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Part I: Transportation



Definition

m A, CR" Convex.
mo: A, = RU{—00} is exponentially concave if e” is concave.

Hess(p) + Vo (V) < 0.
m Throughout A, is the open unit simplex.
A, = {(ph.-.,pn)  pi >0, Zpi = 1}-

m Examples: pmr € A, 0 < A< 1.

1
e(p) = ;Z'ngia @(P):Zﬂ';logp,-,

@(p) = log (Z mm) ,elp) = % log (Z p?) :



Several recent occurrences

m Stochastic portfolio theory (will discuss). Fernholz '99, '02.

m Entropic Curvature-Dimension conditions and Bochner's inequality.
Erbar, Kuwada, and Sturm '15.

m Proof of the Fundamental Gap Conjecture.
Andrews and Clutterbuck '11.

m Statistics, optimization, machine learning.
Cesa-Bianchi and Lugosi '06, Mahdavi, Zhang, and Jin '15.

m Unified study is lacking. Compare log-concave functions.



Gradients of e-concave functions

Fact 1: Gradients of e-concave functions are probabilities.

(Fernholz '02, P. and Wong '15). ¢, e-concave on A,,.
Define 7 by

i = pi (1+ Deiy—p(P)) -
Then m € A,. e(i) is ith standard basis vector.
Portfolio map: 7 : A, — A,.
Example: ¢(p) = £, log p;. Then m(p) = (1/n,...,1/n).



Gradients of e-concave functions

Fact 3: Gradients of e-concave functions are optimal transports.

Recall Monge-Kantorovich OT problem.
X=A, Y =][-00,00)"

c(p,v) =log ) _evip; = |og/e”dp-

i=1

m Consider probabilities P on X and Q on ).

infEg (c(p,7)), over all couplings R of (P, Q).

Solution is an optimal coupling (p,~v(p)).

Also see Oliker '07 for the Alexandrov problem on the sphere.



Exponential change of measures

Theorem (P.-Wong '15)
Consider optimal coupling (p,~(p)) for some (P, Q). Let

eV p;

= 42-1 e'yl'pj )

Then m = 7(p) is the gradient of some e-concave function ¢ on A,,.
And conversely ...

i i=1,...,n.

Compare convex functions whose gradients are optimal transports for
cost ||x — y]||°.



Exponential coordinate systems

m Useful to see A, as a manifold with exponential coordinates
(91, ey 9,-,,1) e R 1

gizlog(pi/pn)a p,-zexp(@,-—d;(@)), i:]-v"'vn_l'
Here

Y(0) = log

1+Ze9‘] .

m Consider P, Q@ on R"~! and c(6, ¢) = (0 — ¢).
m MK OT problem is exactly as before.
m Exponential coordinate of m(p(0)) = 6 — ¢(0).



Example

m 3 coordinates: p <> 0 <> ¢.
m O - primal coordinate. ¢ - dual coordinate.
m Example: P(0) = ®@N(a;, 0?). Q(¢) = @N(b;, (1 — N)o?).

1

m Optimal coupling:

1 cip}
o(p)=log | Y _gp' |, milp) =
j

Here c € A, are given by

(1—=XNa; — log % = b;, forali.

n



L-divergence vs Bregman divergence

linear approx  _
vz
1 log approx

m Fact 3: (P.- Wong '15) e-concave functions have better
approximation by gradient. L-divergence:

T(q|p)=log(l+Ve(p)-(g—p))—(e(q) —¢(p) >0

m (Classical information geometry) Bregman divergence

D(q | p)=Ve(p)-(a—p)—(v(q) — ¢(p))



L-divergence vs Bregman divergence

m o(p) = — >, pilog pi. Shannon entropy. Convex.

D(q | p) Z qgi Iog Relative entropy.
m Fixm e A, o(p) =>,milogpj. Cross entropy. e-concave.
. q:
T(q|p)=log <Z7T,Z'> - ZW,' log <pl> .
. 1 . 1
1 1

m Free energy.



Part II: Information



A wee bit of mathematical finance

Optimal transports are closely connected to economics.
Market weights for n stocks:

1i = Proportion of the total capital that belongs to ith stock.
Process in time, p(t), t =0,1,2,...in A,,.

Portfolio: 7 = (m1,...,mn) € Ap. Process in time 7 (t).

Portfolio weights:

m; = Proportion of the total value that belongs to ith stock.

m Forus m=m(p): A, = A,



Relative value

How does the portfolio m compare with an index, say, S&P 5007

Start by investing $1 in portfolio and compare with index.

Relative value process: V/(-) = ratio of growth of $1.

Discrete exponential integral.
How does V/(-) behave?



Fernholz decomposition

m Suppose 7 is generated by an e-concave function.
m (Fernholz '99, P. and Wong '15)

t—1

log V(t) = @(u(t)) — (1(0)) + > T (s + 1) | u(s)) -

s=0

m Here, L-divergence:

log (Z ) Zw, Iog

i

log(1+ Vo(p )-(q—p))—( (q)— ¢(p)) > 0.

m lim; log V(t) = oo if ¢(u(t)) is bounded. Volatility harvesting.

T(qlp)

m (P. and Wong '15). 7 has above property = 7 is solution of OT.



Main question

q(01, $1)
0o — ¢1 01— ¢2

0o — ¢2
_—

p(HOa ¢0) W r(927 ¢2)

02 — ¢o

m Given ¢ e-concave, can | characterize (p, q,r) € A3 such that

T(qglp)+T(r|q) < T(r|p)?

m Determines optimal frequency of trading the portfolio.

m Has the optimal transport interpretation as above.



Plotsof {ge A, T(q|p)+T(r|q) <T(r]|p)}

m (P. and Wong '16) Take any g on boundary. Then (p, g, r) forms a
“right angle triangle”.

m The sides are geodesics of a geometry and angles are given by a
Riemannian metric.



|nf0rmation geometry (Amari and Nagaoka (1982))

Such questions have been studied for relative entropy.

Exponential family A,

p(x,0) = eXi 0i5i)=¥(0) -y e 1 n}.

m Metric is Fisher information:
82
00;00; 00;

gi(0) = log p(X, 0)

Riemannian metric on A,

Flat geometry for any Bregman divergence



A new information geometry

Riemannian metric g: v, v in tangent bundle at p.
(u,v), = —vT (Hess (p)+ Vo (p)Ve(p)') u.

Define dual connection V* using dual variables 6 — ¢.

m Best described by geodesics: v* : [0,1] — A, curves

LY (t) =0 dual geodesic.

m Parallel transport of tangents.



Geodesics and curvatures

Theorem (Pal and W. (2016))

For a suitable V* the following are true. For p € A,, consider dual coordinate ¢ from
OT problem. Define p* by

p(6,8) — p* € A, pf =e %i"U(=9)

(i) If~v*(t) is a dual geodesic, its image p*(t) is a Euclidean straight line in A,.
(if) Dual geodesics are gradient flows.
V() = —grad T(-[p)(v" (1)), *°(0)=gq
(exp) H(p) o —grad T(-|p)(q)-

In particular, the induced geometry is not flat. Moreover, A, has constant dual
(sectional) curvature —1. In particular, Ric* = —(n — 2)g.



Generalized Pythagorean theorem

Theorem (P. and Wong (2016))

For any p, q,r € Ap, the equality
T@@lp)+T(rla)=T(rlp)

holds if and only if the dual geodesic joining q and p and the Euclidean straight line
joining q and r meet orthogonally at q.




Geodesics and displacement interpolation

m Let PO P(1) pbe Borel probability measures on R"—1.
m Transport problem be solved in terms of the exponentially concave function ¢.

m Define a cost on the paths of transporting 6 — ¢ by a Lagrangian action.

1
inf {/ —log (1 + ie—w(w(O)—w(t))) dt: 4(0) = 0,v(1) = ¢} .
0 n

dt
1+Ze0":| .

m Cost minimizing paths? For convex functions, leads to a beautiful theory of
Otto, Lott, Villani in Wasserstein space where cost is ||-||2.

V(O —¢)

¥(0) log




Displacement interpolation

Theorem (P. and Wong '16)

(i) The cost minimizing paths are dual geodesics joining (0, ¢).

(i) (Intermediate time optimality) For each t € [0, 1], the coupling (8, $(1)(8)) solves
the transport problem for (P(o), P t)) where P(t) js the push-forward.

(iii) For t € [0,1], the portfolio map is 7(t) = (1 — t) ( IR n) + tm.
(iv) Generated by e-concave function

oe(p) = @ > " log pi + to(p).

i



optimal transport

information geometry

DA



Concentration



Welcome to the dismal science of economics

m Most institutional investors (e.g. Vanguard) use ETF.

m Tracks a market index such as S&P 500.

m CAPM and Efficient Market Hypothesis support the idea.
m Nobel prize 2013 - Fama and Shiller.

n

Portfolios from e-concave functions do better than the index without
statistical assumptions.

m See P. and Wong '15. A model free notion of volatility.



How do these portfolios work in practice?
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One can do much better with reduced risk by using concentration of
measure.



Exp concavity in high dimensions

log market weight

Figure 1: Capital distribution curves: 1929-1999

m Ordered market weights are typically Pareto (polynomially decaying):

N(l)(t) > p,(2)(t) > ... > ,Lt(n)(t), |Og,u(,') o T,

m Slope o € [-1.2,.08]. Axtell '01 Science.



The Pareto distribution

Fix o € [1/2,1]. Define (" € A, by

S ]

I DT

Can generalize to regularly varying sequences with index in [1/2,1].
Consider Dirichlet distribution Dir (m/(")).

Assumption 1: ||14(0) — 1/(")H has the same distribution as

(0) ~ Dir(nv(").

Assumption 2: 1 is a continuous semimartingale process that is
“slow to escape O(1/y/n) neighborhoods of /(™"



(K,N) exponential concavity (Erbar-Kuwada-Sturm '14)

m Define (n,1) e-concave function on A,.

)l

™

NG

¢ (p) = log cos (ﬁ Hp — v <

m Unit simplex under Dir (nu(") has diameter 1//n.
m (P. '16) 3 g, = O(n®~'/2) such that

P (Iog V(1/+/log n) > g,,) =1-0 (exp (—con(l_a)/4)) .



Cosine portfolios

L
g | — Cosine (c=3) s
2 1 -- Equa-weighted
- Diversity-weighted
=3 L
S S
S
w0
g | o
s o
s
© o meem e
S TSR .
2
0
8
S 4
7
c
T T T T T T T T T T ° T T T T T T T T T T
2015-06-26 2015-08-06 2015-09-17 2015-10-28 2015-12-09 2015-06-26 2015-08-06 2015-09-17 2015-10-28 2015-12-09

n=1000. « € [0.75,0.95]. Jun - Dec 2015.

Distance from Pareto scales like \/n.

Cosine portfolios generated by (n,1) e-concave function.
Beats the index by 15% in 6 months.
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