Large deviations for certain inhomogeneous corner growth models

Chris Janjigian

University of Wisconsin-Madison

May 2016 (joint work with Elnur Emrah)

Take $W(i,j), (i,j) \in \mathbb{N}^2$.

Take
$$W(i,j)$$
, $(i,j) \in \mathbb{N}^2$. (m,n) enters at time $G(m,n)$:
$$G(m,n) = G(m-1,n) \vee G(m,n-1) + W(m,n)$$

$$G(m,0) = G(0,n) = 0$$

Take
$$W(i,j)$$
, $(i,j) \in \mathbb{N}^2$. (m,n) enters at time $G(m,n)$:
$$G(m,n) = G(m-1,n) \vee G(m,n-1) + W(m,n)$$

$$G(m,0) = G(0,n) = 0$$

Take
$$W(i,j)$$
, $(i,j) \in \mathbb{N}^2$. (m,n) enters at time $G(m,n)$:
$$G(m,n) = G(m-1,n) \vee G(m,n-1) + W(m,n)$$

$$G(m,0) = G(0,n) = 0$$

Take
$$W(i,j)$$
, $(i,j) \in \mathbb{N}^2$. (m,n) enters at time $G(m,n)$:
$$G(m,n) = G(m-1,n) \vee G(m,n-1) + W(m,n)$$
$$G(m,0) = G(0,n) = 0$$

Take
$$W(i,j)$$
, $(i,j) \in \mathbb{N}^2$. (m,n) enters at time $G(m,n)$:
$$G(m,n) = G(m-1,n) \vee G(m,n-1) + W(m,n)$$
$$G(m,0) = G(0,n) = 0$$

Take
$$W(i,j)$$
, $(i,j) \in \mathbb{N}^2$. (m,n) enters at time $G(m,n)$:
$$G(m,n) = G(m-1,n) \vee G(m,n-1) + W(m,n)$$

$$G(m,0) = G(0,n) = 0$$

Take
$$W(i,j)$$
, $(i,j) \in \mathbb{N}^2$. (m,n) enters at time $G(m,n)$:
$$G(m,n) = G(m-1,n) \vee G(m,n-1) + W(m,n)$$

$$G(m,0) = G(0,n) = 0$$

$$G(\textit{m},\textit{n}) = \max_{\substack{\text{up-right paths} \\ \pi: (1,1) \rightarrow (\textit{m},\textit{n})}} \sum_{(i,j) \in \pi} W(i,j).$$

$$G(\textit{m},\textit{n}) = \max_{\substack{\text{up-right paths} \\ \pi: (1,1) \rightarrow (\textit{m},\textit{n})}} \sum_{(i,j) \in \pi} W(i,j).$$

$$G(\textit{m},\textit{n}) = \max_{\substack{\text{up-right paths} \\ \pi: (1,1) \rightarrow (\textit{m},\textit{n})}} \sum_{(i,j) \in \pi} W(i,j).$$

$$G(\textit{m},\textit{n}) = \max_{\substack{\text{up-right paths} \\ \pi: (1,1) \rightarrow (\textit{m},\textit{n})}} \sum_{(i,j) \in \pi} W(i,j).$$

(m, n) enters when particle n (count right-to-left) interchanges with hole m (count left-to-right).

(m, n) enters when particle n (count right-to-left) interchanges with hole m (count left-to-right).

(m, n) enters when particle n (count right-to-left) interchanges with hole m (count left-to-right).

(m, n) enters when particle n (count right-to-left) interchanges with hole m (count left-to-right).

(m, n) enters when particle n (count right-to-left) interchanges with hole m (count left-to-right).

(m, n) enters when particle n (count right-to-left) interchanges with hole m (count left-to-right).

(m, n) enters when particle n (count right-to-left) interchanges with hole m (count left-to-right).

(m, n) enters when particle n (count right-to-left) interchanges with hole m (count left-to-right).

Shape theorem

Under mild assumptions,

$$\lim_{n\to\infty} n^{-1} G(\lfloor \, ns \, \rfloor, \lfloor \, nt \, \rfloor) = g(s,t) \quad \text{(a.s.)}$$

Solvable corner growth models

Solvable corner growth models

Homogeneous: $W(i,j) \stackrel{i.j.d.}{\sim} \text{Exp}(c)$ (or Geo(p)).

Solvable corner growth models

Homogeneous:

$$W(i,j) \overset{i.i.d.}{\sim} \operatorname{Exp}(c)$$
 (or $\operatorname{Geo}(p)$).

Inhomogeneous:

$$W(i,j) \stackrel{ind.}{\sim} \mathsf{Exp}(a_i + b_j)$$

$$\mathbf{a} = (a_n)_{n\geqslant 1}$$
 and $\mathbf{b} = (b_n)_{n\geqslant 1}$
 $a_i, b_j \geqslant c > 0$.

Take
$$z$$
: $-a_i < z < b_j$, $i, j \in \mathbb{N}$
 $W(i, 0) \sim \mathsf{Exp}(a_i + z)$

Take
$$z$$
: $-a_i < z < b_j$, $i, j \in \mathbb{N}$

$$W(i, 0) \sim \mathsf{Exp}(a_i + z)$$

$$W(0, j) \sim \mathsf{Exp}(b_j - z)$$

Take
$$z$$
: $-a_i < z < b_j$, $i, j \in \mathbb{N}$

$$W(i,0) \sim \mathsf{Exp}(a_i + z)$$

$$W(0,j) \sim \mathsf{Exp}(b_j - z)$$

$$W(i,j) \sim \mathsf{Exp}(a_i + b_j)$$

Take
$$z$$
: $-a_i < z < b_j$, $i,j \in \mathbb{N}$

$$W(i,0) \sim \operatorname{Exp}(a_i + z)$$

$$W(0,j) \sim \operatorname{Exp}(b_j - z)$$

$$W(i,j) \sim \operatorname{Exp}(a_i + b_j)$$

$$(i,j) \text{ enters at time } \hat{G}(i,j)$$

Take
$$z$$
: $-a_i < z < b_j$, $i,j \in \mathbb{N}$
$$W(i,0) \sim \operatorname{Exp}(a_i + z)$$

$$W(0,j) \sim \operatorname{Exp}(b_j - z)$$

$$W(i,j) \sim \operatorname{Exp}(a_i + b_j)$$

$$(i,j) \text{ enters at time } \hat{G}(i,j)$$

$$X(i,j) = \hat{G}(i,j) - \hat{G}(i-1,j)$$

Take
$$z$$
: $-a_i < z < b_j$, $i,j \in \mathbb{N}$
$$W(i,0) \sim \operatorname{Exp}(a_i + z)$$

$$W(0,j) \sim \operatorname{Exp}(b_j - z)$$

$$W(i,j) \sim \operatorname{Exp}(a_i + b_j)$$

$$(i,j) \text{ enters at time } \hat{G}(i,j)$$

$$X(i,j) = \hat{G}(i,j) - \hat{G}(i-1,j)$$

$$Y(i,j) = \hat{G}(i,j) - \hat{G}(i,j-1)$$

$$Y(i-1,j) \sim \mathsf{Exp}(b_j-z)$$
 $W(i,j) \sim \mathsf{Exp}(a_i+b_j)$ $X(i,j-1) \sim \mathsf{Exp}(a_i+z)$

$$Y(i-1,j) \sim \textit{Exp}(b_j-z)$$
 $W(i,j) \sim \textit{Exp}(a_i+b_j)$ $X(i,j-1) \sim \textit{Exp}(a_i+z)$

$$X(i,j) = X(i,j-1) - X(i,j-1) \land Y(i-1,j) + W(i,j)$$

$$Y(i,j) = Y(i-1,j) - X(i,j-1) \land Y(i-1,j) + W(i,j)$$

$$X(i,j) \sim Exp(a_i + z)$$

$$W(i,j) \sim Exp(a_i + b_j)$$

$$Y(i-1,j) \sim Exp(b_j - z)$$

$$Y(i,j) \sim Exp(b_j - z)$$

$$X(i,j-1) \sim Exp(a_i + z)$$

$$X(i,j) = X(i,j-1) - X(i,j-1) \wedge Y(i-1,j) + W(i,j)$$

$$Y(i,j) = Y(i-1,j) - X(i,j-1) \wedge Y(i-1,j) + W(i,j)$$

Key point: This map preserves the joint distribution of (X, Y).

$$X(i,0) = W(i,0) \sim \mathsf{Exp}(a_i + z)$$

$$Y(0,j) = W(0,j) \sim \mathsf{Exp}(b_j - z)$$

$$X(i,0) = W(i,0) \sim \mathsf{Exp}(a_i + z)$$

$$Y(0,j) = W(0,j) \sim \mathsf{Exp}(b_j - z)$$

By induction, X(i,j), Y(i,j) are mut. indep. along down-right paths

$$X(i,j) \sim \mathsf{Exp}(a_i + z)$$

 $Y(i,j) \sim \mathsf{Exp}(b_j - z).$

$$X(i,0) = W(i,0) \sim \mathsf{Exp}(a_i + z)$$

$$Y(0,j) = W(0,j) \sim \mathsf{Exp}(b_i - z)$$

By induction, X(i,j), Y(i,j) are mut. indep. along down-right paths

$$X(i,j) \sim \mathsf{Exp}(a_i + z)$$

 $Y(i,j) \sim \mathsf{Exp}(b_j - z).$

$$X(i,0) = W(i,0) \sim \text{Exp}(a_i + z)$$

$$Y(0,j) = W(0,j) \sim \text{Exp}(b_i - z)$$

By induction, X(i,j), Y(i,j) are mut. indep. along down-right paths

$$X(i,j) \sim \mathsf{Exp}(a_i + z)$$

 $Y(i,j) \sim \mathsf{Exp}(b_j - z).$

$$X(i,0) = W(i,0) \sim \mathsf{Exp}(a_i + z)$$

$$Y(0,j) = W(0,j) \sim \mathsf{Exp}(b_i - z)$$

By induction, X(i,j), Y(i,j) are mut. indep. along down-right paths

$$X(i,j) \sim \mathsf{Exp}(a_i + z)$$

 $Y(i,j) \sim \mathsf{Exp}(b_j - z).$

 $\mathbf{a}=(a_i), \ \mathbf{b}=(b_j)$ indep. i.i.d., finite mean $\geqslant c>0$ sequences (can be weaker)

 $P_{a,b}$: conditioned on (a,b),

$$W(i,j) \stackrel{ind.}{\sim} \mathsf{Exp}(a_i + b_j).$$

 $\mathbf{a}=(a_i), \ \mathbf{b}=(b_j)$ indep. i.i.d., finite mean $\geqslant c>0$ sequences (can be weaker)

 $P_{a,b}$: conditioned on (a,b),

$$W(i,j) \stackrel{ind.}{\sim} \mathsf{Exp}(a_i + b_j).$$

 \mathbb{P} : average $\mathbf{P}_{\mathbf{a},\mathbf{b}}$ over (\mathbf{a},\mathbf{b}) .

Key points:

$$\mathbf{P_{a,b}}$$
: indep., not ident. dist.: if $i \neq i'$ or $j \neq j'$
$$W(i,j) \overset{d}{\neq} W(i',j') \text{ (usually)}$$

$$W(i,j) \perp W(i',j')$$

Key points:

$$\mathbf{P_{a,b}}$$
: indep., not ident. dist.:
if $i \neq i'$ or $j \neq j'$
 $W(i,j) \stackrel{d}{\neq} W(i',j')$ (usually)
 $W(i,j) \perp W(i',j')$

P: ident. dist., not indep.:

$$W(i,j) \stackrel{d}{=} W(i',j')$$

if $i = i'$ or $j = j'$
 $Cov(W(i,j), W(i',j')) \neq 0$.

Key points:

 $\mathbf{P_{a,b}}$: indep., not ident. dist.: if $i \neq i'$ or $j \neq j'$ $W(i,j) \stackrel{d}{\neq} W(i',j')$ (usually) $W(i,j) \perp W(i',j')$

P: ident. dist., not indep.:

$$W(i,j) \stackrel{d}{=} W(i',j')$$
if $i = i'$ or $j = j'$

$$Cov(W(i,j), W(i',j')) \neq 0.$$

Shape function

Theorem (Emrah '15)

For s,t>0, \mathbb{P} almost surely and for almost all (\mathbf{a},\mathbf{b}) $\mathbf{P}_{\mathbf{a},\mathbf{b}}$ almost surely

$$\lim_{n\to\infty} n^{-1}G(\lfloor ns\rfloor,\lfloor nt\rfloor) = \min_{-\underline{\alpha}\leqslant z\leqslant \underline{\rho}} \left\{ s\,\mathsf{E}\left[\frac{1}{a_1+z}\right] + t\,\mathsf{E}\left[\frac{1}{b_1-z}\right] \right\}$$

Key points:

- Only depends on marginal distributions of a_1 and b_1 separately. Notation: $\underline{\alpha} = \text{essinf}\{a_1\}$, $\beta = \text{essinf}\{b_1\}$.
- Tractable 1D minmization problem.
- $g_z(s,t)=s\, {\sf E}\left[(a_1+z)^{-1}\right]+t\, {\sf E}\left[(b_1-z)^{-1}\right]$ is the shape function in the stationary version of the model.

Asymptotic shape of the cluster

- g is strictly concave in S, linear in S_1 and S_2 .
- $S_1, S_2 \neq \emptyset$ iff

$$E[(a_1 - \underline{\alpha})^{-2}] < \infty \quad (S_1)$$

$$E[(b_1 - \beta)^{-2}] < \infty \quad (S_2)$$

Pick a direction (s, t). Interested in

Pick a direction (s,t). Interested in r>g(s,t) $\mathbf{P}(n^{-1}G(\lfloor ns\rfloor,\lfloor nt\rfloor)\geqslant r)\approx e^{-n\mathbf{J}_{s,t}(r)}$ $\mathbb{P}(n^{-1}G(\lfloor ns\rfloor,\lfloor nt\rfloor)\geqslant r)\approx e^{-n\mathbb{J}_{s,t}(r)}$

Pick a direction (s, t). Interested in

$$\mathbf{P}(n^{-1}G(\lfloor ns \rfloor, \lfloor nt \rfloor) \geqslant r) \approx e^{-n \, \mathbf{J}_{s,t}(r)}$$

$$\mathbb{P}(n^{-1}G(\lfloor \, ns \, \rfloor, \lfloor \, nt \, \rfloor) \geqslant r) \approx e^{-n \, \mathbb{J}_{s,t}(r)}$$

Is there a difference between $(s,t) \in S$ and $(s,t) \in S_1, S_2$? What happens when $(s,t) \in I_1, I_2$?

Pick a direction (s, t). Interested in

$$\mathbf{P}(n^{-1}G(\lfloor ns \rfloor, \lfloor nt \rfloor) \geqslant r) \approx e^{-n J_{s,t}(r)}$$

$$\mathbb{P}(n^{-1}G(\lfloor ns \rfloor, \lfloor nt \rfloor) \geqslant r) \approx e^{-n J_{s,t}(r)}$$

Is there a difference between $(s,t) \in S$ and $(s,t) \in S_1, S_2$? What happens when $(s,t) \in I_1, I_2$?

Is there a relationship between the $\mathbf{J}_{s,t}(r)$ and $\mathbb{J}_{s,t}(r)$?

Quenched right tail rate function

Theorem

For almost all (\mathbf{a}, \mathbf{b}) , for any s, t > 0 and $r \ge g(s, t)$

$$\begin{split} \mathbf{J}_{s,t}(r) &= \lim_{n \to \infty} -n^{-1} \log \mathbf{P}_{\mathbf{a},\mathbf{b}} \left(n^{-1} G(\lfloor \, ns \, \rfloor, \lfloor \, nt \, \rfloor) \geqslant r \right) \\ &= \sup_{\substack{\lambda \in (0,\underline{\alpha} + \underline{\beta}) \\ z \in (-\underline{\alpha},\underline{\beta} - \lambda)}} \left\{ r \lambda - s \operatorname{E} \log \left(\frac{a_1 + z + \lambda}{a_1 + z} \right) - t \operatorname{E} \log \left(\frac{b_1 - z}{b_1 - z - \lambda} \right) \right\} \end{split}$$

Key points:

- Only depends on marginal distributions of a_1 and b_1 separately.
- Tractable 2D maximization problem.
- LDP with rate function $\mathbf{I}_{s,t}(r) = \mathbf{J}_{s,t}(r) \mathbf{1}_{\{r \geq g(s,t)\}} + \infty \mathbf{1}_{\{r < g(s,t)\}}$. (Left tail rate should be n^2 under mild conditions).

Example rate functions

If
$$a_1,b_1 \sim \delta_{rac{c}{2}}$$
 then for $r \geqslant g(s,t) = c^{-1}(\sqrt{s} + \sqrt{t})^2$ we have

$$\mathbf{J}_{s,t}(r) =$$

$$\sqrt{(s+t-cr)^2-4st}-2s\cosh^{-1}\left(\frac{s-t+cr}{2\sqrt{csr}}\right)-2t\cosh^{-1}\left(\frac{t-s+cr}{2\sqrt{ctr}}\right)$$

which recovers a result of Seppäläinen '98.

Example rate functions

If
$$a_1, b_1 \sim \mathsf{Unif}[c/2, c/2 + I]$$
, then for $r \geqslant g(s, s) = \frac{2s}{I} \log \left(1 + \frac{2l}{c}\right)$

$$\mathbf{J}_{s,s}(r) = r \, \lambda_{\star} - \frac{2s}{l} \int_{c/2}^{c/2+l} \log \left(\frac{x + z_{\star} + \lambda_{\star}}{x + z_{\star}} \right) dx$$

where

$$\begin{split} z_{\star} &= -\sqrt{\frac{(c/2+I)^2 - c^2 e^{rI/s}/4}{1 - e^{rI/s}}} \\ z_{\star} + \lambda_{\star} &= \sqrt{\frac{(c/2+I)^2 - c^2 e^{rI/s}/4}{1 - e^{rI/s}}}. \end{split}$$

Example rate functions

If
$$a_1, b_1 \sim p\delta_c + q\delta_d$$
, $0 \le p \le 1$, $q = 1 - p$, then for $r \ge g(s,s) = 2s\left(pc^{-1} + qd^{-1}\right)$,

$$\begin{split} \mathbf{J}_{s,s}(r) &= r \, \lambda_{\star} - sp \log \left(\frac{c + \mathbf{z}_{\star} + \lambda_{\star}}{c + \mathbf{z}_{\star}} \right) - tq \log \left(\frac{c - \mathbf{z}_{\star}}{c - \mathbf{z}_{\star} - \lambda_{\star}} \right) \\ &- sq \log \left(\frac{d + \mathbf{z}_{\star} + \lambda_{\star}}{d + \mathbf{z}_{\star}} \right) - tq \log \left(\frac{d - \mathbf{z}_{\star}}{d - \mathbf{z}_{\star} - \lambda_{\star}} \right) \end{split}$$

where

$$\begin{split} z_{\star} &= \frac{2cp + 2dq + c^2r + d^2r - \sqrt{\Delta}}{2r} \\ z_{\star} &+ \lambda_{\star} &= \frac{2cp + 2dq + c^2r + d^2r + \sqrt{\Delta}}{2r}, \\ \Delta &= (2cp + 2dq + c^2r + d^2r)^2 + 4r(2cd^2p + 2c^2dq - c^2d^2r). \end{split}$$

Expected fluctuations

 Quenched fluct. should be TW_{GUE} in S, but not in S₁, S₂.

Expected fluctuations

- Quenched fluct. should be TW_{GUE} in S, but not in S_1, S_2 .
- Q1: Can we "see" different scaling exponents in the rate functions?

Expected fluctuations

- Quenched fluct. should be TW_{GUE} in S, but not in S_1, S_2 .
- Q1: Can we "see" different scaling exponents in the rate functions?
- Q2: What happens when $(s, t) \in I_1, I_2$?

Notation: $\zeta \in [-\underline{\alpha}, \underline{\beta}]$ solves (uniquely) $g_{\zeta}(s, t) = g(s, t)$

Proposition

For any
$$s, t > 0$$
, as $\epsilon \downarrow 0$, $\mathbf{J}_{s,t}(g(s,t) + \epsilon) =$

$$\begin{cases} \left(-s \operatorname{E}\left[\frac{2}{(a_1-\alpha)^2}\right] + t \operatorname{E}\left[\frac{2}{(b_1+\alpha)^2}\right]\right)^{-1} \epsilon^2 + o(\epsilon^2) & (s,t) \in S_1 \\ \frac{2}{3} \left(s \operatorname{E}\left[\frac{1}{(a_1-\alpha)^3}\right] + t \operatorname{E}\left[\frac{1}{(b_1+\alpha)^3}\right]\right)^{-1/2} \epsilon^{3/2} + o(\epsilon^{3/2}) & (s,t) \in I_1 \\ \frac{4}{3} \left(s \operatorname{E}\left[\frac{1}{(a_1+\zeta)^3}\right] + t \operatorname{E}\left[\frac{1}{(b_1-\zeta)^3}\right]\right)^{-1/2} \epsilon^{3/2} + o(\epsilon^{3/2}) & (s,t) \in S \\ \frac{2}{3} \left(s \operatorname{E}\left[\frac{1}{(a_1+\underline{\beta})^3}\right] + t \operatorname{E}\left[\frac{1}{(b_1-\beta)^3}\right]\right)^{-1/2} \epsilon^{3/2} + o(\epsilon^{3/2}) & (s,t) \in I_2 \\ \left(s \operatorname{E}\left[\frac{2}{(a_1+\beta)^2}\right] - t \operatorname{E}\left[\frac{2}{(b_1-\beta)^2}\right]\right)^{-1} \epsilon^2 + o(\epsilon^2) & (s,t) \in S_2 \end{cases}$$

Notation: $\zeta \in [-\underline{\alpha}, \underline{\beta}]$ solves (uniquely) $g_{\zeta}(s, t) = g(s, t)$

Proposition

For any
$$s, t > 0$$
, as $\epsilon \downarrow 0$, $\mathbf{J}_{s,t}(g(s,t) + \epsilon) =$

$$\begin{cases} \left(-s\operatorname{E}\left[\frac{2}{(a_1-\alpha)^2}\right]+t\operatorname{E}\left[\frac{2}{(b_1+\alpha)^2}\right]\right)^{-1}\epsilon^2+o(\epsilon^2) & (s,t)\in S_1\\ \frac{2}{3}\left(s\operatorname{E}\left[\frac{1}{(a_1-\alpha)^3}\right]+t\operatorname{E}\left[\frac{1}{(b_1+\alpha)^3}\right]\right)^{-1/2}\epsilon^{3/2}+o(\epsilon^{3/2}) & (s,t)\in I_1\\ \frac{4}{3}\left(s\operatorname{E}\left[\frac{1}{(a_1+\zeta)^3}\right]+t\operatorname{E}\left[\frac{1}{(b_1-\zeta)^3}\right]\right)^{-1/2}\epsilon^{3/2}+o(\epsilon^{3/2}) & (s,t)\in S\\ \frac{2}{3}\left(s\operatorname{E}\left[\frac{1}{(a_1+\beta)^3}\right]+t\operatorname{E}\left[\frac{1}{(b_1-\beta)^3}\right]\right)^{-1/2}\epsilon^{3/2}+o(\epsilon^{3/2}) & (s,t)\in I_2\\ \left(s\operatorname{E}\left[\frac{2}{(a_1+\beta)^2}\right]-t\operatorname{E}\left[\frac{2}{(b_1-\beta)^2}\right]\right)^{-1}\epsilon^2+o(\epsilon^2) & (s,t)\in S_2 \end{cases}$$

Heuristically (not rigorous) consistent with expected TW_{GUE} fluct. in S:

Heuristically (not rigorous) consistent with expected TW $_{GUE}$ fluct. in S: Take $(s,t) \in S$ and set

$$C = s \, \mathsf{E} \left[\frac{1}{(a+\zeta)^3} \right] + t \, \mathsf{E} \left[\frac{1}{(b-\zeta)^3} \right] = \frac{1}{2} \partial_z^2 g_z(s,t) \big|_{z=\zeta}$$

Heuristically (not rigorous) consistent with expected TW $_{GUE}$ fluct. in S: Take $(s,t) \in S$ and set

$$C = s \, \mathsf{E} \left[\frac{1}{(a+\zeta)^3} \right] + t \, \mathsf{E} \left[\frac{1}{(b-\zeta)^3} \right] = \frac{1}{2} \partial_z^2 g_z(s,t) \big|_{z=\zeta}$$

For *n* large and large enough *r* (but not $O(n^{\frac{2}{3}})$), we might expect

$$\mathbf{P}_{\mathbf{a},\mathbf{b}}(G(\lfloor ns \rfloor, \lfloor nt \rfloor) - ng(s,t) \geqslant n^{\frac{1}{3}}C^{\frac{1}{3}}r)$$

Heuristically (not rigorous) consistent with expected TW $_{GUE}$ fluct. in S: Take $(s,t) \in S$ and set

$$C = s \, \mathsf{E} \left[\frac{1}{(a+\zeta)^3} \right] + t \, \mathsf{E} \left[\frac{1}{(b-\zeta)^3} \right] = \frac{1}{2} \partial_z^2 g_z(s,t) \big|_{z=\zeta}$$

For *n* large and large enough *r* (but not $O(n^{\frac{2}{3}})$), we might expect

$$\mathsf{P}_{\mathsf{a},\mathsf{b}}(G(|ns|,|nt|) - ng(s,t) \geqslant n^{\frac{1}{3}}C^{\frac{1}{3}}r) \approx e^{-n\mathsf{J}_{s,t}(C^{\frac{1}{3}}n^{-\frac{2}{3}}r)}$$

Heuristically (not rigorous) consistent with expected TW_{GUE} fluct. in S: Take $(s,t) \in S$ and set

$$C = s \, \mathsf{E} \left[\frac{1}{(\mathsf{a} + \zeta)^3} \right] + t \, \mathsf{E} \left[\frac{1}{(\mathsf{b} - \zeta)^3} \right] = \frac{1}{2} \, \hat{\sigma}_\mathsf{z}^2 \mathsf{g}_\mathsf{z}(\mathsf{s}, t) \big|_{\mathsf{z} = \zeta}$$

For *n* large and large enough *r* (but not $O(n^{\frac{2}{3}})$), we might expect

$$\begin{aligned} \mathbf{P_{a,b}}(G(\lfloor ns \rfloor, \lfloor nt \rfloor) - ng(s,t) &\geqslant n^{\frac{1}{3}}C^{\frac{1}{3}}r) \approx e^{-n \mathbf{J}_{s,t}(C^{\frac{1}{3}}n^{-\frac{2}{3}}r)} \\ &\approx e^{-\frac{4}{3}C^{-\frac{1}{2}}(C^{\frac{1}{3}}n^{-\frac{2}{3}}r)^{\frac{3}{2}}n} = e^{-\frac{4}{3}r^{\frac{3}{2}}} \end{aligned}$$

which agrees with the leading order TW_{GUE} right tail.

Annealed large deviations

Theorem

For
$$s, t > 0$$
 and $r \geqslant g(s, t)$,

$$\begin{split} \mathbb{J}_{s,t}(r) &= \lim_{n \to \infty} -n^{-1} \log \mathbb{P}\left(n^{-1}G(\lfloor ns \rfloor, \lfloor nt \rfloor) \geqslant r\right) \\ &= \sup_{\substack{\lambda \in (0, \alpha + \beta) \\ z \in (-\alpha, \underline{\beta} - \lambda)}} \left\{ r\lambda - s \log \mathbb{E}\left[\frac{a_1 + z + \lambda}{a_1 + z}\right] - t \log \mathbb{E}\left[\frac{b_1 - z}{b_1 - z - \lambda}\right] \right\} \end{split}$$

Key points

- ullet Very similar to quenched rate function only difference is E \leftrightarrow log
- Variational problem still tractable (though no explicit examples)
- For all s, t > 0, $\mathbb{J}_{s,t}(g(s,t) + \epsilon) = C_{s,t}\epsilon^2 + o(\epsilon^2)$ ($C_{s,t}$ explicit)
- There are rate n left tail $(n^{-1}G(\lfloor ns \rfloor, \lfloor nt \rfloor)) < g(s,t) \epsilon)$ annealed large deviations.

Variational connection for right tail

Theorem

For any s, t > 0 and $r \geqslant g(s, t)$,

$$\mathbb{J}_{s,t}(r) = \inf_{\nu_1,\nu_2} \left\{ \mathbf{I}_{s,t}^{\nu_1,\nu_2}(r) + s \, \mathsf{H}(\nu_1|\alpha) + t \, \mathsf{H}(\nu_2|\beta) \right\}.$$

There exists a unique (explicit) minimizing pair (ν_1, ν_2) for which equality holds.

Key points:

- Notation: α is the dist. of a_1 , β is the dist of b_1 , $H(\cdot|\cdot)$ is relative entropy.
- $\mathbf{I}_{s,t}^{\nu_1,\nu_2}(r)$ is quenched rate function for the model with marginals $a_1 \sim \nu_1$, $b_1 \sim \nu_2$.

Thanks!