Fluctuations of TASEP on a ring in the relaxation time scale

Zhipeng Liu

Courant Institute New York University

zhipeng@cims.nyu.edu

joint with Jinho Baik, University of Michigan

May 10, 2016

Overview

- Introduction
 - Motivation
 - TASEP on a ring
 - Understanding the relaxation scale
 - Known results
- Main results
 - Limiting theorems at the relaxation scale
 - Limiting distributions
- Formulas and ideas of the proof
 - Transition Probability
 - Fredholm determinant formula

Motivation

Consider a particle interacting system in the KPZ universality class such as the asymmetric simple exclusion process.

- (a) When the system size is *infinity*, then the one point fluctuations (of the location of a particle or the current at a site) is of order $t^{1/3}$ and usually given by Tracy-Widom distributions.
- (b) When the system size is *finite*, then the one point fluctuations is of order $t^{1/2}$ and usually given by *Gaussian distribution*.
- (c) What happens in the *crossover regime* between KPZ dynamics to Gaussian dynamics?

TASEP on a ring

We consider a particular model: TASEP on a ring. Assume there are N particles which are denoted x_1, x_2, \cdots, x_N on a ring of size L which is denoted \mathbb{Z}_L . Each particle has an independent clock which will ring after an exponential waiting time with parameter 1. Once a clock rings, it will be reset. And the corresponding particle moves to the next site $(\bar{i} \in \mathbb{Z}_L \to \bar{i} + 1 \in \mathbb{Z}_L)$ provided it is not occupied.

Two equivalent models:

- (1) Periodic TASEP on \mathbb{Z} : infinitely many copies of the particles by defining $x_{k+N} = x_k + L$ for all $k \in \mathbb{Z}$.
- (2) TASEP on the configuration space

$$\mathfrak{X}_N(L) = \{(x_1, x_2 \cdots, x_N); x_i \in \mathbb{Z}, x_1 < x_2 < \cdots < x_N < x_1 + L\}.$$

For this model, we consider the fluctuations of the location of a tagged particle and the current at a fixed location when $L, N \to \infty$ proportionally and time $t = O(L^{3/2})$, which is called the *relaxation scale*.

Understanding the realxation scale

To understand the relaxation scale, we consider the model with step initial condition and map it to a periodic DLPP model.

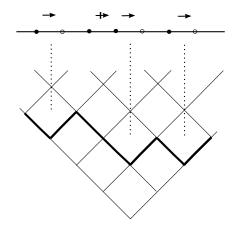


Figure 1: Mapping TASEP to DLPP

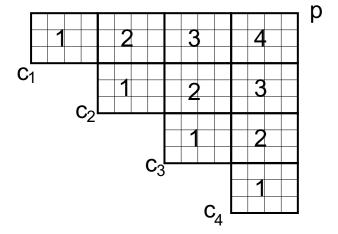


Figure 2: Periodic DLPP

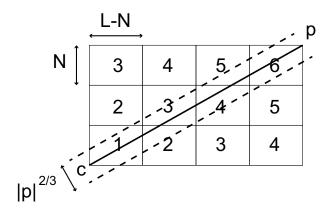


Figure 3: The maximal paths stay with the dashed lines with high probability.



Figure 4: The limiting distribution is either F_{GUE} or product of two independent F_{GUE} 's, depending on the location of the point.

At the relaxation scale $t = O(L^{3/2})$

The contribution to the maximal path comes from many corners which are correlated.

Known results about this model

- (i) Gwa and Spohn [92'] first discussed the relaxation scale.
- (ii) Derrida and Lebowitz [98'] obtained the large deviation of the total current in super relaxation scale $t>>L^{3/2}$
- (iii) Priezzhev [03'] computed the finite-time transition probability for general initial conditions by adapting the analysis of Schütz [97'] for TASEP on \mathbb{Z} .
- (iv) Prolhac [15'] computed non-rigorously the limiting distributions for the current fluctuations in the relaxation time scale for the half particle system L=2N with step/flat/stationary initial conditions. His computation based on two assumptions whose proofs are still missing.

Location of a tagged particle with flat initial condition

Consider the flat initial condition: $x_j(0) = dj$ for $j = 1, 2, \dots, N$, and L = dN, where $d \in \mathbb{Z}_{>2}$ is fixed.

Theorem (Baik-Liu16)

Suppose $\tau > 0$ and $x \in \mathbb{R}$ are both fixed constants. Set

$$t = \frac{\tau}{\sqrt{\rho(1-\rho)}} L^{3/2} \tag{1}$$

then for an arbitrary sequence $k = k_L$ satisfying $1 \le k_L \le N$,

$$\lim_{L\to\infty} \mathbb{P}\left(\frac{(x_k(t)-x_k(0))-(1-\rho)t}{\rho^{-1/3}(1-\rho)^{2/3}t^{1/3}} \ge -x\right) = F_1(\tau^{1/3}x;\tau). \tag{2}$$

Location of a tagged particle with step initial condition

Fix two constants c_1 and c_2 satisfying $0 < c_1 < c_2 < 1$. Let (N_n, L_n) be a sequence of points in

$$B(c_1, c_2) := \{ (N, L) \in \mathbb{Z}_{>1}^2 : c_1 L \le N \le c_2 L \}$$
 (3)

and satisfy $N_n \to \infty$, $L_n \to \infty$ as $n \to \infty$. Set

$$\rho_n := N_n/L_n \in [c_1, c_2]. \tag{4}$$

Fix $\gamma \in \mathbb{R}$ and let γ_n be a sequence of real numbers satisfying

$$\gamma_n := \gamma + O(L_n^{-1/2}). \tag{5}$$

Set

$$t_n = \frac{L_n}{\rho_n} \left[\frac{\tau \sqrt{\rho_n}}{\sqrt{1 - \rho_n}} L_n^{1/2} \right] + \frac{L_n}{\rho_n} \gamma_n + \frac{L_n}{\rho_n} \left(1 - \frac{k_n}{N_n} \right)$$
 (6)

where $\tau \in \mathbb{R}_{>0}$ is a fixed constant.

Location of a tagged particle with step initial condition

Theorem (Baik-Liu16)

The periodic TASEP associated to the TASEP on a ring of size L_n with the step initial condition $x_j = -N + j$, $1 \le j \le N$, satisfies, for an arbitrary sequence of integers k_n satisfying $1 \le k_n \le N_n$, and for every fixed $x \in \mathbb{R}$,

$$\mathbb{P}\left(\frac{(x_{k_n}(t_n) - x_{k_n}(0)) - (1 - \rho_n)t_n + (1 - \rho_n)L_n(1 - k_n/N_n)}{\rho_n^{-1/3}(1 - \rho_n)^{2/3}t_n^{1/3}} \ge -x\right) \tag{7}$$

converges to $F_2(\tau^{1/3}x; \tau, \gamma)$ as $n \to \infty$.

Current at a tagged location

For the current at a tagged location, we have similar results.

The distribution function $F_1(x; \tau)$

The distribution function for the flat case is defined to be

$$F_1(x;\tau) = \oint e^{xA_1(z) + \tau A_2(z) + A_3(z) + B(z)} \det(I - \mathcal{K}_z^{(1)}) \frac{\mathrm{d}z}{2\pi \mathrm{i}z}, \qquad x \in \mathbb{R}, \quad (8)$$

where the integral is over any simple closed contour in |z| < 1 enclosing 0, and

$$A_1(z) := -\frac{1}{\sqrt{2\pi}} \operatorname{Li}_{3/2}(z), \quad A_2(z) := -\frac{1}{\sqrt{2\pi}} \operatorname{Li}_{5/2}(z), \quad A_3(z) := -\frac{1}{4} \log(1-z),$$
(9)

and

$$B(z) := \frac{1}{4\pi} \int_0^z \frac{(\text{Li}_{1/2}(y))^2}{y} dy.$$
 (10)

The distribution function $F_1(x; \tau)$

The operator $\mathcal{K}_z^{(1)}$ acts on $I^2(S_{z,\mathrm{left}})$ where

$$S_{z,\text{left}} = \{ \xi \in \mathbb{C} : e^{-\xi^2/2} = z, \Re \xi < 0 \}.$$
 (11)

The kernel is defined to be

$$\mathcal{K}_{z}^{(1)}(\xi_{1},\xi_{2}) = \frac{e^{\Psi_{z}(\xi_{1};x,\tau) + \Psi_{z}(\xi_{2};x,\tau)}}{\xi_{1}(\xi_{1} + \xi_{2})} \tag{12}$$

where

$$\Psi_{z}(\xi; x, \tau) := -\frac{1}{3}\tau\xi^{3} + x\xi - \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\xi} \operatorname{Li}_{1/2}(e^{-w^{2}/2}) dw. \tag{13}$$

The distribution function $F_1(x; \tau)$

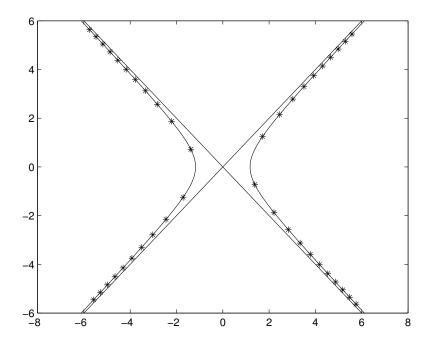


Figure 5: Illustration of $S_{z,left}$ (* on the left) with $z=0.5e^{i}$.

Properties of $F_1(x; \tau)$

- (1) For each $\tau > 0$, $F_1(x; \tau)$ is a distribution function. It is also a continuous function of $\tau > 0$.
- (2) For each $x \in \mathbb{R}$, $\lim_{\tau \to 0} F_1(\tau^{1/3}x; \tau) = F_{GOE}(2^{2/3}x)$.
- (3) For each $x \in \mathbb{R}$,

$$\lim_{\tau \to \infty} F_1 \left(-\tau + \frac{\pi^{1/4}}{\sqrt{2}} x \tau^{1/2}; \tau \right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-y^2/2} dy. \tag{14}$$

1

¹For the large time and small time limit of F_1 , we have a formal proof now. A rigorous proof will appear soon. The same for F_2 .

Limiting distribution $F_2(x; \tau, \gamma)$

Formula is similar but more complicated.

Properties:

- (1) For fixed τ and γ , $F_2(x; \tau, \gamma)$ is a distribution function.
- (2) $F_2(x; \tau, \gamma)$ is periodic in γ : $F_2(x; \tau, \gamma + 1) = F_2(x; \tau, \gamma)$.
- (3) $F_2(x; \tau, \gamma) = F_2(x; \tau, -\gamma)$.
- (4) For each $x \in \mathbb{R}$, $\lim_{\tau \to 0} F_2(\tau^{1/3}x; \tau, 0) = F_{GUF}(2^{2/3}x)$.
- (5) For each $x \in \mathbb{R}$ and $\gamma \in \mathbb{R}$,

$$\lim_{\tau \to \infty} F_2 \left(-\tau + \frac{\pi^{1/4}}{\sqrt{2}} x \tau^{1/2}; \tau, \gamma \right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-y^2/2} dy.$$
 (15)

We also expect

$$\lim_{\tau \to 0} F_2 \left(\tau^{1/3} x - \frac{\gamma^2}{4\tau}; \tau, \gamma \right) = \begin{cases} F_{GUE}(x), & -1/2 < \gamma < 1/2, \\ F_{GUE}(x)^2, & \gamma = 1/2. \end{cases}$$
 (16)

Transition probability for periodic TASEP

Theorem [J. Baik, Z. Liu]

Denote $P_Y(X;t)$ the transition probability. Then for any $X,Y\in\mathfrak{X}_n(L)$, we have

$$P_Y(X;t) = \oint_0 \det \left[\frac{1}{L} \sum_{z \in R_z} \frac{w^{j-i+1}(w+1)^{-x_i+y_j+i-j}e^{tw}}{w+\rho} \right]_{i,j=1}^N \frac{\mathrm{d}z}{2\pi \mathrm{i}z},$$

where R_z is the set of all roots of $w^N(w+1)^{L-N}=z^L$.

We followed the idea of Tracy-Widom on the formula of ASEP. We consider a system of equations of u(X;t) where $(X;t)=(x_1,\cdots,x_N;t)\in\mathbb{Z}^N\times\mathbb{R}_{>0}$.

Master Equations:
$$\frac{d}{dt}u(X;t) = \sum_{i=1}^{N} (u(X_i;t) - u(X;t))$$

where $X_i := (x_1, \dots, x_{i-1}, x_i - 1, x_{i+1}, \dots, x_N)$.

Boundary Conditions 1: $u(X_i; t) = u(X; t)$ if $x_i = x_{i-1} + 1$

Boundary Conditions 2: $u(X_1; t) = u(X; t)$ if $x_N = x_1 + L - 1$.

Initial Condition : $u(X;0) = \delta_Y(X)$, for all $X \in \mathfrak{X}_N(L)$.

Without the second boundary condition, it gives the transition probability for TASEP on the integer lattice:

$$\det\left[\oint_{|\xi|=\epsilon} (1-\xi)^{j-i} \xi^{x_i-y_j} e^{t(\xi^{-1}-1)} \frac{d\xi}{2\pi i \xi}\right]_{i,j=1}^{N}.$$

The extra boundary condition gives rise to the discreteness of the sum. The solution is constructive.

Fredholm determinant representation

Let $R_{z,L}$, $R_{z,R}$ be the left and right parts of the roots set R_z . Define $q_{z,left}(w) = \prod_{u \in R_{z,left}} (w-u)$ and $q_{z,right}(w) = \prod_{v \in R_{z,right}} (w-v)$. For the flat initial condition, we have

$$P(x_k \geq a; t) = \oint C_N^{(1)}(z) \det \left(1 + K_z^{(1)}\right) \frac{\mathrm{d}z}{2\pi \mathrm{i}z},$$

where $C_N^{(1)}(z)$ is a function in z and and $K_z^{(1)}$ is acting on $\ell^2(R_{z,\mathrm{left}})$ by the kernel

$$K_z^{(1)}(u,u') = \frac{f_1(u)}{(u-v')f_1(v')}.$$
 (17)

Here v' is in $R_{z,\text{right}}$ determined by $v'(v'+1)^{d-1} = u'(u'+1)^{d-1}$, and f_1 is some function.

Remarks:

If we let $L \to \infty$ but fix all other parameters, we obtain the Fredholm determinant formula for the one point distribution of TASEP on \mathbb{Z} with flat initial condition. This formula matches the one obtained by Borodin-Ferrari-Prähofer-Sasamoto for d=2.

For step initial condition, we have a similar formula.

The asymptotic analysis is complicated but straightforward.

Thank you!