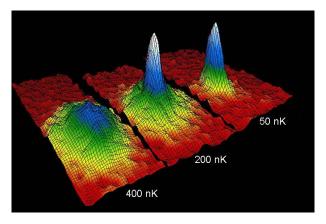
Bose-Einstein condensation and mean-field limits

Kay Kirkpatrick, UIUC

2016

Bose-Einstein condensation: from many quantum particles to a quantum "superparticle"



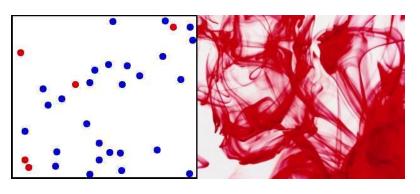
Kay Kirkpatrick, UIUC

Frontier Probability Days 2016

The big challenge: making physics rigorous

The big challenge: making physics rigorous

microscopic first principles \leadsto zoom out \leadsto Macroscopic states

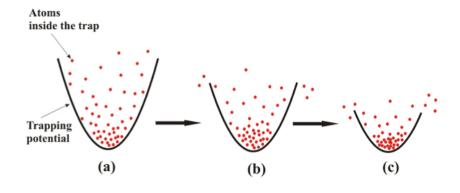


Courtesy Greg L and Digital Vision/Getty Images

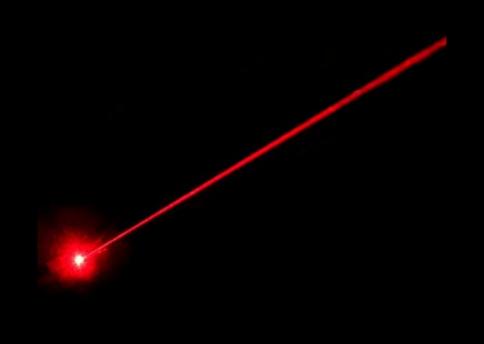
1925: predicting Bose-Einstein condensation (BEC)

1925: predicting Bose-Einstein condensation (BEC)

1995: Cornell-Wieman and Ketterle experiment

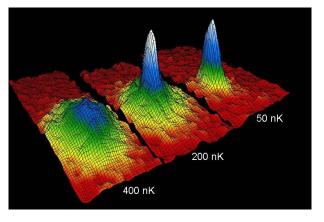


Courtesy U Michigan



After the trap was turned off

BEC stayed coherent like a single macroscopic quantum particle.



Momentum is concentrated after release at 50 nK. (Atomic Lab)

The mathematics of BEC

Gross and Pitaevskii, 1961: a good model of BEC is the cubic nonlinear Schrödinger equation (NLS):

$$i\partial_t \varphi = -\Delta \varphi + \mu |\varphi|^2 \varphi$$

Fruitful NLS research: competition between two RHS terms

The mathematics of BEC

Gross and Pitaevskii, 1961: a good model of BEC is the cubic nonlinear Schrödinger equation (NLS):

$$i\partial_t \varphi = -\Delta \varphi + \mu |\varphi|^2 \varphi$$

Fruitful NLS research: competition between two RHS terms

Can we rigorously connect the physics and the math?

The mathematics of BEC

Gross and Pitaevskii, 1961: a good model of BEC is the cubic nonlinear Schrödinger equation (NLS):

$$i\partial_t \varphi = -\Delta \varphi + \mu |\varphi|^2 \varphi$$

Fruitful NLS research: competition between two RHS terms

Can we rigorously connect the physics and the math?

Yes!

Outline

microscopic first principles \leadsto Macroscopic states

- 1. *N* bosons → mean-field limit → Hartree equation
- 2. N bosons \rightsquigarrow localizing limit \rightsquigarrow NLS
- 3. Quantum probability and CLT

A quantum "particle" is really a wavefunction

For each t, $\psi(x,t) \in L^2(\mathbb{R}^d)$ solves a Schrödinger equation

$$i\partial_t \psi = -\Delta \psi + V_{\text{ext}}(x)\psi$$

A quantum "particle" is really a wavefunction

For each t, $\psi(x,t) \in L^2(\mathbb{R}^d)$ solves a Schrödinger equation

$$i\partial_t \psi = -\Delta \psi + V_{ext}(x)\psi =: H\psi$$

- $-\Delta = -\sum_{i=1}^d \partial_{x^i x^i} \ge 0$
- lacktriangle external trapping potential V_{ext}
- solution $\psi(x,t) = e^{-iHt}\psi_0(x)$

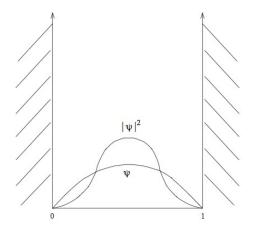
A quantum "particle" is really a wavefunction

For each t, $\psi(x,t) \in L^2(\mathbb{R}^d)$ solves a Schrödinger equation

$$i\partial_t \psi = -\Delta \psi + V_{ext}(x)\psi =: H\psi$$

- \blacktriangleright $-\Delta = -\sum_{i=1}^d \partial_{x^i x^i} \ge 0$
- lacktriangle external trapping potential V_{ext}
- solution $\psi(x,t) = e^{-iHt}\psi_0(x)$
- $\int |\psi_0|^2 = 1 \implies |\psi(x,t)|^2$ is a probability density for all t. Exercise: why?

Particle in a box



 $V_{ext} =$ " $\infty \cdot \mathbf{1}_{[0,1]} c$ " has ground state $\psi(x) = \sqrt{2} \sin{(\pi x)}$

The microscopic N-particle model

Wavefunction $\psi_N(\mathbf{x}, t) = \psi_N(x_1, ..., x_N, t) \in L^2(\mathbb{R}^{dN}) \ \forall t$ solves the *N*-body Schrödinger equation:

$$i\partial_t \psi_N = \sum_{j=1}^N -\Delta_{x_j} \psi_N + \sum_{i< j}^N U(x_i - x_j) \psi_N =: H_N \psi_N$$

The microscopic N-particle model

Wavefunction $\psi_N(\mathbf{x},t) = \psi_N(x_1,...,x_N,t) \in L^2(\mathbb{R}^{dN}) \ \forall t$ solves the *N*-body Schrödinger equation:

$$i\partial_t \psi_N = \sum_{j=1}^N -\Delta_{x_j} \psi_N + \sum_{i< j}^N U(x_i - x_j) \psi_N =: H_N \psi_N$$

- pair interaction potential U
- solution $\psi_N(\mathbf{x},t) = e^{-iH_N t} \psi_N^0(\mathbf{x})$
- joint density $|\psi_N(x_1,\ldots,x_N,t)|^2$

More assumptions

For N bosons, ψ_N is symmetric (particles are exchangeable):

$$\psi_N(x_{\sigma(1)},...,x_{\sigma(N)},t)=\psi_N(x_1,...,x_N,t)$$
 for $\sigma\in S_N$.

More assumptions

For N bosons, ψ_N is symmetric (particles are exchangeable):

$$\psi_N(x_{\sigma(1)},...,x_{\sigma(N)},t)=\psi_N(x_1,...,x_N,t) \text{ for } \sigma\in\mathcal{S}_N.$$

Initial data is factorized (particles i.i.d.):

$$\psi_N^0(\mathbf{x}) = \prod_{i=1}^N \varphi_0(x_i) \in L_s^2(\mathbb{R}^{3N}).$$

More assumptions

For N bosons, ψ_N is symmetric (particles are exchangeable):

$$\psi_N(x_{\sigma(1)},...,x_{\sigma(N)},t)=\psi_N(x_1,...,x_N,t) \text{ for } \sigma\in\mathcal{S}_N.$$

Initial data is factorized (particles i.i.d.):

$$\psi_N^0(\mathbf{x}) = \prod_{i=1}^N \varphi_0(x_i) \in L_s^2(\mathbb{R}^{3N}).$$

But interactions create correlations for t > 0.

Mean-field pair interaction $U = \frac{1}{N}V$

Weak: order 1/N. Long distance: $V \in L^{\infty}(\mathbb{R}^3)$.

$$i\partial_t \psi_N = \sum_{j=1}^N -\Delta_{x_j} \psi_N + \frac{1}{N} \sum_{i< j}^N V(x_i - x_j) \psi_N.$$

Mean-field pair interaction $U = \frac{1}{N}V$

Weak: order 1/N. Long distance: $V \in L^{\infty}(\mathbb{R}^3)$.

$$i\partial_t \psi_N = \sum_{j=1}^N -\Delta_{x_j} \psi_N + \frac{1}{N} \sum_{i< j}^N V(x_i - x_j) \psi_N.$$

Spohn, 1980: If ψ_N is initially factorized and approximately factorized for all t, i.e., $\psi_N(\mathbf{x},t)\simeq\prod_{j=1}^N\varphi(x_j,t)$, then $\psi_N\to\varphi$ in the sense of marginals, and φ solves the Hartree equation:

$$i\partial_t \varphi = -\Delta \varphi + (V * |\varphi|^2) \varphi.$$

Why do interactions become the nonlinearity?

$$i\partial_t \psi_N = \sum -\Delta_{x_i} \psi_N + \frac{1}{N} \sum \sum V(x_i - x_j) \psi_N$$

Particle 1 sees

$$\frac{1}{N} \sum_{j=2}^{N} V(x_1 - x_j) \simeq \frac{1}{N} \sum_{j=2}^{N} \int V(x_1 - y) |\varphi(y)|^2 dy$$

$$= \frac{N-1}{N} \int V(x_1 - y) |\varphi(y)|^2 dy$$

$$\xrightarrow{N \to \infty} (V * |\varphi|^2)(x_1)$$

Convergence $\psi_{\it N} \rightarrow \varphi$ in the sense of marginals means

$$\left\|\gamma_{N}^{(1)}-|\varphi\rangle\langle\varphi|\right\|_{Tr}\xrightarrow{N\to\infty}0,$$

where
$$|arphi
angle\langlearphi|(x_1,x_1')=\overline{arphi}(x_1)arphi(x_1')$$
 and

one-particle marginal density $\gamma_N^{(1)}:=\mathit{Tr}_{N-1}|\psi_N
angle\langle\psi_N|$ has kernel

$$\gamma_N^{(1)}(x_1;x_1',t) := \int \overline{\psi}_N(x_1,\mathbf{x}_{N-1},t)\psi_N(x_1',\mathbf{x}_{N-1},t)d\mathbf{x}_{N-1}.$$

Other mean-field limit theorems

Erdös and Yau, 2001: Convergence of marginals for Coulomb interaction, $V(\mathbf{x}) = 1/|\mathbf{x}|$, not assuming approximate factorization.

Other mean-field limit theorems

Erdös and Yau, 2001: Convergence of marginals for Coulomb interaction, $V(\mathbf{x}) = 1/|\mathbf{x}|$, not assuming approximate factorization.

Rodnianski-Schlein '08, Chen-Lee-Schlein, '11: convergence rate

$$\left\|\gamma_N^{(1)} - |\varphi\rangle\langle\varphi|\right\|_{Tr} \leq \frac{Ce^{\kappa t}}{N}.$$

Other mean-field limit theorems

Erdös and Yau, 2001: Convergence of marginals for Coulomb interaction, $V(\mathbf{x}) = 1/|\mathbf{x}|$, not assuming approximate factorization.

Rodnianski-Schlein '08, Chen-Lee-Schlein, '11: convergence rate

$$\left\|\gamma_N^{(1)} - |\varphi\rangle\langle\varphi|\right\|_{Tr} \le \frac{Ce^{Kt}}{N}.$$

Preview of localizing interactions: $(V_N * |\varphi|^2)\varphi \to (\delta * |\varphi|^2)\varphi$ Erdös, Schlein, Yau, K., Staffilani, Chen, Pavlovic, Tzirakis...

Definition of BEC at zero temperature

Almost all particles are in the same one-particle state:

 $\{\psi_N \in L^2_s(\mathbb{R}^{3N})\}_{N \in \mathbb{N}}$ exhibits **Bose-Einstein condensation** into one-particle quantum state $\varphi \in L^2(\mathbb{R}^3)$ iff one-particle marginals converge in trace norm:

$$\gamma_N^{(1)} = Tr_{N-1} |\psi_N\rangle\langle\psi_N| \xrightarrow{N\to\infty} |\varphi\rangle\langle\varphi|.$$

Definition of BEC at zero temperature

Almost all particles are in the same one-particle state:

 $\{\psi_N \in L^2_s(\mathbb{R}^{3N})\}_{N \in \mathbb{N}}$ exhibits **Bose-Einstein condensation** into one-particle quantum state $\varphi \in L^2(\mathbb{R}^3)$ iff one-particle marginals converge in trace norm:

$$\gamma_N^{(1)} = Tr_{N-1} |\psi_N\rangle\langle\psi_N| \xrightarrow{N\to\infty} |\varphi\rangle\langle\varphi|.$$

Generalizes factorized: $\psi_N(\mathbf{x}) = \prod_{j=1}^N \varphi(x_j)$ is BEC into φ .

BEC limit theorems with parameter $\beta \in (0,1]$

Now localized strong interactions: $N^{d\beta}V(N^{\beta}(\cdot)) \rightarrow b_0\delta$.

$$H_N = \sum_{i=1}^{N} -\Delta_{x_j} + \frac{1}{N} \sum_{i < i}^{N} N^{d\beta} V(N^{\beta}(x_i - x_j)).$$

BEC limit theorems with parameter $\beta \in (0,1]$

Now localized strong interactions: $N^{d\beta}V(N^{\beta}(\cdot)) \rightarrow b_0\delta$.

$$H_N = \sum_{j=1}^N -\Delta_{x_j} + \frac{1}{N} \sum_{i< j}^N N^{d\beta} V(N^{\beta}(x_i - x_j)).$$

Theorems (Erdös-Schlein-Yau 2006-2008 d=3 K.-Schlein-Staffilani 2009 d=2 plane and rational tori): Systems that are initially BEC remain condensed for all time, and the macroscopic evolution is the NLS:

$$i\partial_t \varphi = -\Delta \varphi + b_0 |\varphi|^2 \varphi.$$

Our limit theorems make the physics of BEC rigorous

$$H_N = \sum_{j=1}^N -\Delta_{x_j} + rac{1}{N} \sum_{i < j}^N N^{d\beta} V(N^{\beta}(x_i - x_j))$$
 $N ext{-body Schrod.}$
 $micro: \psi_N^0 \longrightarrow \psi_N$

init. BEC \downarrow \downarrow marg.

 $MACRO: \varphi_0 \longrightarrow \varphi$
 $NLS \ evolution$
 $i\partial_t \varphi = -\Delta \varphi + b_0 |\varphi|^2 \varphi.$

A taste of quantum probability $(\mathcal{H}, \mathcal{P}, \varphi)$

Hilbert space \mathcal{H} , set of projections \mathcal{P} , and state φ .

Quantum random variables (RVs)

A taste of quantum probability $(\mathcal{H}, \mathcal{P}, \varphi)$

Hilbert space \mathcal{H} , set of projections \mathcal{P} , and state φ .

Quantum random variables (RVs) or observables: operators on \mathcal{H} .

A taste of quantum probability $(\mathcal{H}, \mathcal{P}, \varphi)$

Hilbert space \mathcal{H} , set of projections \mathcal{P} , and state φ .

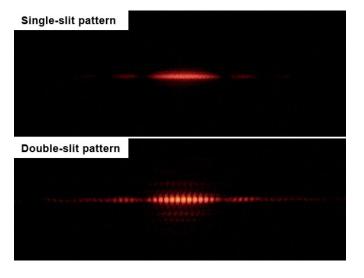
Quantum random variables (RVs) or observables: operators on \mathcal{H} .

The expectation of an observable A in a pure state is

$$\mathbb{E}_{\varphi}[A] := \langle \varphi | A \varphi \rangle = \int \varphi(x) \overline{A \varphi}(x) dx.$$

Position observable is $X(\varphi)(x) := x\varphi(x)$ with density $|\varphi|^2$.

Only some probability facts have quantum analogues



Courtesy of Jordgette

The BEC limit theorems imply quantum LLNs

If A is a one-particle observable and

$$A_i = 1 \otimes \cdots \otimes 1 \otimes A \otimes 1 \otimes \cdots \otimes 1$$
,

then for each $\epsilon > 0$,

$$\limsup_{N\to\infty} \mathbb{P}_{\psi_N} \left\{ \left| \frac{1}{N} \sum_{j=1}^N A_j \right| \right.$$

The BEC limit theorems imply quantum LLNs

If A is a one-particle observable and

$$A_i = 1 \otimes \cdots \otimes 1 \otimes A \otimes 1 \otimes \cdots \otimes 1$$
,

then for each $\epsilon > 0$,

$$\limsup_{N \to \infty} \mathbb{P}_{\psi_N} \left\{ \left| \frac{1}{N} \sum_{j=1}^N A_j - \langle \varphi | A \varphi \rangle \right| \, \geq \epsilon \right\} = 0.$$

BEC can explode as a bosenova

BEC can explode as a bosenova

We need a control theory of BEC

- Central limit theorem for BEC (Ben Arous-K.-Schlein, 2013)
 Our quantum CLT has correlations coming from interactions
- Another noncommutative CLT for quantum groups (Brannan-K., 2015)

Theorem (Ben Arous, K., Schlein, 2013): Under suitable assumptions on the initial state ψ_N^0 , φ_0 , A, and V, then for $t \in \mathbb{R}$

Theorem (Ben Arous, K., Schlein, 2013): Under suitable assumptions on the initial state ψ_N^0 , φ_0 , A, and V, then for $t \in \mathbb{R}$

$$\mathcal{A}_t := rac{1}{\sqrt{N}} \sum_{i=1}^N (A_j - \mathbb{E}_{arphi_t} A) \xrightarrow{\textit{distrib. as N} o \infty} \mathcal{N}(0, \sigma_t^2).$$

Theorem (Ben Arous, K., Schlein, 2013): Under suitable assumptions on the initial state ψ_N^0 , φ_0 , A, and V, then for $t \in \mathbb{R}$

$$\mathcal{A}_t := rac{1}{\sqrt{N}} \sum_{j=1}^N (A_j - \mathbb{E}_{arphi_t} A) \xrightarrow{\textit{distrib. as N} o \infty} \mathcal{N}(0, \sigma_t^2).$$

The variance that we would guess is correct at t = 0 only:

$$\sigma_0^2 = \mathbb{E}_{\varphi_0}[A^2] - (\mathbb{E}_{\varphi_0}A)^2$$

 σ_t^2 has $\varphi_0 \leadsto \varphi_t \dots$

Theorem (Ben Arous, K., Schlein, 2013): Under suitable assumptions on the initial state ψ_N^0 , φ_0 , A, and V, then for $t \in \mathbb{R}$

$$\mathcal{A}_t := rac{1}{\sqrt{N}} \sum_{j=1}^N (A_j - \mathbb{E}_{arphi_t} A) \xrightarrow{\textit{distrib. as N} o \infty} \mathcal{N}(0, \sigma_t^2).$$

The variance that we would guess is correct at t = 0 only:

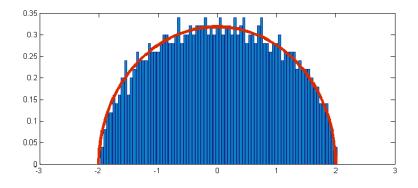
$$\sigma_0^2 = \mathbb{E}_{\varphi_0}[A^2] - (\mathbb{E}_{\varphi_0}A)^2$$

 σ_t^2 has $\varphi_0 \leadsto \varphi_t...$ and twisted by the Bogoliubov transform.

We've made part of the physics of BEC rigorous and ...

- Other mean-field models: my PhD students Leslie Ross (physics) and Tayyab Nawaz (math)
- Quantum group models of freely independent RVs with Michael Brannan (now at Texas A&M)

In free probability, semicircle distribution is 'normal'



1955 Wigner modeled heavy-atom spectra by eigenvalue statistics of random matrices

Banica-Collins '07, Brannan '13: Rescaled generators from quantum group $O_N^+:=C^*(u_{ij}:U=[u_{ij}]$ unitary, $U=\overline{U})$ are asymptotically free semicircular:

$$\{\sqrt{N}u_{ij}\}_{1\leq i,j\leq N}\xrightarrow{N\to\infty}\mathbf{S}=\{s_{ij}\}_{1\leq i,j\leq N}.$$

Semicircular means $s_{ij}=s_{ij}^{st}$ and Haar mixed moments are

$$\phi(s_{i(1)i}s_{i(2)i}\dots s_{i(k)i}) = \#\{\pi \in NC_2(k) : \ker i \geq \pi\}.$$

Theorem (Brannan, K. 2016): Deformed quantum groups with $F \in GL(N, \mathbb{C})$, defined by

$$O_F^+ := C^*(u_{ij} : U = [u_{ij}] \text{ unitary and } U = F\overline{U}F^{-1})$$

have an action on Free Araki-Woods factors (type III_{λ})

$$\Gamma := \Gamma(\mathbb{R}^n, V_t)'' := \{\ell(\xi) + \ell(\xi)^* : \xi \in H_{\mathbb{R}}\}.''$$

And $\exists \{F(n)\}_{n\geq 1}$ s.t. rescaled generators are asymptotically free and generalized circular:

$$\{\|F(n)\|_2 u_{ij}\}_{ij} \xrightarrow{N\to\infty} \mathbf{C}.$$

We create a quantum Weingarten-type calculus.

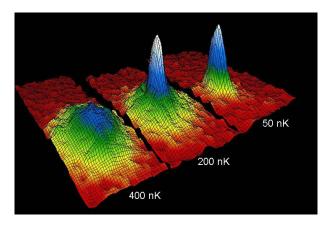
How does physics work?

Physics

Probability, PDE

Thanks

NSF DMS-1106770, OISE-0730136, CAREER DMS-1254791



arXiv:0808.0505 (AJM), 1009.5737 (CPAM), 1111.6999 (CMP), 1505.05137(PJM)

Our novelty is the bosonic Bogoliubov transform

$$\Theta_{t,s}: (\varphi(\cdot,t),\overline{\varphi}(\cdot,t)) \mapsto (\varphi(\cdot,s),\overline{\varphi}(\cdot,s))$$

written

$$\Theta_{t,0} = \left(\begin{array}{cc} U_t & JV_tJ \\ V_t & JU_tJ \end{array} \right),$$

Here $Jf = \overline{f}$ and U_t , V_t are certain linear maps...

The correct variance is our guess twisted by $\Theta_{t,0}$:

$$\sigma_t^2 = ||U_t A \varphi_t + J V_t A \varphi_t||^2 - |\langle \varphi_t | U_t A \varphi_t + J V_t A \varphi_t \rangle|^2.$$

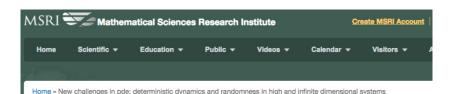
Proof: moments of $A_t = \frac{1}{\sqrt{N}} \sum (A_j - \mathbb{E}_{\varphi_t} A) = \frac{1}{\sqrt{N}} \sum \widetilde{A} j$ go to the normal moments

$$\mathbb{E}_{\psi_{\mathcal{N}}}\left(rac{1}{\sqrt{\mathcal{N}}}\sum_{j=1}^{\mathcal{N}}(A_{j}-\mathbb{E}_{arphi_{t}}A)
ight)^{2}=\mathit{Tr}\,\gamma_{\mathcal{N}}^{(1)}\widetilde{A}^{2}+\mathit{NTr}\,\gamma_{\mathcal{N}}^{(2)}(\widetilde{A}\otimes\widetilde{A})$$

First term: $\|\widetilde{A}\varphi_t\|^2$, same as i.i.d. cancels part of second term.

Remainder of second term gives the Bogoliubov-twisted variance.

The higher moments: Bounds on moments of observables w.r.t. full fluctuation dynamics around the mean-field approximation and the limiting dynamics given by the Bogoliubov transform.



Program

New Challenges in PDE: Deterministic Dynamics and Randomness in High and Infinite Dimensional Systems

August 17, 2015 to December 18, 2015

Organizers

Kay Kirkpatrick (University of Illinois at Urbana-Champaign), Yvan Martel (École Polytechnique), Jonathan Mattingly (Duke University), Andrea Nahmod (University of Massachusetts, Amherst), Pierre Raphael (Universite de Nice Sophia-Antipolis), Luc Rey-Bellet (University of Massachusetts, Amherst), IEAD (Gigliola Staffiliani (Massachusetts Institute of Technology), Daniel Tataru (University of California, Berkeley)

The mathematics of BEC

Gross and Pitaevskii model of BEC is the cubic nonlinear Schrödinger equation (NLS):

$$i\partial_t \varphi = -\Delta \varphi + \mu |\varphi|^2 \varphi$$

The outline

microscopic first principles $\rightsquigarrow \rightsquigarrow \rightsquigarrow$ Macroscopic states

- ▶ *N* bosons ~→ mean-field limit ~→ HARTREE EQUATION
- N bosons → localizing limit → NLS
- Moving to quantum probability

BEC limit theorems with parameter $\beta \in (0,1]$

Now localized strong interactions: $N^{d\beta}V(N^{\beta}(\cdot)) \rightarrow b_0\delta$.

$$H_N = \sum_{i=1}^N -\Delta_{x_i} \psi_N + \frac{1}{N} \sum_{i< i}^N N^{d\beta} V(N^{\beta}(x_i - x_j)).$$

BEC limit theorems with parameter $\beta \in (0,1]$

Now localized strong interactions: $N^{d\beta}V(N^{\beta}(\cdot)) \rightarrow b_0\delta$.

$$H_N = \sum_{j=1}^N -\Delta_{x_j} \psi_N + \frac{1}{N} \sum_{i< j}^N N^{d\beta} V(N^{\beta}(x_i - x_j)).$$

Theorems (Erdös-Schlein-Yau 2006-2008 d=3 K.-Schlein-Staffilani 2009 d=2 plane and rational tori): Systems that are initially BEC remain condensed for all time, and the macroscopic evolution is the NLS:

$$i\partial_t \varphi = -\Delta \varphi + b_0 |\varphi|^2 \varphi.$$

Our limit theorems make the physics of BEC rigorous

$$H_N = \sum_{j=1}^N -\Delta_{x_j} \psi_N + rac{1}{N} \sum_{i < j}^N N^{d\beta} V(N^\beta(x_i - x_j))$$
 N -body Schrod.

 $micro: \psi_N^0 \longrightarrow \psi_N$

init. BEC $\downarrow \qquad \qquad \downarrow \qquad \text{marg.}$
 $MACRO: \varphi_0 \longrightarrow \qquad \varphi$
 $NLS \; \text{evolution}$
 $i\partial_t \varphi = -\Delta \varphi + b_0 |\varphi|^2 \varphi.$

Coagulation and Smoluchowski eqn: Hammond and Rezakhanlou.

Theorem (Ben Arous, K., Schlein, 2013): If the initial state is factorized $\psi_N^0 = \varphi_0^{\otimes N}$ with normalized $\varphi_0 \in H^1(\mathbb{R}^3)$, and A is compact self-adjoint on $L^2(\mathbb{R}^3)$, and $V \leq 1/|\cdot|$, then for $t \in \mathbb{R}$

Theorem (Ben Arous, K., Schlein, 2013): If the initial state is factorized $\psi_N^0 = \varphi_0^{\otimes N}$ with normalized $\varphi_0 \in H^1(\mathbb{R}^3)$, and A is compact self-adjoint on $L^2(\mathbb{R}^3)$, and $V \leq 1/|\cdot|$, then for $t \in \mathbb{R}$

$$\mathcal{A}_t := rac{1}{\sqrt{N}} \sum_{j=1}^N (A_j - \mathbb{E}_{arphi_t} A) \xrightarrow{distrib.\ as\ N o \infty} \mathcal{N}(0, \sigma_t^2).$$

Distribution of A_t from $\psi_N = \psi_{N,t}$.

Theorem (Ben Arous, K., Schlein, 2013): If the initial state is factorized $\psi_N^0 = \varphi_0^{\otimes N}$ with normalized $\varphi_0 \in H^1(\mathbb{R}^3)$, and A is compact self-adjoint on $L^2(\mathbb{R}^3)$, and $V \leq 1/|\cdot|$, then for $t \in \mathbb{R}$

$$\mathcal{A}_t := rac{1}{\sqrt{N}} \sum_{j=1}^N (A_j - \mathbb{E}_{arphi_t} A) \xrightarrow{\textit{distrib. as N} o \infty} \mathcal{N}(0, \sigma_t^2).$$

Distribution of A_t from $\psi_N = \psi_{N,t}$.

The obvious variance is correct at t = 0 only (i.i.d.):

$$\sigma_0^2 = \mathbb{E}_{\varphi_0}[A^2] - (\mathbb{E}_{\varphi_0}A)^2 = ||A\varphi_0||^2 - \langle \varphi_0|A\varphi_0\rangle^2.$$

Theorem (Ben Arous, K., Schlein, 2013): If the initial state is factorized $\psi_N^0=\varphi_0^{\otimes N}$ with normalized $\varphi_0\in H^1(\mathbb{R}^3)$, and A is compact self-adjoint on $L^2(\mathbb{R}^3)$, and $V\leq 1/|\cdot|$, then for $t\in\mathbb{R}$

$$\mathcal{A}_t := rac{1}{\sqrt{N}} \sum_{j=1}^N (A_j - \mathbb{E}_{arphi_t} A) \xrightarrow{\textit{distrib. as N} o \infty} \mathcal{N}(0, \sigma_t^2).$$

Distribution of A_t from $\psi_N = \psi_{N,t}$.

The obvious variance is correct at t = 0 only (i.i.d.):

$$\sigma_0^2 = \mathbb{E}_{\varphi_0}[A^2] - (\mathbb{E}_{\varphi_0}A)^2 = ||A\varphi_0||^2 - \langle \varphi_0|A\varphi_0\rangle^2.$$

The variance σ_t^2 is more subtle than replacing φ_0 by φ_t .

Proof: first moment of $A_t = \frac{1}{\sqrt{N}} \sum (A_j - \mathbb{E}_{\varphi_t} A)$

First moment goes to the normal thing:

$$|\mathbb{E}_{\psi_{N}}\mathcal{A}_{t}| = \left|rac{1}{\sqrt{N}}\sum_{j=1}^{N} extit{Tr}\, extit{A}(\gamma_{N}^{(1)} - |arphi
angle\langlearphi|)
ight|$$

Proof: first moment of $\mathcal{A}_t = \frac{1}{\sqrt{N}} \sum (A_j - \mathbb{E}_{\varphi_t} A)$

First moment goes to the normal thing:

$$\begin{split} |\mathbb{E}_{\psi_N} \mathcal{A}_t| &= \left| \frac{1}{\sqrt{N}} \sum_{j=1}^N \operatorname{Tr} A(\gamma_N^{(1)} - |\varphi\rangle \langle \varphi|) \right| \\ &\leq \frac{||A||}{\sqrt{N}} \sum_{j=1}^N \operatorname{Tr} \left| \gamma_N^{(1)} - |\varphi\rangle \langle \varphi| \right| \\ &\lesssim \frac{||A||}{\sqrt{N}} \frac{N e^{Kt}}{N} \to 0. \end{split}$$

The bosonic Fock space

Fock space:
$$\mathcal{F} = \bigoplus_{n \geq 0} L_s^2(\mathbb{R}^{3n}, dx_1 \dots dx_n)$$

Inner product:

$$\langle \Psi, \Phi \rangle = \overline{\psi^{(0)}} \varphi^{(0)} + \sum_{n \geq 1} \langle \psi^{(n)}, \varphi^{(n)} \rangle \,.$$

The bosonic Fock space

Fock space:
$$\mathcal{F} = \bigoplus_{s \in \mathbb{R}} L_s^2(\mathbb{R}^{3n}, dx_1 \dots dx_n)$$

Inner product:

$$\langle \Psi, \Phi \rangle = \overline{\psi^{(0)}} \varphi^{(0)} + \sum_{n \geq 1} \langle \psi^{(n)}, \varphi^{(n)} \rangle \,.$$

Number-of-particles operator: $\mathcal{N}\{\psi^{(n)}\}_{n\geq 0} = \{n\psi^{(n)}\}_{n\geq 0}$, eigenvectors $\{0,\ldots,0,\psi^{(m)},0,\ldots\}$.

Hamiltonian:

$$\mathcal{H}_{N}^{(m)} = \sum_{i=1}^{m} -\Delta_{x_{i}} + \frac{1}{N} \sum_{i < i}^{m} V(x_{i} - x_{j}).$$

The bosonic Fock space

Fock space:
$$\mathcal{F} = \bigoplus_{n>0} L_s^2(\mathbb{R}^{3n}, dx_1 \dots dx_n)$$

Inner product:

$$\langle \Psi, \Phi \rangle = \overline{\psi^{(0)}} \varphi^{(0)} + \sum_{n \geq 1} \langle \psi^{(n)}, \varphi^{(n)} \rangle \,.$$

Number-of-particles operator: $\mathcal{N}\{\psi^{(n)}\}_{n\geq 0} = \{n\psi^{(n)}\}_{n\geq 0}$, eigenvectors $\{0,\ldots,0,\psi^{(m)},0,\ldots\}$.

Hamiltonian:

$$\mathcal{H}_{N}^{(m)} = \sum_{i=1}^{m} -\Delta_{x_{i}} + \frac{1}{N} \sum_{i < i}^{m} V(x_{i} - x_{j}).$$

Then $e^{-i\mathcal{H}_N t}\{0,\ldots,0,\psi_N,0,\ldots\} = \{0,\ldots,0,e^{-iH_N t}\psi_N,0,\ldots\}.$

Advantage: Particle number not fixed.

Creation and annihilation operators

Creation and annihilation operators
$$\frac{1}{n}$$

$$(a^*(f)\psi)^{(n)}(x_1,\ldots,x_n)=\frac{1}{\sqrt{n}}\sum_{i=1}^n f(x_i)\psi^{(n-1)}(x_1,\ldots,x_{j-1},x_{j+1},\ldots,x_n)$$

 $(a(f)\psi)^{(n)}(x_1,\ldots,x_n) = \sqrt{n+1} \int dx \ \overline{f(x)}\psi^{(n+1)}(x,x_1,\ldots,x_n).$

Creation and annihilation operators

$$(a^*(f)\psi)^{(n)}(x_1,\ldots,x_n) = \frac{1}{\sqrt{n}}\sum_{j=1}^n f(x_j)\psi^{(n-1)}(x_1,\ldots,x_{j-1},x_{j+1},\ldots,x_n)$$

 $(a(f)\psi)^{(n)}(x_1,\ldots,x_n) = \sqrt{n+1}\int dx \ \overline{f(x)}\psi^{(n+1)}(x,x_1,\ldots,x_n).$

Canonical commutation relations:
$$[a(f), a^*(g)] = \langle f, g \rangle$$
 and $[a(f), a(g)] = [a^*(f), a^*(g)] = 0$

 $[a(f), a(g)] = [a^*(f), a^*(g)] = 0.$

Creation and annihilation operators

$$(a^*(f)\psi)^{(n)}(x_1,\ldots,x_n) = \frac{1}{\sqrt{n}} \sum_{j=1}^n f(x_j)\psi^{(n-1)}(x_1,\ldots,x_{j-1},x_{j+1},\ldots,x_n)$$
$$(a(f)\psi)^{(n)}(x_1,\ldots,x_n) = \sqrt{n+1} \int dx \ \overline{f(x)}\psi^{(n+1)}(x,x_1,\ldots,x_n).$$

Canonical commutation relations: $[a(f), a^*(g)] = \langle f, g \rangle$ and $[a(f), a(g)] = [a^*(f), a^*(g)] = 0$.

Operator-valued distributions a_x, a_x^* :

$$a(f) = \int dx \, \overline{f(x)} a_x, \qquad ext{and} \qquad a^*(f) = \int dx \, f(x) \, a_x^* \, .$$

Hamiltonian (commutes w/ particle number op. $\mathcal{N} = \int dx \, a_x^* a_x$):

$$\mathcal{H}_N = \int dx \, \nabla_x a_x^* \, \nabla_x a_x + \frac{1}{2N} \int dx dy \, V(x-y) a_x^* a_y^* a_y a_x \,.$$

Replacement for product states

Product state with N particles all in state φ :

$$\{0,\ldots,0,arphi^{\otimes N},0,\ldots\}=rac{\left(a^*(arphi)
ight)^N}{\sqrt{N!}}\Omega\,.$$

Here the vacuum vector is $\Omega = \{1, 0, 0, \dots\}$.

Replacement for product states

Product state with N particles all in state φ :

$$\{0,\ldots,0,\varphi^{\otimes N},0,\ldots\}=rac{\left(a^*(\varphi)\right)^N}{\sqrt{N!}}\Omega.$$

Here the vacuum vector is $\Omega = \{1, 0, 0, \dots\}$.

Weyl operator $W(\varphi) = e^{(a^*(\varphi) - a(\varphi))}$ to make a coherent state, with all particles all in state φ :

$$W(\varphi)\Omega = e^{-\|\varphi\|^2/2} \sum_{j=0} \frac{a^*(\varphi)^j}{j!} \Omega = e^{-\|\varphi\|^2/2} \{1, \varphi, \frac{\varphi^{\otimes 2}}{\sqrt{2!}}, \dots, \frac{\varphi^{\otimes j}}{\sqrt{j!}}, \dots \}.$$

Replacement for product states

Product state with N particles all in state φ :

$$\{0,\ldots,0,\varphi^{\otimes N},0,\ldots\}=rac{\left(a^*(\varphi)\right)^N}{\sqrt{N!}}\Omega.$$

Here the vacuum vector is $\Omega = \{1, 0, 0, \dots\}$.

Weyl operator $W(\varphi) = e^{(a^*(\varphi) - a(\varphi))}$ to make a coherent state, with all particles all in state φ :

$$W(\varphi)\Omega = e^{-\|\varphi\|^2/2} \sum_{j=0} \frac{a^*(\varphi)^j}{j!} \Omega = e^{-\|\varphi\|^2/2} \{1, \varphi, \frac{\varphi^{\otimes 2}}{\sqrt{2!}}, \dots, \frac{\varphi^{\otimes j}}{\sqrt{j!}}, \dots \}.$$

With respect to this coherent state, \mathcal{N} is a Poisson($\|\varphi\|^2$) RV.

The fluctuation dynamics

Around the mean-field approximation $W(\sqrt{N}\varphi_t)\Omega$, fluctuations

$$U_N(t;s) = W^*(\sqrt{N}\varphi_t)e^{-i\mathcal{H}_N(t-s)}W(\sqrt{N}\varphi_s),$$

with generator

The fluctuation dynamics

Around the mean-field approximation $W(\sqrt{N}\varphi_t)\Omega$, fluctuations

$$U_N(t;s) = W^*(\sqrt{N}\varphi_t)e^{-i\mathcal{H}_N(t-s)}W(\sqrt{N}\varphi_s),$$

with generator

$$\mathcal{L}_{N}(t) = \int dx \, \nabla_{x} a_{x}^{*} \nabla_{x} a_{x} + \int dx \, (V * |\varphi_{t}|^{2})(x) a_{x}^{*} a_{x}$$

$$+ \frac{1}{2} \int dx dy \, V(x - y) \, \left(\varphi_{t}(x) \varphi_{t}(y) a_{x}^{*} a_{y}^{*} + \overline{\varphi}_{t}(x) \overline{\varphi}_{t}(y) a_{x} a_{y}\right)$$

$$+ \int dx dy \, V(x - y) \, \varphi_{t}(x) \overline{\varphi}_{t}(y) a_{x}^{*} a_{y} + o(1)$$

$$= \mathcal{L}_{\infty}(t) + o(1).$$

The fluctuation dynamics

Around the mean-field approximation $W(\sqrt{N}\varphi_t)\Omega$, fluctuations

$$\mathcal{U}_{N}(t;s) = W^{*}(\sqrt{N}\varphi_{t})e^{-i\mathcal{H}_{N}(t-s)}W(\sqrt{N}\varphi_{s}),$$

with generator

$$\mathcal{L}_{N}(t) = \int dx \, \nabla_{x} a_{x}^{*} \nabla_{x} a_{x} + \int dx \, (V * |\varphi_{t}|^{2})(x) a_{x}^{*} a_{x}$$

$$+ \frac{1}{2} \int dx dy \, V(x - y) \, \left(\varphi_{t}(x) \varphi_{t}(y) a_{x}^{*} a_{y}^{*} + \overline{\varphi}_{t}(x) \overline{\varphi}_{t}(y) a_{x} a_{y} \right)$$

$$+ \int dx dy \, V(x - y) \, \varphi_{t}(x) \overline{\varphi}_{t}(y) a_{x}^{*} a_{y} + o(1)$$

$$= \mathcal{L}_{\infty}(t) + o(1).$$

Limiting dynamics $\mathcal{U}_{\infty}(t,s)$ has generator $\mathcal{L}_{\infty}(t)$ and is described by the Bogoliubov transformation.