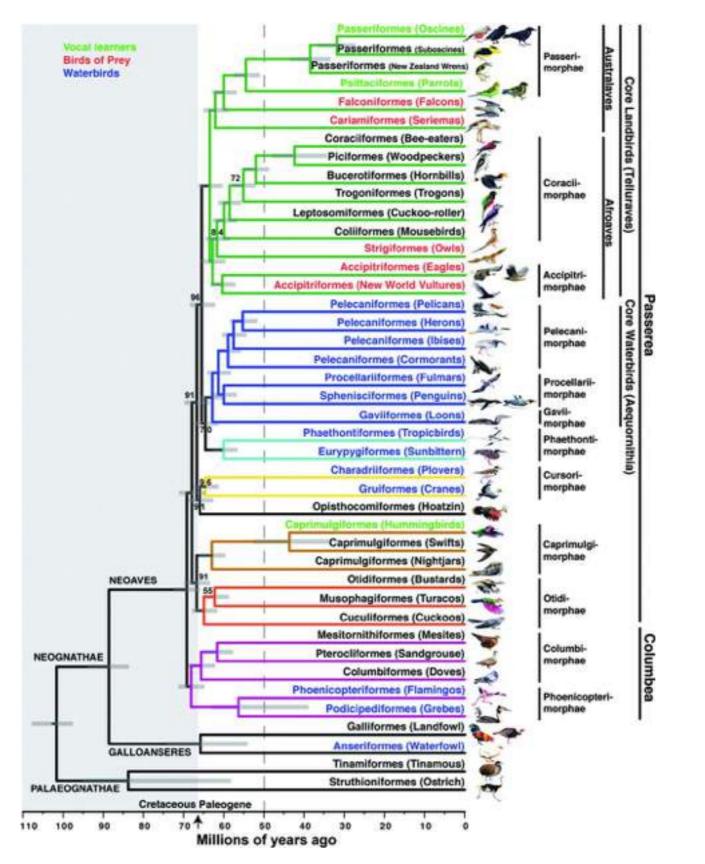


Using algebraic geometry (Sturmfels & Sullivant, JCB (2005)):

Theorem (Matsen & Steel, SB (2007))

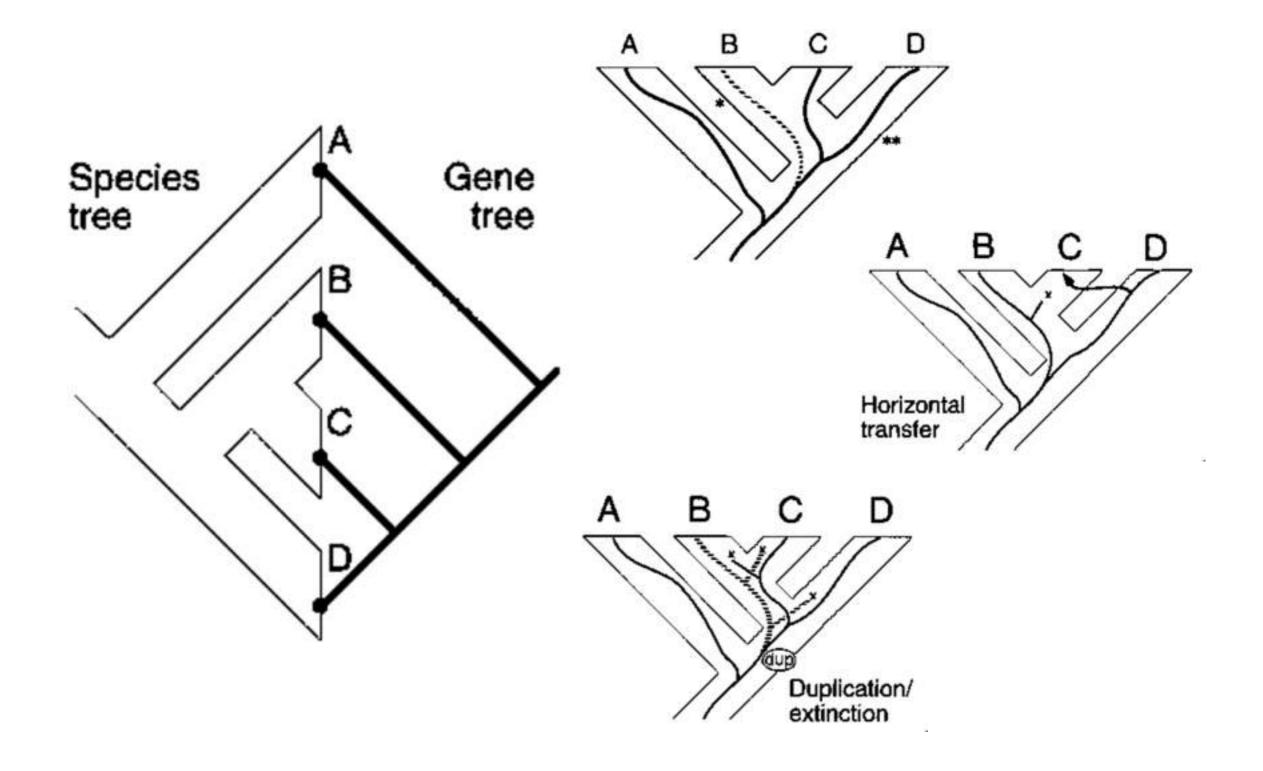


Back to the birds

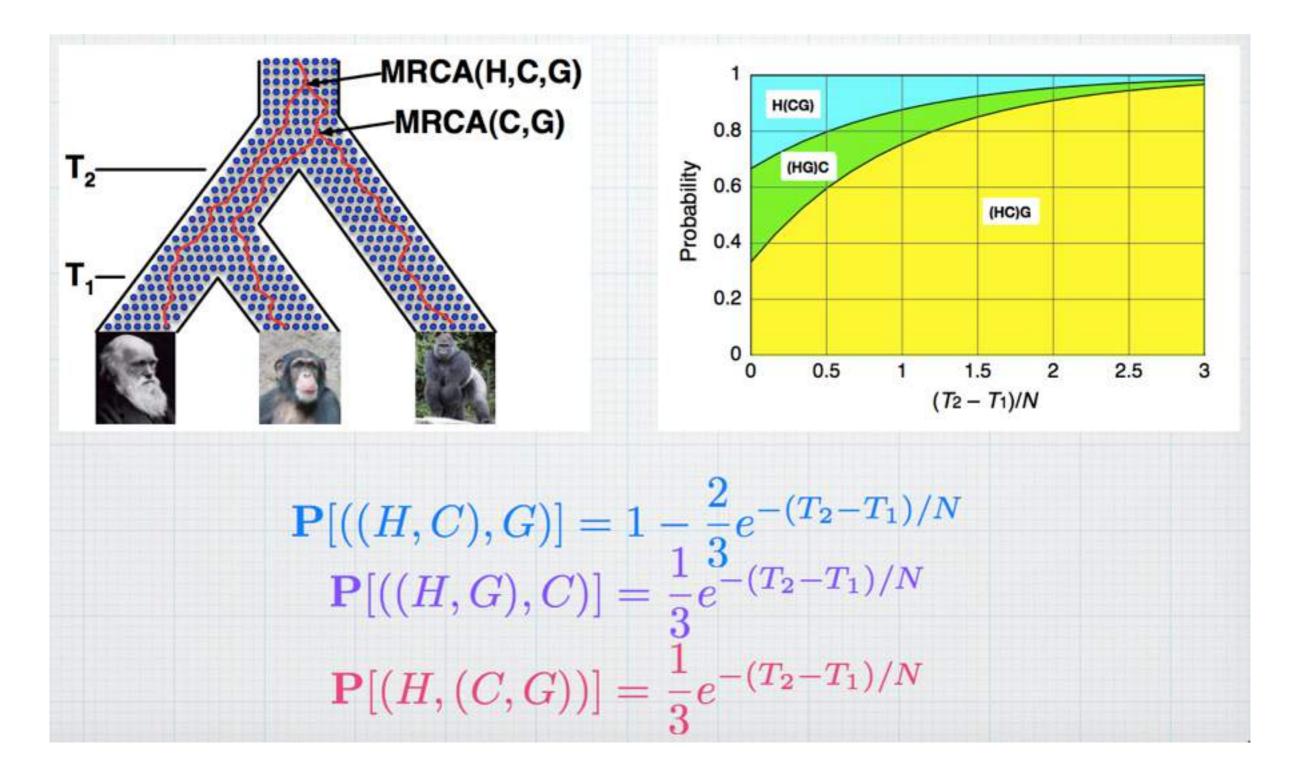


Genome-scale phylogeny of birds. (From: Erich D. Jarvis et al. Science 2014;346:1320-1331)

Species tree v. "gene" trees



A source of discordance: Deep coalescence



Anomaly zone

C

B

D

E

Sen.

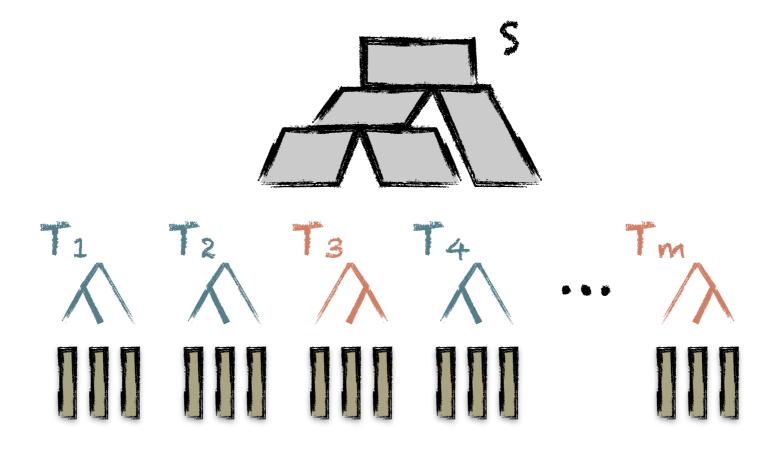
Definition (Degnan & Rosenberg (2006))

The anomaly zone is the region of the parameter space in the multispecies coalescent where the most likely gene tree topology does not coincide with the species tree.

A

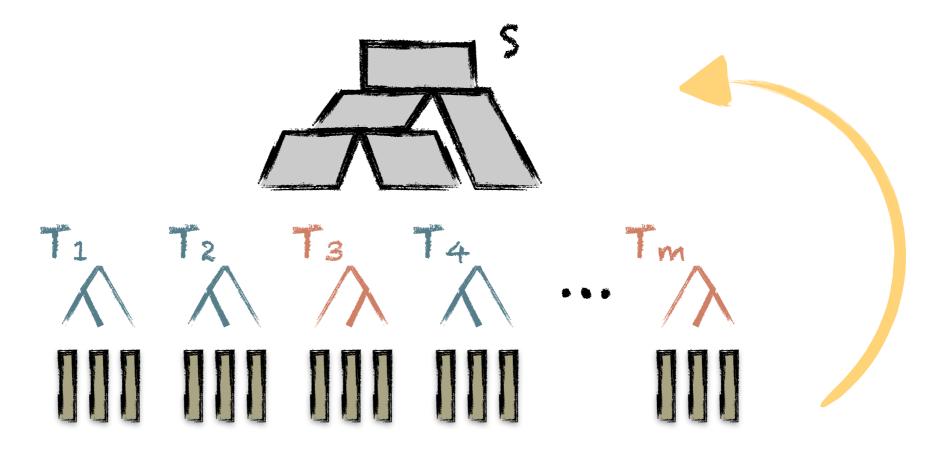
An extra layer

- Species tree: S
- Two-stage hierarchical model: for each gene g (independently and identically),
 - Generate a gene tree T_g for g using the multispecies coalescent on S
 - Generate sequence data of length k on Tg using a Markov model
- Goal: recover S from sequences

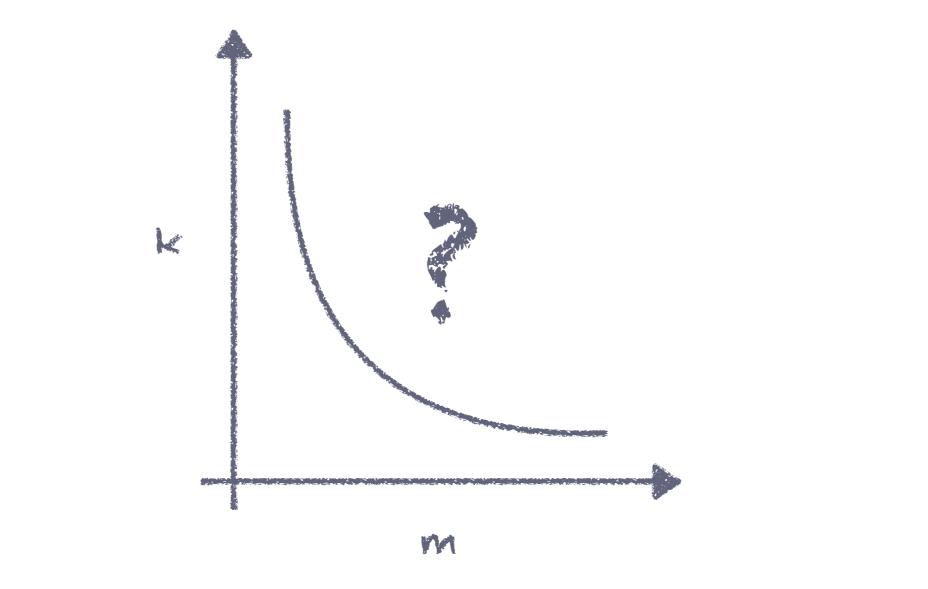


An extra layer

- Species tree: S
- Two-stage hierarchical model: for each gene g (independently and identically),
 - Generate a gene tree T_g for g using the multispecies coalescent on S
 - Generate sequence data of length k on T_g using a Markov model
- Goal: recover S from sequences



Question: How much data is needed?

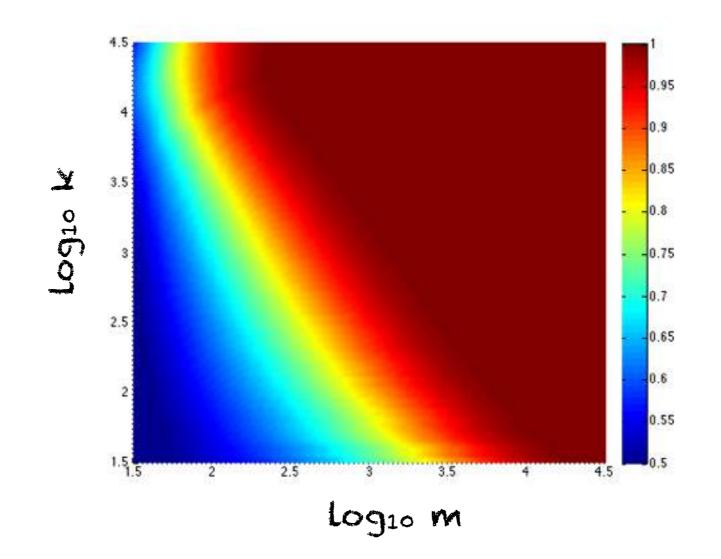




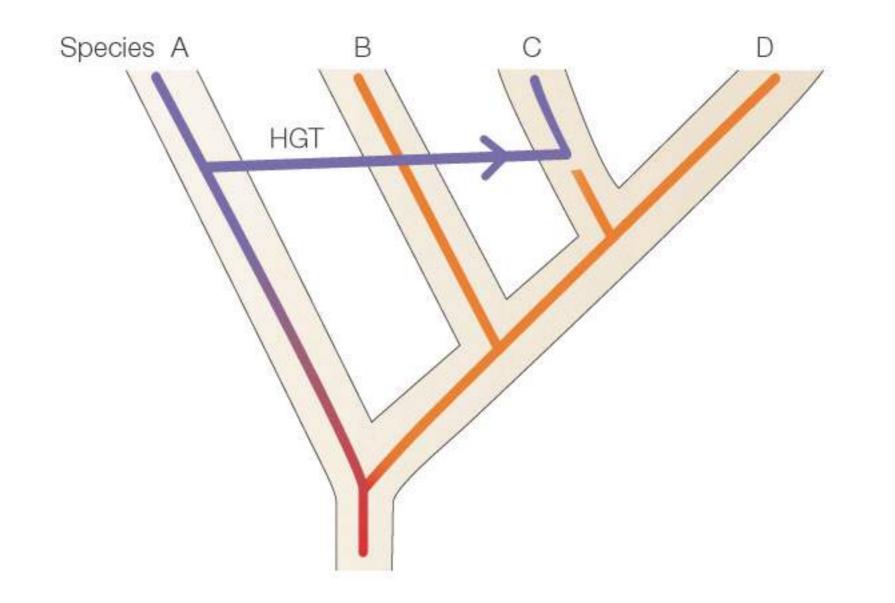
An unexpected trade-off

Theorem (Mossel & R. (2015))

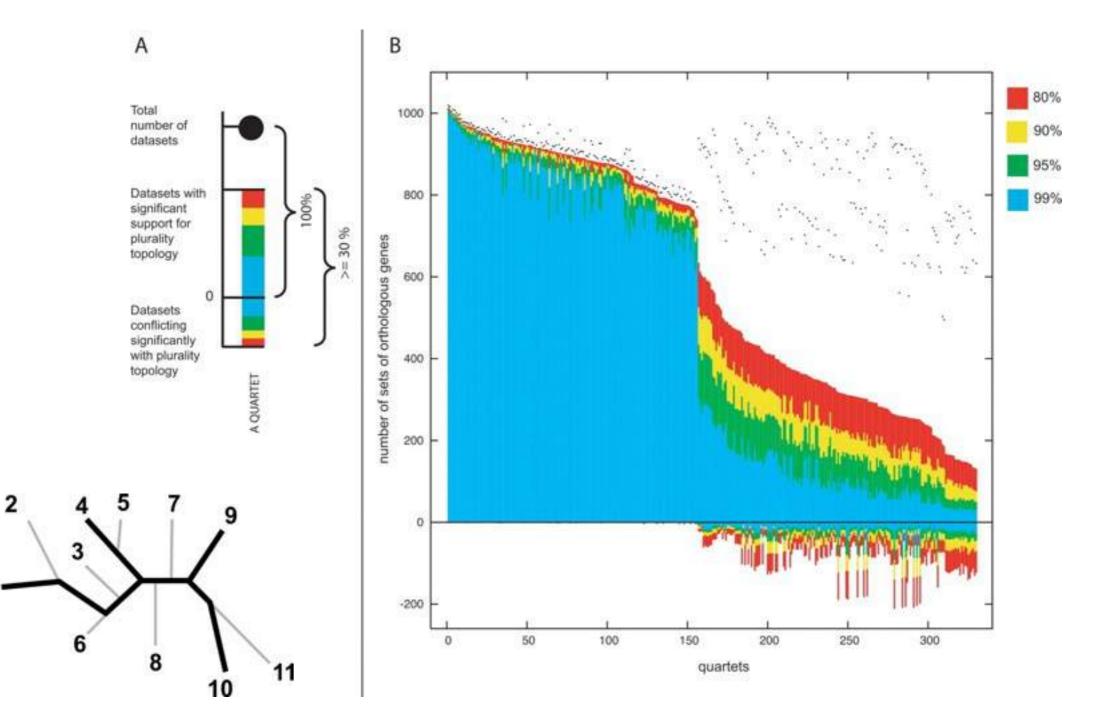
Under the 3-taxon multispecies coalescent with 4-state symmetric Markov model, reconstructing the species tree requires $m = \Theta\left(f^{-2}/\sqrt{k}\right)$ when $k = O(f^{-2})$ as $f \to 0$.



A source of discordance: Horizontal gene transfer (HGT)



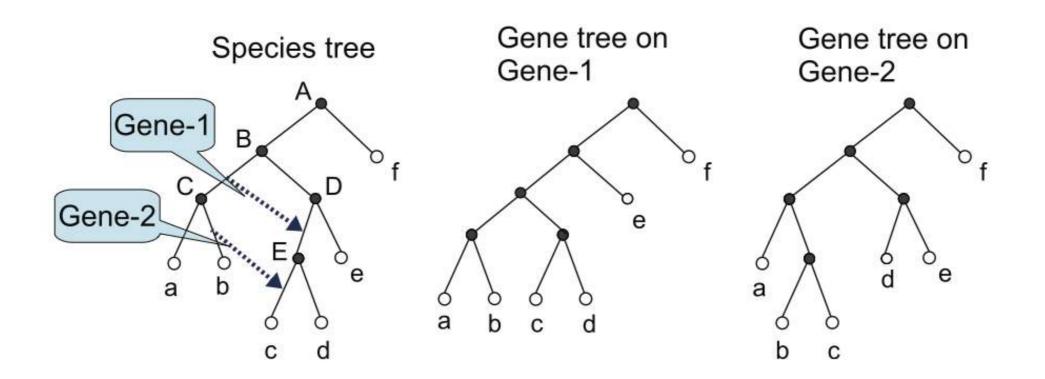
Cyanobacteria



1

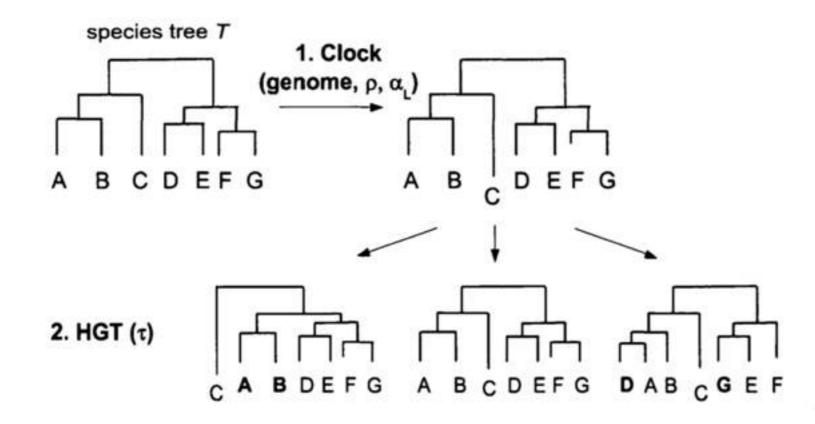
Quartet decomposition analysis of cyanobacteria. (From: Olga Zhaxybayeva et al. Genome Res. 2006;16:1099-1108)

Subtree-prune-regraft



HGT as combinatorial noise

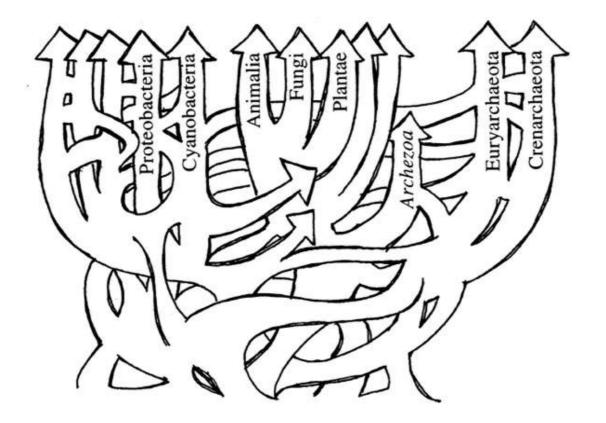
- Species tree: T
- Galtier's model: for each gene g (independently and identically),
 - HGTs occur at random positions with average number p of HGTs per gene
 - Receivers are chosen at random among contemporaneous positions
- Goal: recover T from gene trees



Question: How much HGT is too much?

Theorem (Daskalakis & R. SODA (2016))

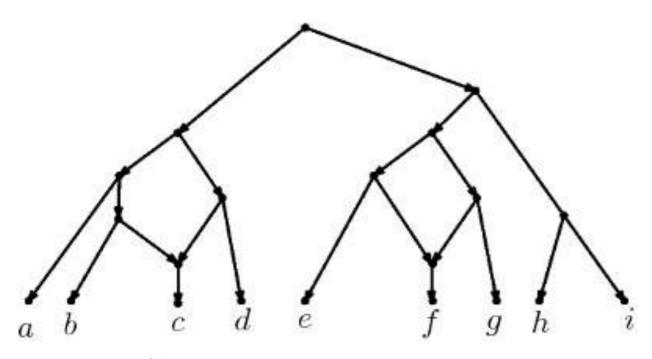
Under Galtier's model with bounded branch lengths and a molecular clock, reconstructing the species tree from $\Omega(\log n)$ genes is possible as long as the HGT rate is constant.



Hybridization

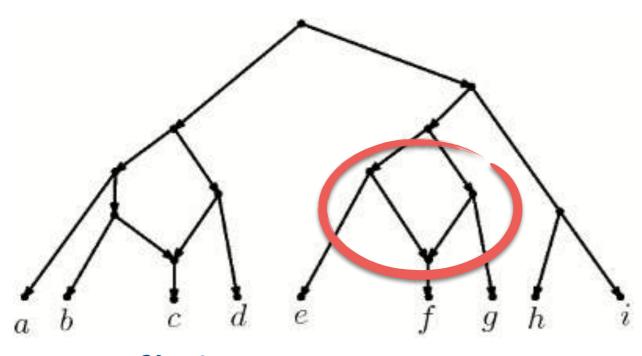
Hybridization

Beyond trees



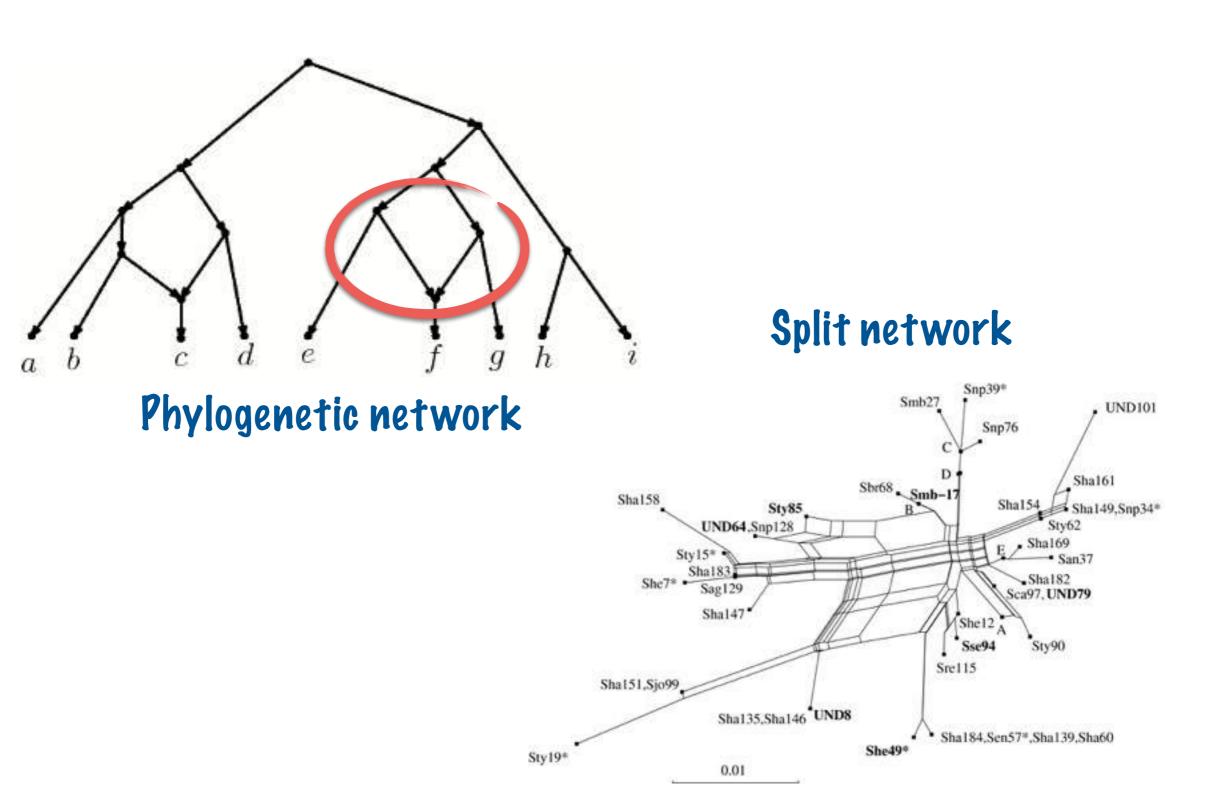
Phylogenetic network

Beyond trees



Phylogenetic network

Beyond trees



Work supported by:

For more: <u>http://www.math.wisc.edu/~roch/evol-gen/</u>

Thanks

Work supported by:

For more: <u>http://www.math.wisc.edu/~roch/evol-gen/</u>