The six phases of a two-parameter scaled Brownian penalization

Hugo Panzo

Department of Mathematics University of Connecticut

May 10, 2016

Brownian penalization

Introduced by Roynette-Vallois-Yor in a series of papers beginning around 2005.

Ingredients:

- canonical Brownian motion: $(C[0,\infty), X_t, \mathcal{F}_t, \mathcal{F}_\infty, \mathbb{W})$
- **②** adapted weight process $0 \le \Gamma_t$ with $0 < E[\Gamma_t] =: Z_t^{\Gamma} < \infty$

If there exists a probability measure Q^{Γ} on \mathcal{F}_{∞} such that for all $s \geq 0$ and $\Lambda_s \in \mathcal{F}_s$

$$\lim_{t\to\infty}\frac{1}{Z_t^{\Gamma}}E\left[\mathbf{1}_{\Lambda_s}\Gamma_t\right]=Q^{\Gamma}\left(\Lambda_s\right)$$

then the coordinate process under Q^{Γ} is called Brownian motion penalized by Γ .

scaled Brownian penalization

By only considering events up to a fixed time in the defining limit, ordinary penalization doesn't "penalize the entire path". A remedy of this situation is the *scaled penalization* which produces a probability measure on C[0, 1].

Additional ingredients:

- canonical space of C[0,1] paths: $(C[0,1], Y_s, A)$
- scaling exponent $\alpha \geq 0$

If there exists a non-trivial probability measure $Q^{\alpha,\Gamma}$ on \mathcal{A} such that for all bounded and continuous $F: C[0,1] \to \mathbb{R}$

$$\lim_{t \to \infty} \frac{1}{Z_t^{\Gamma}} E_0 \left[F\left(\frac{X_{\bullet t}}{t^{\alpha}}\right) \Gamma_t \right] = Q^{\alpha, \Gamma} \left[F\left(Y_{\bullet}\right) \right]$$

then the coordinate process under $Q^{\alpha,\Gamma}$ is called Brownian motion penalized by Γ with α scaling.

a two-parameter unscaled Brownian penalization

Introduced in Roynette-Vallois-Yor 2005.

preliminaries:

- $S_t := \sup_{0 \le s \le t} X_s$ is the running maximum
- 2 parameters $h, \nu \in \mathbb{R}$, h can be interpreted as drift
- weight process $\Gamma_t = \exp(hX_t + \nu S_t)$
- Q^{Γ} has three different "phases" depending on where (h, ν) lies in the parameter plane

Theorem (Roynette-Vallois-Yor 2005)

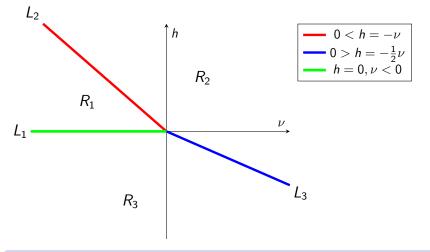
For all $s \geq 0$ and $\Lambda_s \in \mathcal{F}_s$,

$$\lim_{t\to\infty}\frac{1}{Z_t^{h,\nu}}E_0\left[\mathbf{1}_{\Lambda_s}\exp\left(hX_t+\nu S_t\right)\right]=E_0\left[\mathbf{1}_{\Lambda_s}M_s^{h,\nu}\right]$$

where $M_s^{h,\nu}$ is a positive martingale given by

$$M_{s}^{h,\nu} = \begin{cases} -(h+\nu)e^{(h+\nu)S_{s}}(S_{s}-X_{s}) + e^{(h+\nu)S_{s}} & :(h,\nu) \in R_{1} \\ \\ e^{(h+\nu)X_{s}-\frac{1}{2}(h+\nu)^{2}s} & :(h,\nu) \in R_{2} \\ \\ e^{(h+\nu)S_{s}-\frac{1}{2}h^{2}s}\left(\cosh\left(h(S_{s}-X_{s})\right) - \frac{h+\nu}{h}\sinh\left(h(S_{s}-X_{s})\right)\right) & :(h,\nu) \in R_{3}. \end{cases}$$

phase diagram



Remark

In the unscaled penalization, $L_2, L_3 \in R_2$ and $L_1 \in R_1$.

Hugo Panzo (UConn)

Brownian meander

Path construction:

- Start with a standard Brownian path of duration 1.
- Shift the last incomplete excursion so it starts at time 0.
- Take absolute value.
- Sescale path to have duration 1.

Theorem (Imhof 1984)

Let *m* be a Brownian meander and *r* be a Bessel-3 process of duration 1. Then for measurable $F: C[0,1] \to \mathbb{R}$

$$E[F(m_{\bullet})] = \sqrt{\frac{\pi}{2}} E_0 \left[F(r_{\bullet})\frac{1}{r_1}\right]$$
$$E_0[F(r_{\bullet})] = \sqrt{\frac{2}{\pi}} E[F(m_{\bullet})m_1].$$

Denisov's path decomposition

Theorem (Denisov 1984)

Let W be a standard Brownian path of duration 1 and let θ be the time that its maximum is attained. Then

$$m_s := rac{1}{\sqrt{ heta}}(W_ heta - W_{ heta(1-s)}), \ 0 \leq s \leq 1$$

and

$$ilde{m}_{s}:=rac{1}{\sqrt{1- heta}}(W_{ heta}-W_{ heta+(1- heta)s}),\ 0\leq s\leq 1$$

are independent Brownian meanders.

Critical Line L_1 : old result

Theorem (Roynette-Yor 2009)

Let $\nu < 0$ and m be a Brownian meander. Then for bounded and continuous $F: C[0,1] \to \mathbb{R}$

$$\lim_{t\to\infty}\frac{1}{Z_t^{\nu}}E_0\left[F\left(\frac{X_{\bullet t}}{\sqrt{t}}\right)\exp\left(\nu S_t\right)\right]=E\left[F(-m_{\bullet})\right].$$

Critical Line L₂

Theorem

Let $(h, \nu) \in L_2$ and *m* be a Brownian meander. For bounded and continuous $F : C[0, 1] \to \mathbb{R}$ we have

$$\lim_{t\to\infty}\frac{1}{Z_t^{h,\nu}}E_0\left[F\left(\frac{X_{\bullet t}}{\sqrt{t}}\right)\exp\left(hX_t+\nu S_t\right)\right]=E\left[F(m_1-m_{1-\bullet})\right].$$

Key tool of proof:

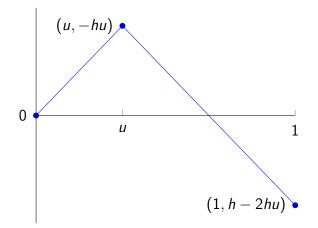
Imhof relation

Remark (Brownian ascent)

Denisov's path decomposition implies that $m_1 - m_{1-\bullet}$ is a Brownian path conditioned to end at its maximum.

Critical Line L_3 : preliminary

Fix h < 0. For 0 < u < 1, consider the path ω_u that linearly interpolates between the points (0,0), (u, -hu) and (1, h - 2hu).



Critical Line L_3 : main result

Theorem

Let $(h, \nu) \in L_3$. For bounded and continuous $F : C[0, 1] \to \mathbb{R}$ we have

$$\lim_{t\to\infty}\frac{1}{Z_t^{h,\nu}}E_0\left[F\left(\frac{X_{\bullet t}}{t}\right)\exp\left(hX_t+\nu S_t\right)\right]=\int_0^1F(\omega_u)\,\mathrm{d} u.$$

Key tools of proof:

- Onisov's path decomposition
- e multi-variable Laplace method

Region R_1 : different scaling for path and endpoint

Theorem

Let $(h, \nu) \in R_1$, $\lambda > 0$ and $\theta \in \mathbb{R}$. Then

$$\lim_{t\to\infty}\frac{1}{Z_t^{h,\nu}}E_0\left[\exp\left(i\theta X_t-\lambda S_t\right)\exp\left(hX_t+\nu S_t\right)\right]=\frac{h^2(h+\nu)^2(\nu-\lambda)}{\nu(h+i\theta)^2(h+\nu+i\theta-\lambda)^2}.$$

The associated joint density is

$$P(X_{\infty} \in \mathrm{d} x, S_{\infty} \in \mathrm{d} y) = \frac{h^2(h+\nu)^2}{-\nu}(2y-x)\exp(hx+\nu y)\mathbf{1}_{x< y}\mathbf{1}_{y>0}\,\mathrm{d} y\,\mathrm{d} x.$$

Theorem

Let $(h, \nu) \in R_1$ and *e* be a normalized Brownian excursion. For bounded and continuous $F : C[0, 1] \to \mathbb{R}$ we have

$$\lim_{t\to\infty}\frac{1}{Z_t^{h,\nu}}E_0\left[F\left(\frac{X_{\bullet t}}{\sqrt{t}}\right)\exp\left(hX_t+\nu S_t\right)\right]=E\left[F(-e_{\bullet})\right].$$

Regions R_2 and R_3

Theorem

Let F : $C[0,1] \rightarrow \mathbb{R}$ be bounded and continuous. Then we have

$$\lim_{t\to\infty}\frac{1}{Z_t^{h,\nu}}E_0\left[F\left(\frac{X_{\bullet t}}{t}\right)\exp\left(hX_t+\nu S_t\right)\right] = \begin{cases} F\left(\bullet(h+\nu)\right) & :(h,\nu)\in R_2\\ F\left(\bullet h\right) & :(h,\nu)\in R_3. \end{cases}$$

Remark

When $(h, \nu) \in L_3$, note that $h + \nu = -h$. So the L_3 limit path can be seen to switch from R_2 behavior to R_3 behavior at a random time uniform on [0, 1].

FCLT for Regions R_2 and R_3

Theorem

Let W be a Brownian path of duration 1. For bounded and continuous $F: C[0,1] \rightarrow \mathbb{R}$, the following limits hold:

$$\left. \begin{array}{l} \text{if } (h,\nu) \in R_2, \text{ then} \\ \lim_{t \to \infty} \frac{1}{Z_t^{h,\nu}} E_0 \left[F\left(\frac{X_{\bullet t} - \bullet t(h+\nu)}{\sqrt{t}}\right) \exp\left(hX_t + \nu S_t\right) \right] \\ \text{if } (h,\nu) \in R_3, \text{ then} \\ \lim_{t \to \infty} \frac{1}{Z_t^{h,\nu}} E_0 \left[F\left(\frac{X_{\bullet t} - \bullet th}{\sqrt{t}}\right) \exp\left(hX_t + \nu S_t\right) \right] \end{array} \right\} = E_0 \left[F(W_\bullet) \right].$$

Thanks for your attention!