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Non-Hermitian random matrices

CN is an N × N real random matrix with i.i.d entries such that

E[Cij ] = 0 E[C2
ij ] = σ2/N

We study in the large N limit of the empirical spectral measure:

µN (z) =
1
N

N∑
i=1

δ
λi

(z)

where {λi} are the eigenvalues of CN .
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Circular law

Girko (84), Bai (97), . . . , Tao-Vu (12).
As N →∞, µN (z) converges a.s. in distribution to µc , the uniform
law on the disk of radius σ,

dµc(z)

dz
=

1
σ2π

1|z|≤σ,

David Renfrew Non-Hermitian Random Matrices May 9, 2016 3 / 33



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure : Eigenvalues of a 1000× 1000 iid random matrix
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Hermitian random matrices

WN is an N × N real random matrix with i.i.d entries on and above
the diagonal such that

Wij = Wji

E[Wij ] = 0 E[W 2
ij ] = σ2/N

When Wij are Gaussian, this is known as the Gaussian
Orthogonal Ensemble (GOE).
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Semi-circular law

Wigner (55)
As N →∞, µN (z) converges a.s. in distribution to µs, the
semicircular law,

dµs(z)

dz
=

1
2πσ2

√
4σ2 − x2,
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Figure : Eigenvalues of a 1000× 1000 Wigner random matrix
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Tools

The key tool in studying the spectrum of Hermitian Matrices is the
Stieltjes transform of µ

m(z) =

∫
dµ(t)
t − z

Inverse transform

µ(x) =
1
π

lim
y↘0

Imm(x + iy)
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Tools

The Stieltjes transform of an ESM is related to the is the resolvent

(X − z)−1

by taking the trace ∫
dµ(x)

x − z
=

1
N

Tr(X − z)−1

In the non-Hermitian case the resolvent is not uniformly bounded
inside the spectrum.
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Semicircle Law

The semicircle law is a central object in Free Probability.
The Stieltjes transform of the semicircle law satisfies the
relationship

mσ(z) = −(z + σ2mσ(z))−1
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Structured Random Matrices

In a generalized model we divide the random matrix into D2

blocks.
Let g be a D × D matrix with real, positive entries.
Let α be a D dimensional vector such that

αi > 0,
D∑

i=1

αi = 1

The cd th block has size bαcNc × bαdNc.
Each entry of the cd th block has variance g2

cd/N > 0.
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Structured random matrices

Let CN be an N × N matrix with iid random entries with zero mean,
variance 1/N, and finite fourth moment.

let

ci =

{
c

∣∣∣∣∣ i
N
∈

(
c−1∑
d=1

αd ,

c∑
d=1

αd

]}
Let XN be an N × N random matrix whose i , j entry is

Xij := gci cj Cij .
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Main Theorem

The support of the limiting is determined by the matrix D × D, G:

Gcd = αcg2
cd .

This matrix has positive entries.
It’s largest eigenvalue is real and equal to the spectral radius of G.
The associated eigenvector has strictly positive entries.
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Main Theorem

Theorem (Aljadeff, R., Stern)
The empirical spectral measure converges almost surely to a
deterministic measure µ.

The density of µ is radially symmetric and its support is a disk with
radius

√
ρ(G).

The density of µ is determined by a fixed point equation.
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Fixed point equation

ac =
[Ga]c + η

|z|2 − ([Ĝâ]c + η)([Ga]c + η)

âc =
([Ĝâ]c + η) + η

|z|2 − ([Ĝâ]c + η)([Ga]c + η)

µ(D(0, |z|)) = 1−
∑

c

âc(z)[Ga(z)]c

for 0 ≤ |z| ≤
√
ρ(G)
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Example

N = 1000, D = 2, α = (0.3,0.7) and g =

(
1 2
3 4

)

0 1 2 3 4
0

0.05

0.1

µ(
|λ

|)

|λ|

matrices with real entries
matrices with complex entries
formula
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Example

N = 1000, D = 3, α = (0.25,0.30,0.45) and g =

1 2 3
4 5 6
7 8 9



0 2 4 6 8
0

0.025

0.05

µ(
|λ

|)

|λ|

matrices with real entries
matrices with complex entries
formula

David Renfrew Non-Hermitian Random Matrices May 9, 2016 17 / 33



Motivation

The linearized mean-field dynamics of a neural network model satisfy
the following system of differential equations

x ′i (t) = −xi(t) +
∑

j

Jijxj(t)

If the real part of the eigenvalues of J are less than 1 then xi → 0.

If J has eigenvalues greater than one the system exhibits chaotic
behavior.
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Main Theorem

Our theorem should be compared with the case that each entry of the
random matrix has variance g2

cd with probability αcαd .

Then the limiting density is the uniform law on the disk of radius√∑
c,d

g2
cdαcαd

Which can be bigger than or less than
√
ρ(G) depending on the choice

of parameters.
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Hermitization

The spectral measure can be recovered from the log potential.

2πµN (z) = ∆

∫
log |z − s|dµN (s)

This can be written in terms of the resolvent (when justified)

∂z

∫
1

z − s
dµN (s)
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Hermitization

The log potential allows one to connect eigenvalues of a non-Hermitian
matrix to those of a family of Hermitian matrices.∫

log |z − s|dµN (s) =
1
N

log(|det(XN − z)|) =

∫ ∞
0

log(x)νN,z (x)

Where νN,z(x) is the empirical spectral measure of(
0 XN − z

X ∗N − z 0

)
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Hermitization

The quantity
1

2π
∆

∫ ∞
0

log(x)νN,z (x)

is known as the Brown measure.

The limit of the Brown measures might not be limit of the empirical
spectral measures because the logarithm is unbounded.

This issue is resolved by showing νN,z (x) is uniformly integrable with
respect to the logarithm.
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Hermitization

The measure νN,z (x) can be recovered from the resolvent

R(z) =

(
η XN − z

X ∗N − z η

)−1

Then the limiting brown measure µ can be computed from
∆
∫

log |z − s|dνN,z (s).

Then if log(x) is uniformly integrable, then µN converges weakly to µ.

Except in special cases (the circular law, for example) it is hard to
compute the µ by this strategy.
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Hermitization

Instead treating the resolvent as a 2× 2 block matrix(
η XN − z

X ∗N − z η

)−1

21
=

(XN − z)∗(η2 − (XN − z)(XN − z)∗)−1

Then

lim
η=it→0

(XN − z)∗(η2 − (XN − z)(XN − z)∗)−1 = (XN − z)−1.
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Hermitization

This gives another way to compute the density of the limiting
measure

µN = −1
π
∂z lim

η=it→0
trNR21

Bordenave and Chafaï (12) and in physics literature
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Structured random matrices

We instead consider the 2D × 2D matrix formed by taking the
trace over each block.
The diagonal entries within each block are exchangeable, so
suffices to consider the (1,1) entry of each block.
Schur’s complement(

A B
C D

)−1

11
= (A− BD−1C)−1
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Resolvent

By Schur’s complement

RN;11 =
(

H11 − q ⊗ Id − H(1)
1· R(1)

N H(1)
·1

)−1

Where q =

(
η z
z η

)
,
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

a1 c1
. . . . . .

aD cD
b1 â1

. . . . . .
bD âD



≈



(Ĝâ)1 + η z
. . . . . .

(Ĝâ)D + η z
z (Ga)1 + η

. . . . . .
z (Ga)D + η



−1

David Renfrew Non-Hermitian Random Matrices May 9, 2016 28 / 33



Matrix valued semi-circular elements

The matrix-valued Stieltjes transform of A satisfies

MN(Z ) = −(Σ(MN(Z )) + Z )−1

where Σ is a a linear operator on d × d matrices such that

Σ(B) = (Id ⊗ φ)(A(B ⊗ I)A)

This equation has a unique solution that is a matrix valued
Stietljes transform (J. Helton, R. Far, R. Speicher (’07))
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Analysis of the fixed point equations

ac =
[Ga]c + η

|z|2 − ([Ĝâ]c + η)([Ga]c + η)

bc =
z

|z|2 − ([Ĝâ]c + η)([Ga]c + η)
→ 1− âc[Ga]c

as η → 0.
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Smallest singular value

Theorem (Tao, Vu) Let CN be an iid random matrix and FN a
deterministic matrix, for any B > 0, there exists A > 0

P
(
σN(CN + FN) ≤ N−A

)
= O(N−B).

Where σN(CN + FN) is the least singular value of CN + FN .
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Smallest singular value

The least singular value of the block matrix(
A B
C D

)

is controlled by the least singular values

(D + CA−1B) and (A + BD−1C)

but we assume that A,B,C,D are independent so the least singular
values are only polynomially small by the Tao-Vu theorem.
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Thank you

Thank you
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