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Bakry–Émery Gradient Estimates

If Γ is an appropriate notion of gradient, and Pt is an associated
heat kernel, the Bakry–Émery Gradient estimates√

Γ(Ptf) ≤ Pt
√

Γ(f).

Can be used to establish

1. Riesz-Transform Bounds
(Coulhon and Duong et al.)

2. Isoperimetric inequalities
(e.g. Baudoin–Bonnefont)

3. Wasserstein Control
(Kuwada Duality)



Generalizations of Curvature

The Bakry–Émery estimate can be thought of as a curvature
condition.

In the appropriate settings it is equivalent to

1. Curvature Dimension Inequalities of Bakry-Émery.

2. Ricci Curvature Lower bounds of Lott–Villani.

Question Can we find a situation which supports a
Bakry–Émery gradient estimate, but neither of the above?



Setting

We have the classical Dirichlet energy, on Rn

D(f) =

∫
|∇f |2 dx f ∈ H1(Rn)

by H1(Rn), can be either seen as the closure of C∞0 (Rn) with
respect to the norm

‖f‖2H1 =

∫
|f |2 + |∇f |2 dx.

Or you can think of H1(Rn) as the set of functions f ∈ L2(R)
such that |∇f | ∈ L2(R),



Setting

Dirichlet Forms

Laplacians Markov Processes

SemigroupsResolvents

Hille–Yosida

Infinitesimal Generator

transistion probabilities



Energy Measures νf,g such that∫
φ dνf,g = E(fφ, g) + E(gφ, f)− E(φ, fg).

E admits a Carré du Champ/µ is energy dominant

µ� νf,g for all f and define Γµ(f, g) =
dνf,g
dµ

Classical Case: Γ(f, g) = ∇f · ∇g



Setting

I (X, d) is a locally compact Hausdorff space
I µ Borel regular measure with volume doubling, i.e. there is

some constant Cvol

Cvolµ(B2r(x)) ≤ µ(Br(x)) and µ(B1(x)) ≥ cvol
I (E , dom E) is a local regular Dirichlet form with heat

semigroup Pt.
I Energy Measures νf,g such that

2

∫
φ dνf,g = E(fφ, g) + E(gφ, f)− E(φ, fg).

I E admits a Carré du Champ/µ is energy dominant

µ� νf,g for all f and define Γµ(f, g) =
dνf,g
dµ

I Poincaré inequality

C

∫
Br(x)

∣∣∣f − fBr(x)

∣∣∣ dµ ≤ νf (BCP r(x))



General Results

Reisz Transform: f 7→ Γµ(∆−1/2f).

Theorem

If we have

I Locally compact Hausdorff metric space (X, d).

I Upper and lower volume Doubling measure µ.

I Dirichlet form (E ,dom E) which admits a Carré du Champ.

Which Satisfy

I Poincaré Inequality

I Bakry–Émery inequality

Then the Riesz Transform is bounded for p ≥ 1, i.e.∥∥∥Γµ(f, f)1/2
∥∥∥
p
≤ Cp

∥∥∥∆1/2f
∥∥∥
p



Perimeters and Bounded Variation

We say f is bounded variation, and write f ∈ BV , if

lim
t→0

∫ √
Γ(Ptf) dµ <∞

and define Var(f) = limt→0

∫ √
Γ(Ptf) dµ.

If 1E ∈ BV , we then the perimeter is called P(E) = Var(1E).

E is called a Caccioppoli set if 1E ∈ BV .



Isoperimetric Inequalities

Theorem (Baudoin-K.)

If we have

I Locally compact Hausdorff metric space (X, d).

I Upper and lower volume Doubling measure µ.

I Dirichlet form (E ,dom E).

Which Satisfy

I Poincaré Inequality and Bakry–Émery Inequality

Then Isoperimetric Inequality there exists Q and Ciso such
that

µ(E)1−1/Q ≤ Ciso P(E).

and Gaussian Isoperimetric Inequality

Cµ(E)
√

ln (1/µ(E)) ≤ Per(E).



Cheeger’s Constant and Spectral gaps

Cheeger Constant

h = inf
P (E)

µ(E)

Theorem

The spectral gap

λ1 ≤
2h2

(1− e−1)2



Gaussian Isoperimetric constant

If

k = inf
P (E)

µ(E)
√
−µ(E)

for µ(E) ≤ 1/2.

Theorem

If ρ0 is the log-Sobolev constant, then

ρ0 ≤ 512k2.

Here we mean that ρ0 is optimal constant such that∫
f2 ln f2 dµ−

∫
f2 dµ ln

(∫
f2 dµ

)
≤ 1

ρ0
E(f).



Kuwada Duality

Let

Wp(ν1, ν2) = inf
π

(∫
d(x, y)p π(dx, dy)

)1/p

be the p-Wasserstein Distance between two probability
measures on a metric measure space (X, d).

Then there is a dual form of the Bakry–Émery inequality called
p-Wasserstein control:

Wp(P
∗
t ν1, P

∗
t ν2) ≤ e−ktWp(ν1, ν2).

Where ∫
fdP ∗t ν =

∫
Ptf dν.



Theorem (Kuwada)

p-Wasserstein control:

Wp(P
∗
t ν1, P

∗
t )ν2 ≤ e−ktWp(ν1, ν2).

is Equivalent to√
Γ(Ptf) ≤ e−kt(Pt(Γ(f))p/2)1/p



Poincare Duality On Fractals

Goals

I To Classify the differential forms on one dimensional
Dirichlet spaces, particularly on the Sierpinski Gasket.

I Relate the heat equation on differential forms to that on
scalars.



P.C.F Self-similar structures

Approximating graphs Gk with vertex sets

V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ X.

We have “compatible” graph energies Ek on Gn,

Ej(f) = inf
{
Ek(g) | g|Vj = f

}
.

Because of the symmetry Ej is the graph energy on Vj scaled by
a constant.



P.C.F. Self-similar structures

Then there is a self-similar form

E(f) = lim Ej(f |Vj )

Where domE = {f : K → R | E(f) <∞}.



Harmonic Energy Measures

It is possible to define Harmonic functions h with boundary at
the corners, by solving the Dirichlet problem on the graphs and
taking the limit.
We shall consider the reference measure µ = νh.



Differential forms on fractals

Idea: to deal with these problems by developing a differential
geometry for Dirichlet spaces and hence fractals

based on
Differential forms on the Sierpinski gasket and other
papers by Cipriani–Sauvageot

Derivations and Dirichlet forms on fractals
by Ionescu–Rogers–Teplyaev, JFA 2012

Vector analysis on Dirichlet Spaces
by Hinz–Röckner–Teplyaev, SPA 2013



Differential forms on Dirichlet spaces

Let X be a locally compact second countable Hausdorff space
and m be a Radon measure on X with full support. Let (E ,F)
be a regular symmetric Dirichlet form on L2(X,m).

Write C := C0(X) ∩ F .

The space C is a normed space with

‖f‖C := E1(f)1/2 + sup
x∈X
|f(x)|.



Differential forms on Dirichlet spaces

We equip the space C ⊗ C with a bilinear form, determined by

〈a⊗ b, c⊗ d〉H =

∫
X
bd dΓ(a, c).

This bilinear form is nonnegative definite, hence it defines a
seminorm on C ⊗ C.

H: the Hilbert space obtained by factoring out zero seminorm
elements and completing.



Differential forms on Dirichlet spaces

In the classical setting, this norm∫
|b|2|∇a|2 dµ

Where µ is Lebesgue measure in the appropriate dimension.

And, any simple tensor a⊗ b =
∑d

i=1 x
i ⊗ b ∂a

∂xi
.

Think of xi ⊗ 1 as dxi,



Differential forms on Dirichlet spaces

We call H the space of differential 1-forms associated with
(E ,F).

The space H can be made into a C-C-bimodule by setting

a(b⊗ c) := (ab)⊗ c− a⊗ (bc) and (b⊗ c)d := b⊗ (cd)

and extending linearly.

C acts on both sides by uniformly bounded operators.



Differential on Dirichlet spaces

we can introduce a derivation operator by defining ∂ : C → H
by ∂a := a⊗ 1 .

‖∂a‖2 ≤ 2E(a) and the Leibniz rule holds,

∂(ab) = a∂b+ b∂a, a, b ∈ C.



Co-Differential on Dirichlet spaces

The operator ∂ extends to a closed unbounded linear operator
from L2(X,m) into H with domain F .

Let ∂∗ denote its adjoint, such that

〈∂∗ω, g〉L2 = 〈ω, ∂g〉H (1)

Let C∗ be the dual space of the normed space C. Then ∂∗

defines a bounded linear operator from H into C∗.

In this talk we shall consider ∂∗ : H → L2(X) by restricting to
the domain

dom ∂∗ =
{
η ∈ H | ∃f ∈ L2(X) with ∂∗η(φ) = 〈f, φ〉L2

}



PDE on fractals

We can think of ∂ as something like a gradient or an exterior
derivative.

And think of ∂∗ as div or as the co-differential.

This allows for a lot of new differential equations to but
represented on fractals

For instance, we now have a divergence form

∂∗a(∂u) = 0



Magnetic Schrödinger operators

Classically

i
∂u

∂t
= (−i∇−A)2u+ V u

becomes

i
∂u

∂t
= (−i∂ − a)∗(−i∂ − a)u+ V u

Where a ∈ H and V ∈ L∞(X,m).



Definition of Poincare Duality

A result of Hinz–Röckner–Teplyaev shows that (with some
technical conditions) there is a “fibrewise” inner product and
norm on H. Call the fibres Hx and the inner product 〈., .〉H,x.

Note
〈∂f, ∂g〉H,x = Γµ(f, g)(x)

almost everywhere.



Definition of Poincare Duality

Theorem (Baudoin–K.)

In the above situation, chose ω ∈ H such that ‖ω‖H,x = 1 µ-a.e.

then ?L2(X,µ)→ H defined by

?f = ω · f

is a isometry both globally and fiberwise with inverse

?η(x) = 〈ω, η〉H,x .

In particular L2(X,µ) ∼= H as Hilbert spaces.

Proof Hino index 1 implies that dimHx = 1 almost everywhere.



Laplacian on Differential Forms

Consider
~∆ = ∂∂∗

with domain

dom ~∆ = {ω ∈ H | ∂∗ω ∈ dom ∂} .



Hodge Decomposition

Hinz–Teplyaev: When restricted to topologically 1-dimensional
fractals, there is a Hodge decomposition with

H = H0 ⊕H1

where
H0 = Im ∂ are Exact Forms

and
H1 = ker ∂∗ are Harmonic Forms



Product rule for ∂∗

The co-differential has the following product rule

∂∗(η · f) = 〈∂f, η〉Hx + f∂∗η.

Thus if ω ∈ H1 is harmonic, then the second term on the right
disappears and we get.

∂∗ ? f = ?∂f.

Note: It is not true that

?∂∗η = ∂ ? η



Classification of Differential forms

Theorem (Baudoin–K.)

Consider the self-similar energy form E on SG, with respect to a
borel measure µ,

1. µ = νh is the energy measure associated to the harmonic h
with boundary V0.

2. ? is the Hodge Star with respect to ∂h.

3. ∆0 is the Dirichlet Laplacian with boundary V0.

Then ~∆ restricted to exact forms H0 is equal to − ?∆0? as
operators.

If ∆µ = ∂∗∂ is the generator of E with respect to µ, this implies
that

dom ∆µ = {f ∈ dom E | ? ∂f = Γ(f, h) ∈ dom0 E}



Energy measures can be extended to elements of H by∫
φ dνω := 〈ω · φ, ω〉H .

Theorem (Baudoin–K.)

Consider the self-similar energy form E on SG, with respect to a
borel measure µ,

1. µ = νω is the energy measure associated to the harmonic
form omega ∈ H1.

2. ? is the Hodge Star with respect to ω.

3. ∆ω is the generator of E.

Then ~∆ restricted to exact forms H0 is equal to ?∆? as
operators.



Bakry–Émery Inequality on the Sierpinski Gasket

Theorem (Baudoin–K.)

In either of the settings of the above theorems, the
Bakry–Émery inequality is satisfied.

That is if µ is either νh for some harmonic function h, or νω
for some harmonic form ω, then√

Γµ(e−t∆µf) ≤ e−t∆µ

√
Γµ(f).



Proof of Bakry–Émery inequality

Idea:
et
~∆∂ = ∂et∆

Then because ~∆ = ?∆?

?e−t∆ ? ∂ = ∂e−t∆.

Thus ∣∣et∆ ? ∂f(x)
∣∣ =

∥∥∂et∆f∥∥H,x =
√

Γ(et∆f)(x).

The Inequality follows from the fact that∣∣et∆ ? ∂f(x)
∣∣ ≤ et∆ |?∂f | = et∆

√
Γ(f).



Reisz Transform and Differential Forms

The Riesz transform in this case can be interpreted as

R = ?∂∆1/2

Theorem (Baudoin–K.)

Let p > 1 then for every f ∈ L2(X) with
∫
f dµ = 0, then

‖Rf‖p ≤ 2(p∗ − 1) ‖f‖p

where p∗ = max {p, p/(p− 1)}



Reisz Transform: Gundy Representation

Let Xt be the diffusion generated by ∆ and started with
distribution µ. Let Bt be Brownian motion of R. Define, for
f ∈ L2(X)

Qf(x, y) = e−y
√
−∆f(x)

Then Mf
t = Q(Xt, Bt) is a Martingale, and we have the

following Gundy Representation (see also to Bañuelos–Wang)

Lemma

For f ∈ L2(X),
∫
f = 0 then

Rf(x) = −2 lim
y0→∞

Ey0

(∫ τ0

0
?∂Qf(Xs, Bs) dBs

∣∣Xτ0 = x

)
where τ0 = inf {t : Bt = 0}



Reisz Transform: Martingale Subordination

Rf(x) = −2 lim
y0→∞

Ey0

(∫ τ0

0
?∂Qf(Xs, Bs) dBs

∣∣Xτ0 = x

)
Proof of bounds: Let

Mf
t = Qt(Xt, Bt) and Nt =

∫ t

0
?∂Qf(Xt, Bt) dBt.

Then, |N0| < |M0| and [M,M ]t − [N,N ]t is non-negative and
non-decreasing, so using a Martingale subordination theorem of
Bañuelos–Wang,

E[|Nt|p]1/p ≤ (p∗ − 1)E[|Mt|p]1/p.



Isoperimetry Inequality and Poincaré Duality

Theorem (Baudoin–K.)

Assuming the Poincaré duality and that et
~∆∂ = ∂et∆,

Var f = sup {〈f, ∂∗ ? g〉 | g ∈ dom E and |g| < 1a.e.}

In particular this works for the Sierpinski Gasket.



Further Topics: Fracafolds and Products Fractals

We can build a fractafold by gluing copies of SG together.

Theorem (Baudoin–K.)

The fractafold X admits a Poincaré duality.

The inequality also is preserved by taking products.




