Poincaré Duality, Bakry–Émery Estimates and Isoperimetry on Fractals

Daniel J. Kelleher

Golomb Visiting Assistant Professor Department of Mathematics Purdue University

Joint work with Fabrice Baudoin

Frontier Probability Days — May 2016 — Salt Lake City

If Γ is an appropriate notion of gradient, and P_t is an associated heat kernel, the Bakry–Émery Gradient estimates

$$\sqrt{\Gamma(P_t f)} \le P_t \sqrt{\Gamma(f)}.$$

うつん 川 エー・エー・ エー・シック

Can be used to establish

- 1. Riesz-Transform Bounds (Coulhon and Duong et al.)
- 2. Isoperimetric inequalities (e.g. Baudoin–Bonnefont)
- 3. Wasserstein Control (Kuwada Duality)

The Bakry–Émery estimate can be thought of as a curvature condition.

In the appropriate settings it is equivalent to

- 1. Curvature Dimension Inequalities of Bakry-Émery.
- 2. Ricci Curvature Lower bounds of Lott–Villani.

Question Can we find a situation which supports a Bakry–Émery gradient estimate, but neither of the above?

(日) (日) (日) (日) (日) (日) (日)

We have the classical Dirichlet energy, on \mathbb{R}^n

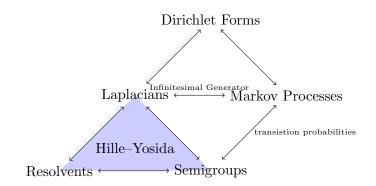
$$\mathbf{D}(f) = \int |\nabla f|^2 \, dx \quad f \in H^1(\mathbb{R}^n)$$

by $H^1(\mathbb{R}^n)$, can be either seen as the closure of $C_0^\infty(\mathbb{R}^n)$ with respect to the norm

$$||f||_{H^1}^2 = \int |f|^2 + |\nabla f|^2 \, dx.$$

Or you can think of $H^1(\mathbb{R}^n)$ as the set of functions $f \in L^2(\mathbb{R})$ such that $|\nabla f| \in L^2(\mathbb{R})$,

- ロ ト - 4 回 ト - 4 □



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Energy Measures $\nu_{f,q}$ such that

0

$$\int \phi \, d\nu_{f,g} = \mathcal{E}(f\phi,g) + \mathcal{E}(g\phi,f) - \mathcal{E}(\phi,fg).$$

 ${\mathcal E}$ admits a Carré du Champ/ μ is energy dominant

$$\mu \ll \nu_{f,g}$$
 for all f and define $\Gamma_{\mu}(f,g) = \frac{d\nu_{f,g}}{d\mu}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Classical Case: $\Gamma(f,g) = \nabla f \cdot \nabla g$

Setting

- ▶ (X, d) is a locally compact Hausdorff space
- ▶ μ Borel regular measure with volume doubling, i.e. there is some constant C_{vol}

 $C_{vol}\mu(B_{2r}(x)) \le \mu(B_r(x))$ and $\mu(B_1(x)) \ge c_{vol}$

- $(\mathcal{E}, \operatorname{dom} \mathcal{E})$ is a local regular Dirichlet form with heat semigroup P_t .
- Energy Measures $\nu_{f,g}$ such that

$$2\int \phi \, d\nu_{f,g} = \mathcal{E}(f\phi,g) + \mathcal{E}(g\phi,f) - \mathcal{E}(\phi,fg).$$

▶ \mathcal{E} admits a Carré du Champ/µ is energy dominant

$$\mu \ll \nu_{f,g}$$
 for all f and define $\Gamma_{\mu}(f,g) = \frac{d\nu_{f,g}}{d\mu}$

Poincaré inequality

$$C\int_{B_r(x)} \left| f - \overline{f}_{B_r(x)} \right| \ d\mu \leq \nu_f(B_{C_Pr}(x))$$

General Results

Reisz Transform: $f \mapsto \Gamma_{\mu}(\Delta^{-1/2}f)$.

Theorem

If we have

- Locally compact Hausdorff metric space (X, d).
- Upper and lower volume Doubling measure μ .
- ▶ Dirichlet form $(\mathcal{E}, \operatorname{dom} \mathcal{E})$ which admits a Carré du Champ.

Which Satisfy

- Poincaré Inequality
- ► Bakry-Émery inequality

Then the **Riesz Transform** is bounded for $p \ge 1$, i.e.

$$\left\|\Gamma_{\mu}(f,f)^{1/2}\right\|_{p} \leq C_{p} \left\|\Delta^{1/2}f\right\|_{p}$$

SQA

We say f is **bounded variation**, and write $f \in BV$, if

$$\lim_{t \to 0} \int \sqrt{\Gamma(P_t f)} \ d\mu < \infty$$

and define $\operatorname{Var}(f) = \lim_{t \to 0} \int \sqrt{\Gamma(P_t f)} d\mu$.

If $\mathbf{1}_E \in BV$, we then the **perimeter** is called $P(E) = Var(\mathbf{1}_E)$.

- ロ ト - 4 回 ト - 4 □

E is called a **Caccioppoli set** if $\mathbf{1}_E \in BV$.

Isoperimetric Inequalities

Theorem (Baudoin-K.)

If we have

- Locally compact Hausdorff metric space (X, d).
- Upper and lower volume Doubling measure μ .
- Dirichlet form $(\mathcal{E}, \operatorname{dom} \mathcal{E})$.

Which Satisfy

► Poincaré Inequality and Bakry-Émery Inequality Then Isoperimetric Inequality there exists Q and C_{iso} such that

$$\mu(E)^{1-1/Q} \le C_{iso} \operatorname{P}(E).$$

and Gaussian Isoperimetric Inequality

$$C\mu(E)\sqrt{\ln\left(1/\mu(E)\right)} \le \operatorname{Per}(E).$$

Cheeger Constant

$$h = \inf \frac{P(E)}{\mu(E)}$$

Theorem

The spectral gap

$$\lambda_1 \le \frac{2h^2}{(1 - e^{-1})^2}$$

Gaussian Isoperimetric constant

If

$$k = \inf \frac{P(E)}{\mu(E)\sqrt{-\mu(E)}}$$

for $\mu(E) \le 1/2$.

Theorem

If ρ_0 is the log-Sobolev constant, then

 $\rho_0 \le 512k^2.$

Here we mean that ρ_0 is optimal constant such that

$$\int f^2 \ln f^2 \, d\mu - \int f^2 \, d\mu \ln \left(\int f^2 \, d\mu \right) \leq \frac{1}{\rho_0} \mathcal{E}(f).$$

Kuwada Duality

Let

$$W_p(\nu_1, \nu_2) = \inf_{\pi} \left(\int d(x, y)^p \ \pi(dx, dy) \right)^{1/p}$$

be the *p*-Wasserstein Distance between two probability measures on a metric measure space (X, d).

Then there is a dual form of the Bakry–Émery inequality called p-Wasserstein control:

$$W_p(P_t^*\nu_1, P_t^*\nu_2) \le e^{-kt}W_p(\nu_1, \nu_2).$$

Where

$$\int f dP_t^* \nu = \int P_t f \ d\nu.$$

- ロ ト - 4 回 ト - 4 □

Theorem (Kuwada)

p-Wasserstein control:

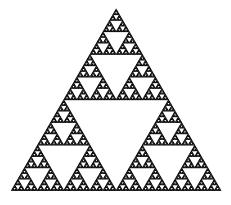
$$W_p(P_t^*\nu_1, P_t^*)\nu_2 \le e^{-kt}W_p(\nu_1, \nu_2).$$

is Equivalent to

$$\sqrt{\Gamma(P_t f)} \le e^{-kt} (P_t(\Gamma(f))^{p/2})^{1/p}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ = のへぐ

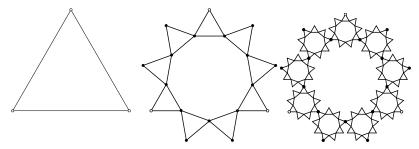
Poincare Duality On Fractals



Goals

- ► To Classify the differential forms on one dimensional Dirichlet spaces, particularly on the Sierpinski Gasket.
- ▶ Relate the heat equation on differential forms to that on scalars.

P.C.F Self-similar structures



Approximating graphs G_k with vertex sets

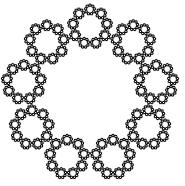
 $V_0 \subset V_1 \subset V_2 \subset \cdots \subset X.$

We have "compatible" graph energies \mathcal{E}_k on G_n ,

$$\mathcal{E}_j(f) = \inf \left\{ \mathcal{E}_k(g) \mid g \mid_{V_j} = f \right\}.$$

Because of the symmetry \mathcal{E}_j is the graph energy on V_j scaled by a constant.

P.C.F. Self-similar structures



Then there is a self-similar form

$$\mathcal{E}(f) = \lim \mathcal{E}_j(f|_{V_j})$$

・ロト ・雪 ト ・ヨ ト ・ ヨ ト

Where dom_{\mathcal{E}} = { $f : K \to \mathbb{R} \mid \mathcal{E}(f) < \infty$ }.

Harmonic Energy Measures

It is possible to define Harmonic functions h with boundary at the corners, by solving the Dirichlet problem on the graphs and taking the limit.

nac

We shall consider the reference measure $\mu = \nu_h$.

Idea: to deal with these problems by developing a differential geometry for Dirichlet spaces and hence fractals

based on **Differential forms on the Sierpinski gasket** and other papers by Cipriani–Sauvageot

Derivations and Dirichlet forms on fractals by Ionescu–Rogers–Teplyaev, JFA 2012

Vector analysis on Dirichlet Spaces by Hinz–Röckner–Teplyaev, SPA 2013 Let X be a locally compact second countable Hausdorff space and m be a Radon measure on X with full support. Let $(\mathcal{E}, \mathcal{F})$ be a regular symmetric Dirichlet form on $L_2(X, m)$.

Write $\mathcal{C} := C_0(X) \cap \mathcal{F}$.

The space \mathcal{C} is a normed space with

$$||f||_{\mathcal{C}} := \mathcal{E}_1(f)^{1/2} + \sup_{x \in X} |f(x)|.$$

うつん 川 エー・エー・ エー・シック

We equip the space $\mathcal{C}\otimes\mathcal{C}$ with a bilinear form, determined by

$$\langle a \otimes b, c \otimes d \rangle_{\mathcal{H}} = \int_X bd \ d\Gamma(a, c).$$

This bilinear form is nonnegative definite, hence it defines a seminorm on $\mathcal{C}\otimes\mathcal{C}$.

 \mathcal{H} : the Hilbert space obtained by factoring out zero seminorm elements and completing.

In the classical setting, this norm

$$\int |b|^2 |\nabla a|^2 \ d\mu$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Where μ is Lebesgue measure in the appropriate dimension.

And, any simple tensor
$$a \otimes b = \sum_{i=1}^{d} x^i \otimes b \frac{\partial a}{\partial x^i}$$
.

Think of $x^i \otimes \mathbf{1}$ as dx^i ,

We call \mathcal{H} the space of differential 1-forms associated with $(\mathcal{E}, \mathcal{F})$.

The space \mathcal{H} can be made into a \mathcal{C} - \mathcal{C} -bimodule by setting $a(b \otimes c) := (ab) \otimes c - a \otimes (bc)$ and $(b \otimes c)d := b \otimes (cd)$

and extending linearly.

 \mathcal{C} acts on both sides by uniformly bounded operators.

(日) (日) (日) (日) (日) (日) (日)

we can introduce a derivation operator by defining $\partial : \mathcal{C} \to \mathcal{H}$ by $\partial a := a \otimes \mathbf{1}$.

 $\|\partial a\|^2 \leq 2\mathcal{E}(a)$ and the **Leibniz rule** holds,

 $\partial(ab) = a\partial b + b\partial a, \quad a, b \in \mathcal{C}.$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

The operator ∂ extends to a closed unbounded linear operator from $L_2(X, m)$ into \mathcal{H} with domain \mathcal{F} .

Let ∂^* denote its adjoint, such that

$$\langle \partial^* \omega, g \rangle_{L^2} = \langle \omega, \partial g \rangle_{\mathcal{H}}$$
 (1)

(日) (日) (日) (日) (日) (日) (日)

Let \mathcal{C}^* be the dual space of the normed space \mathcal{C} . Then ∂^* defines a bounded linear operator from \mathcal{H} into \mathcal{C}^* .

In this talk we shall consider $\partial^* : \mathcal{H} \to L^2(X)$ by restricting to the domain

dom
$$\partial^* = \left\{ \eta \in \mathcal{H} \mid \exists f \in L^2(X) \text{ with } \partial^* \eta(\phi) = \langle f, \phi \rangle_{L^2} \right\}$$

We can think of ∂ as something like a gradient or an exterior derivative.

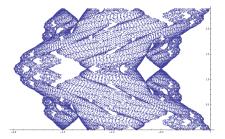
And think of ∂^* as div or as the co-differential.

This allows for a lot of new differential equations to but represented on fractals

For instance, we now have a divergence form

 $\partial^* a(\partial u) = 0$

Magnetic Schrödinger operators



Classically

$$i\frac{\partial u}{\partial t} = (-i\nabla - A)^2 u + V u$$

becomes

$$i\frac{\partial u}{\partial t} = (-i\partial - a)^*(-i\partial - a)u + Vu$$

A B A B A
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
A
A
A
A
A

 $\exists \rightarrow$

590

Where $a \in \mathcal{H}$ and $V \in L_{\infty}(X, m)$.

A result of Hinz-R"ockner-Teplyaev shows that (with some technical conditions) there is a "fibrewise" inner product and norm on \mathcal{H} . Call the fibres \mathcal{H}_x and the inner product $\langle ., . \rangle_{\mathcal{H}.x}$.

Note

$$\langle \partial f, \partial g \rangle_{\mathcal{H}, x} = \Gamma_{\mu}(f, g)(x)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

almost everywhere.

Theorem (Baudoin–K.)

In the above situation, chose $\omega \in \mathcal{H}$ such that $\|\omega\|_{\mathcal{H},x} = 1$ μ -a.e. then $\star L^2(X,\mu) \to \mathcal{H}$ defined by

$$\star f = \omega \cdot f$$

is a isometry both globally and fiberwise with inverse

$$\star \eta(x) = \langle \omega, \eta \rangle_{\mathcal{H}, x} \,.$$

In particular $L^2(X,\mu) \cong \mathcal{H}$ as Hilbert spaces.

Proof Hino index 1 implies that dim $\mathcal{H}_x = 1$ almost everywhere.

うつん 川 エー・エー・ エー・シック

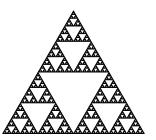
Consider

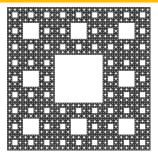
$$\vec{\Delta} = \partial \partial^*$$

with domain

$$\operatorname{dom} \vec{\Delta} = \{ \omega \in \mathcal{H} \mid \partial^* \omega \in \operatorname{dom} \partial \}.$$

Hodge Decomposition





Sac

Hinz–Teplyaev: When restricted to topologically 1-dimensional fractals, there is a Hodge decomposition with

$$\mathcal{H} = \mathcal{H}^0 \oplus \mathcal{H}^1$$

where

$$\mathcal{H}^0 = \operatorname{Im} \partial$$
 are Exact Forms

and

 $\mathcal{H}^1 = \ker \partial^* \quad \text{are Harmonic Forms}$

The co-differential has the following product rule

$$\partial^*(\eta \cdot f) = \langle \partial f, \eta \rangle_{\mathcal{H}_x} + f \partial^* \eta.$$

Thus if $\omega \in \mathcal{H}^1$ is harmonic, then the second term on the right disappears and we get.

$$\partial^* \star f = \star \partial f.$$

Note: It is **not true that**

$$\star \partial^* \eta = \partial \star \eta$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ = のへぐ

Theorem (Baudoin–K.)

Consider the self-similar energy form \mathcal{E} on SG, with respect to a borel measure μ ,

- 1. $\mu = \nu_h$ is the energy measure associated to the harmonic h with boundary V_0 .
- 2. \star is the Hodge Star with respect to ∂h .

3. Δ_0 is the Dirichlet Laplacian with boundary V_0 . Then $\vec{\Delta}$ restricted to exact forms \mathcal{H}^0 is equal to $-\star \Delta_0 \star$ as operators.

If $\Delta_{\mu} = \partial^* \partial$ is the generator of \mathcal{E} with respect to μ , this implies that

$$\operatorname{dom} \Delta_{\mu} = \{ f \in \operatorname{dom} \mathcal{E} \mid \star \partial f = \Gamma(f, h) \in \operatorname{dom}_0 \mathcal{E} \}$$

うつん 川 エー・エー・ エー・シック

Energy measures can be extended to elements of \mathcal{H} by

$$\int \phi \, d\nu_{\omega} := \langle \omega \cdot \phi, \omega \rangle_{\mathcal{H}} \, .$$

Theorem (Baudoin–K.)

Consider the self-similar energy form \mathcal{E} on SG, with respect to a borel measure μ ,

1. $\mu = \nu_{\omega}$ is the energy measure associated to the harmonic form $omega \in \mathcal{H}^1$.

うつん 川 エー・エー・ エー・シック

- 2. \star is the Hodge Star with respect to $\omega.$
- 3. Δ_{ω} is the generator of \mathcal{E} .

Then $\vec{\Delta}$ restricted to exact forms \mathcal{H}^0 is equal to $\star \Delta \star$ as operators.

Theorem (Baudoin–K.)

In either of the settings of the above theorems, the Bakry-Émery inequality is satisfied.

That is if μ is either ν_h for some harmonic function h, or ν_{ω} for some harmonic form ω , then

$$\sqrt{\Gamma_{\mu}(e^{-t\Delta_{\mu}}f)} \le e^{-t\Delta_{\mu}}\sqrt{\Gamma_{\mu}(f)}.$$

- コット (四) (日) (日) (日)

Proof of Bakry–Émery inequality

Idea:

$$e^{t\vec{\Delta}}\partial = \partial e^{t\Delta}$$

Then because $\vec{\Delta} = \star \Delta \star$

$$\star e^{-t\Delta} \star \partial = \partial e^{-t\Delta}.$$

Thus

$$\left|e^{t\Delta} \star \partial f(x)\right| = \left\|\partial e^{t\Delta}f\right\|_{\mathcal{H},x} = \sqrt{\Gamma(e^{t\Delta}f)(x)}.$$

The Inequality follows from the fact that

$$\left|e^{t\Delta}\star\partial f(x)\right|\leq e^{t\Delta}\left|\star\partial f\right|=e^{t\Delta}\sqrt{\Gamma(f)}.$$

The Riesz transform in this case can be interpreted as

$$\mathbf{R}=\star\partial\Delta^{1/2}$$

Theorem (Baudoin–K.)

Let p > 1 then for every $f \in L^2(X)$ with $\int f \ d\mu = 0$, then $\|\mathbf{R}f\|_p \le 2(p^* - 1) \|f\|_p$ where $p^* = \max \{p, p/(p - 1)\}$

うつん 川 エー・エー・ エー・シック

Reisz Transform: Gundy Representation

Let X_t be the diffusion generated by Δ and started with distribution μ . Let B_t be Brownian motion of \mathbb{R} . Define, for $f \in L^2(X)$

$$Qf(x,y) = e^{-y\sqrt{-\Delta}}f(x)$$

Then $M_t^f = Q(X_t, B_t)$ is a Martingale, and we have the following Gundy Representation (see also to Bañuelos–Wang)

Lemma

For $f \in L^2(X)$, $\int f = 0$ then $\mathbf{R}f(x) = -2 \lim_{y_0 \to \infty} \mathbb{E}_{y_0} \left(\int_0^{\tau_0} \star \partial Q f(X_s, B_s) \ dB_s | X_{\tau_0} = x \right)$ where $\tau_0 = \inf \{t : B_t = 0\}$

うつん 川 エー・エー・ エー・シック

Reisz Transform: Martingale Subordination

$$\mathbf{R}f(x) = -2\lim_{y_0 \to \infty} \mathbb{E}_{y_0} \left(\int_0^{\tau_0} \star \partial Q f(X_s, B_s) \ dB_s \big| X_{\tau_0} = x \right)$$

Proof of bounds: Let

$$M_t^f = Q_t(X_t, B_t)$$
 and $N_t = \int_0^t \star \partial Q f(X_t, B_t) \, dB_t.$

Then, $|N_0| < |M_0|$ and $[M, M]_t - [N, N]_t$ is non-negative and non-decreasing, so using a Martingale subordination theorem of Bañuelos–Wang,

$$\mathbb{E}[|N_t|^p]^{1/p} \le (p^* - 1)\mathbb{E}[|M_t|^p]^{1/p}]$$

- ロ ト - 4 回 ト - 4 □

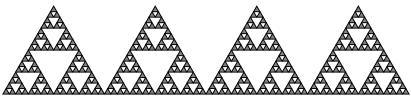
Theorem (Baudoin–K.)

Assuming the Poincaré duality and that $e^{t\vec{\Delta}}\partial = \partial e^{t\Delta}$,

 $\operatorname{Var} f = \sup \left\{ \langle f, \partial^* \star g \rangle \ | \ g \in \operatorname{dom} \mathcal{E} \ and \ |g| < 1a.e. \right\}$

In particular this works for the Sierpinski Gasket.

Further Topics: Fracafolds and Products Fractals



We can build a fractafold by gluing copies of SG together.

Theorem (Baudoin–K.)

The fractafold X admits a Poincaré duality.

The inequality also is preserved by taking products.