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Self-avoiding walks

Self-avoiding walk is a fundamental example of a discrete model in
statistical mechanics. It was introduced by Flory and Orr in the
1940s as a model in chemistry of a long chain of molecules.

A self-avoiding walk in Z9 of length n is

e amap~:{0,...,n} —Z9
@ that makes nearest-neighbor steps
@ and visits no vertex twice.

Figure: A planar self-avoiding walk of length twenty.
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The uniform law on self-avoiding walks

Let SAW,, denote the set of self-avoiding walks of length n that
start at the origin.

Let W,, denote the uniform measure on SAW,,.

The length n walk under the law W, will be denoted by I'.
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Simulation of planar SAW due to Tom Kennedy

SAW in plane - 1,000,000 steps
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The endpoint of self-avoiding walk

Define the mean-squared displacement of the endpoint of the walk:

<H’YnH2>:\SA{N,,| Z H'Yn”2'

YESAW

It is conjectured (and *rigorously known) that

1 d=1*

3/4 d = 2 Nienhuis 1982
(lal?)Y/? = n"+e® where v = ¢ ~ 059 d =3

12  d=+4

1/2 d > 5* Hara, Slade 1992.
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Closing walks and self-avoiding polygons

A length n walk that ends at a location neighbouring the origin is
said to close.

When such a walk « closes, it is natural to add in the missing edge
that connects vy, and ~g.

A self-avoiding polygon results.

Figure: A closing walk and its polygon.
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Counting walks and polygons

Let ¢, denote the number of length n walks starting at the origin.
Let p, denote the number of length n polygons up to translation.
Then the closing probability satisfies

2(n +1)pnt1
Cn ‘

W, (I' closes) =
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Walk subadditivity

A length n+ m walk v can be severed at the vertex .
Two walks, of length n and m, result.
Thus, chem < ChCm.

We may thus define the connective constant py = limpen c,l,/".
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Polygon superadditivity

A polygon cannot be severed in two in this way.

However, a pair of polygons may be joined so that the new
polygon's length equals the sum.

Thus, pprm > ﬁpnpm-

We may thus define up = lim,con p,l,/".
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Polygon and walk deviation exponents

In fact, the two connective constants, uw and pp, are equal. This
is because of a classic unfolding argument of Hammersley and
Welsh.

Set y1 to be the common value.
We have that p, < u”" < c,.

Let's set
pn=n"0u" and c,=n*pu".

Thus, 6, and &, are non-negative real numbers.
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Hyperscaling relation

It is natural to define the polygon deviation exponent

6:= lim 6,
ne2N

(though it may be very hard to prove that 6 exists!)

A well known hyperscaling relation is believed to relate 6 and v:
0=dv+1.

We now present a heuristic derivation of the lower bound
0>2v+1

in two dimensions.
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Hyperscaling relation lower bound

We will argue this in three steps:

o Step one: 0 > v;
o Step two: 0 > v+ 1;
o Step three: 0 > 2v + 1.
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Step one

This is Madras's 1995 polygon joining argument.
Take two polygons of length n.

There are order n” places where the second may be joined on the
right to the first.

Thus,

and

implying that 6 > v.
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Step two

How can we progress from here?

We can join polygons in length pairs (n+ j, n — j), not just for
J = 0 as before, but for all |j| < n/2.

We would seem to achieve

n/2

P2n 2 n” Z Pn+jPn—j 5
Jj=—n/2

and thus 6 > v + 1.

However, the joined polygons must have few macroscopic join
points to reach this bound.

But it is plausible that they do typically.
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Step three

We aim to move from 0 > v +1to 6 > 2v + 1.
All of the polygons we've been manufacturing are double bubbles.

We now argue that the fraction of length 2n polygons that are
double bubbles is at most Cn™".

This provides the extra v term that we seek.
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Step three: escape from double bubble

Consider a typical length n polygon.
It crosses the strip [— n”, n”} X R at least twice.
So there is a highest and a lowest crossing.

Now resample the uniform length n polygon by first sampling this
law, and then forgetting about everything except:
@ the highest crossing;

@ and the lowest crossing, up to vertical translation.



Self-avoiding walks and polygons: counting, joining and closing

Step three: escape from double bubble

Figure: A uniform length n polygon on the left. Then two resamplings.

There's order n” vertical shifts that the lowermost crossing may
undergo.

Only one of the them — the highest — leads to a double bubble.

So the chance of double bubble is at most Cn™".
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Hyperscaling relation lower bound

So that's a non-rigorous argument for 6 > 2v + 1.

The derivation provides a useful framework for discussing rigorous
proofs that use polygon joining.

Suppose a rigorous argument follows this three-step approach. Call
it an (a, b, c)-argument, where these entries are the respective
gains in # made at each step.

So for example Madras’ polygon joining argument is a
(1/2,0,0)-argument.
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The main results

The first result is a new lower bound on 6,.

Recall that Madras’ polygon joining shows that 6, > 1/2.

Theorem (1: Polygon Joining)

Let dimension d = 2. For a positive density subsequence, 6, > 1.
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The main results

The next result concerns the closing probability W, (I closes).
It's not so obvious even that this quantity tends to zero in high n.

With Duminil-Copin, Glazman and Manolescu, we showed that

W,,(F closes) < p1/4+e()

Theorem (2: Snake Method via Gaussian Pattern Fluctuation)

Consider any dimension d at least two. Then

W,,(F closes) < pY2to(1)
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The main results

It's clear that this proof technique cannot do better than n=1/2.

But we can push below n~1/2 by mixing the two techniques —
polygon joining and the snake method.

Theorem (3: Snake Method via Polygon Joining)

Let d = 2. Then, for a positive density subsequence of odd n,

W,,(r closes) < p~6/11+0(1)

In fact, we may replace 6/11 by 2/3 conditionally inter alia on the
existence of 6.



Self-avoiding walks and polygons: counting, joining and closing

An overview of some aspects of the proofs

Theorem 1 —i.e., 8, > 1 on a subsequence — is derived by
endeavouring to rework the three step derivation.

Madras already did step one rigorously — a (1/2,0, 0)-argument.

To prove Theorem 1, we aim to implement step two — that is, to
give a (1/2,1,0)-argument.

But we don't quite succeed, and wind up giving a
(1/2,1—1/2,0)-argument.
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An overview of the proof of Theorem 1

Remember that step two works out — and leads to a gain of one in
the value of § — if most double bubble polygons have few
macroscopic join points.

In this rigorous version, we show only that there are typically at
most n'/2 such points.
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An overview of the proof of Theorem 1

Why at most n'/2 join points?

If there are more, then reflected walks may be modified to produce
1/2
more than e"* walks matched to each polygon.

But that contradicts the classical Hammersley-Welsh bound.
NE

ES

Figure: A polygon with its join points, then reflected and locally modified.
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The snake method

To explain something of how Theorem 2 — closing probability is at
most n~1/2 — is obtained, we begin by discussing the snake method
in a general guise.

It's a proof-by-contradiction technique for proving closing
probability upper bounds.

It involves constructing sequences of laws of self-avoiding walks
conditioned on increasingly severe avoidance constraints.
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Explaining the snake method

First of all, a reflection argument shows that, for some ¢ > 0,

W, (F closes) <c.

Figure: A closing walk may be reflected to form a non-closing alternative.
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Explaining the snake method

How to improve this inference to show that
W,,(r closes) —07

Consider a typical first part.

Aim to argue that a walk in the half-space from the northeast
corner typically meets the first part.

Figure: The reflection is viable even if the two parts meet on the left.
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Explaining the snake method: polygonal invariance

To argue that the two half-space walks typically meet, polygonal
invariance is an important tool.



Self-avoiding walks and polygons: counting, joining and closing

Explaining the snake method: Kesten's pattern theorem

A pattern is any finite piece that may occur in the middle of a walk.

Figure: Type | and Il patterns.

A classic result of Kesten asserts the ubiquity of any given pattern.

For any pattern P, there exist § € (0,1) and ¢ > 0 such that

W,,( there are fewer than dn instances of P in r) <e .
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Explaining the snake method: Kesten's pattern theorem

The snake method is a proof-by-contradiction technique.

Suppose that we're trying simply to show that
W,,(r closes) — 0.

Suppose instead that the closing probability is at least c.

Call a first part charming if the second part has positive probability
to close the first.

Then for most ¢ € [0, £], most length ¢ first parts are charming.
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Explaining the snake method: general guise

But as the first part length ¢ rises, the second part length n — /¢
falls.
If we can show that the first part is often charming even if the

second part length is not changing, then we have a powerful
mechanism for manufacturing alternative walks by reflection.
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Explaining the snake method: pattern fluctuation

Gaussian pattern fluctuation is a technique for showing that the
second part length may remain fixed as the first part length ¢
varies.

Figure: By switching a type / pattern in the first part to be of type //,
two units of length accumulate in the first part.
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Explaining the snake method: the n~/? bound

Type | to type /I pattern switching may be maintained for an order
of n'/2 steps without the law W, noticing much.

1/2

This is in essence the same n*/< as in Theorem 2:

W,,(F closes) < n~1/2+o(1)
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Explaining the snake method: beyond n~1/2

1/2 harrier to reach Theorem 3:

How to push below the n™
W,,(F Closes) < n~6/11+0(1) subsequentially ?

Use the snake method again. Not via pattern fluctuation but via
polygon joining.

Figure: As the first part length falls, deflate the length of the right
polygon in the join. The dotted second part remains of constant length.



