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Asymptotic statistics of the last-passage times

e KPZ (Kardar-Parisi-Zhang) universality conjecture for
one-point limit fluctuations of the last-passage times:

lim P { G(Larl,n) = my(r) < s} = Fgur(s) forseR.

n—o0

@ The conjecture should hold for a /arge class of P. It has been
verified when the weights are i.i.d. exponential or geometric.
[Johansson ’00]
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o Let g€ (0,1). Assume the weights are independent and

P(W(i,j)=k)=(1—q)g" forijeN and ke Z,

@ Law of large numbers. [Cohn, Elkies, Propp '96], [Josckusch,
Propp, Shor "98], [Seppaldinen '98]

lim G([nrJ7n) P—é.s.w(r) _ q (r+1)+12\_/aq\ﬁ

n—o0 n ]_—q

for r > 0.
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o Right tail bound. [Corwin, Liu, Wang '15]. There exist
M. 6, c > 0 such that, for M < s < 6n'/3,

P(G(| nr],n) = nvy(r) + n1/3s) < exp(—cs).

@ One-point limit fluctuations. [Johansson '00]

lim P(G(| nr],n) = ny(r) + n30(r)s) = Fqur(s) forseR,

n—o0

where

1/6
o= 2 (9) Wa VIR v
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@ Let A € (0,00). Assume the weights are independent and

P(W(i,j) = x) =exp(—Ax) fori,jeN and x =0

@ Law of large numbers [Rost '81]. For r > 0,

i G(Lnrln) Pi's'v(r)zi(rJrl)Jrg\ﬁ

n—o0 n )\



CGM with i.i.d. exponential weights




CGM with i.i.d. exponential weights

@ Right tail bound. [Seppiliinen 98, Johansson '00] For s > 0,
P(G(Lnr ], m) > my(r) + ns) < exp(—nK(r, )

for some explicit K(r,s).



CGM with i.i.d. exponential weights

@ Right tail bound. [Seppiliinen 98, Johansson '00] For s > 0,
P(G(Lnr ], m) > my(r) + ns) < exp(—nK(r, )

for some explicit K(r,s). In fact,

lim —% log P(G(| nr],n) = nvy(r) + ns) = K(r,s).

n—0o0
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@ Right tail bound. [Seppiliinen 98, Johansson '00] For s > 0,
P(G(Lnr ], m) > my(r) + ns) < exp(—nK(r, )

for some explicit K(r,s). In fact,

lim 1 log P(G(| nr],n) = nvy(r) + ns) = K(r,s).

n—0o0 n

@ One-point limit fluctuations. [Johansson '00]

lim P(G(| nr],n) = ny(r) + n*30(r)s) = Fque(s) for s € R,

n—0o0

where o(r) = r=1/0(1 + r)*/3,
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CGM with inhomogeneous geometric weights

o Let (aj)jen and (bj)jen be sequences in (0,1).

@ The weights are still independent but at site (/,) parameter
q = aibj i.e.

P(W(i,j) = k) = (1 — a;bj)afbf fori,jeN and ke Z, .

@ The distribution of last-passage times can be expressed as a
Fredholm determinant with explicit kernel. [Johansson '01]

RSK | Schur measures [Okounkov '01] Fredholm determinants
P = . .
Determinantal point processes for P(G(m, n) < k)
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Randomized parameters

@ Assume that (a;)ien and (bj)jen are ergodic random
sequences.

- No assumption on the joint distribution of these sequences.
- Let av and 3 denote the distributions of a; and b;, respectively.

- Inhomogeneity averages out. For any bounded f, g

n

1 1
lim )+ a(b) = [ Flaalda) + [ e(B)(an)

i=1

@ Our results hold for a.e realization of (a;)jen and (bj)jen.
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Law of large numbers for the last-passage times

o Law of large numbers. [E. '15]

1

1
- G(| nr],n) Pas. .y _ o . aa(da) bz((db)
lim —————~= (r) f { O/ +/

n—aoo n &<Z<% Z—a 1— bz

- Notation. 7 is the right endpoint of the support of
ne Ml(R)

- Obtained assuming the pair (a;)ien, (bj)jen is totally ergodic.
@ There exists a unique minimizing value {(r) € [a, 1/3] for z.
e For some (explicit) critical values ¢; = ci(«, 3) and

G = C2(a75)1
- ¢(=aifand only if r < c1(av, B).
- ¢ =1/F if and only if r = o (av, B).

|
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Linear and strictly concave segments

1 2 3

5 6

L

Figure: Plot of r — (r) (red) when o = 1(1 — 2)®da and
B = 053 — b)? 1,<1db. 1 ~0.381 and c; ~ 5.842. (blue)

- c1—0|fff a(da = o and c2—00|fff b))2:
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Johansson-Seppalainen model [Gravner, Tracy, Widom "02]

P-as. |. _
o Law of large numbers. v(r) " =% lim,_o n"1G(| nr |, n) has a
linear, strictly concave and constant segments.

@ Order of fluctuations and the limit distributions.

- Strictly concave region: n'/3 and Fqug.
- Linear region: n*/? and Gaussian distribution.

- Critical directions: ? and ?

@ We presently observe Tracy-Widom fluctuations in the strictly
concave region for the inhomogeneous CGM.
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Approximation of o and (8 by empirical distributions

1m 10
® Set m = [ nr|. Introduce ay = — >} s and B, = = > 5y,
mij=1 nj=1
@ LLN limit takes the form
Vo= inf {rZ . iz }
am<z<l/B, (M =7 Z—ai N7 1—bjz r=m/n

- Qp = MaXje[m) a and 1/5_,, = Minjepy) 1/b;.
- (p: the unique minimizing z value for r = m/n
1 rda " bjz
s o3 =e2p2) D i < )j
7 24'1 Z{migl +’U‘Z:l }

Z — aj 1fij

(2=Cayr=m/n)



Approximation of o and (8 by empirical distributions

1
m 1

1 n
(53[- and Bn: ; ;

e Set m = | nr|. Introduce oy, =

@ LLN limit takes the form

r m
n = inf - -
7 . ‘{mzz—a, 1—bz}

am<z<1/Bn i1

r=m/n

QOm = MaX;c[m] di and 1/ﬂ_n = minje[n] 1/bJ

Cn: the unique minimizing z value for r = m/n
m aj 1 ij }

1., r
= — (’)2 — _
2<n Z{m,-glz—a; nj=1 ].—ij

=~(r), leoo ¢n = ((r) and

(2=Cayr=m/n)

- By ergodicity, lim ~,
n—o0

nILmOO on =o(r).

j .
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Tracy-Widom limit in the strictly concave region

@ Recurring assumptions: @3 < 1 and ¢;(a, ) < r < c(a, ).

- af < 1iff sup EW(i,j) < o0 iff c1(o, B) < (v, B).
ijeN

For a.e. (aj)ien and (bj)jen,

lim P { G([”rjl’/:) = Ol s} — Founlo)
nt30,

n—00

@ 0, can be replaced with o(r) by continuity of Fgug

o If used 7y(r) instead of v, the limit equals 0 or 1 a.s.
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One-point distribution for the last-passage times

@ For mneN, x,yeZ, and ze C~{ay,...,an}, define
. " (1 —zb;
Fa (@) = U =2 e
[Tl:(z—a)
and the correlation kernel
(by),(ai)
F
Km.n(x,y) % mn nmy_ (W) dz dw,
1 — zZw
IWI plzl=p

where maxje[y,) ai v Max;e[, by < p < 1.
@ FormneNand ke Z.,,
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Scaling limit for the correlation kernel

@ A Fredholm determinant representation of Fgug(s) for s € R.

o (1)
FGUE(S) =1+ Z / i?S[t/][A(Si’ sj)]dsl ...ds;
[s,00)!

@ Suitably rescaled Kp, n(x,y) converges to the Airy kernel a.s.

Let so > 0. For a.e. (aj)ien and (bj)jen,

lim det [K| nr),n(l n7n + n3aps;i |, | nyn + n1/3ansjj]af,n’/3
n—a0 j jell] ’
= det [A(s), s))]

ijell]

uniformly in sy, ..., s € [—so, So| for any | € N.
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A uniform upper bound for the correlation kernel

e Notation. x; = x v 0.

Let so = 0. For a.e. (aj)ien and (bj)jen, there exist ng € N and
C,c > 0 such that, for e N, n > ng and s1,...,s = —sp,

et [K{or,n(L 170 + n3a,s: ], | 1y + n3a,s; )]
1,JE

< Cnl,//lfexp{ = C<ZI:(S/')1/2 A (”1/3(5i)+)>}

i=1

@ sq,...,s; are only bounded from below.
@ The LHS is nonnegative. _c_Ie[tl][Km,,,(x,-,xj)] e [0,1].
JE

1
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For a.e. (aj)ien and (bj)jen, there exist ng € N and C,c > 0 such
that, for s = 0 and n > ng,

P {G([nr],n) > ny, + ns} < Cexp{ — en(s3? A s)}.

@ Set s = n23x for x > 0. Then, ass., for n > no,
P{G(| nr|,n) = ny, + n*3x} < Cexp{—cx®?}  for x < n?/3
P{G(| nr|,n) = ny, + n*3x} < Cexp{—cn'3x} forx=n

@ Set s =x+ v —, for x = xp > 0. Then, a.s., there exist
n1 € N and ¢’ > 0 (both uniform in x) such that, for n > nq,

P{G(| nr|,n) = ny + nx} < Cexp{—c'n(x*? A x)}.



Thanks very much!
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@ For mneNand x,y € Z.,

0
(a)(b) (a)b) (bj),(ai)
K Z Im,n x+1 n ,my+1?

1=0

where
/malrz’xbj) = i HJ:l(l _ ij> Zm+XdZ
T 2mi [17(z—aj)
|z[=1

o Do steepest-descent analysis of /.| o | vy, 0130, | +1-
@ Use averaging property (ergodicity) of (a;)jen and (bj)jen to
have uniform control.

@ The same strategy used in [Gravner, Tracy, Widom '02] for the
inhomogeneous Johansson-Seppaldinen model.
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Steepest-descent analysis

A
I 1 . o ol ~
0 ar a2 as a Cn 1 1 1
B by by

o log Fmnx(z) = — >, log(z—aj)+ >, log(1—bjz)+(x+m)log z
i=1 j=1

@ A steepest-descent curve ®, emanates from (, and ends at 0.

o ®,, stays outside a fixed region containing the singularities.
- Enables uniform control of ¢, in n.

o Use &, + &, as the contour of integration.



Thanks very much!



