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Random Geometric Graphs

Fix open D ⊂ Rd with Lipschitz boundary, ν = ρ(x) dx probability
measure on D. Take {Xi}i∈N i.i.d., and Xn = {Xi}ni=1.

To assign weights, we pick a kernel η : Rd → R, length scale εn.

Wij =

{
1
εdn
η
(
Xi−Xj

εn

)
=: ηεn(Xi − Xj), if i 6= j ,

0, otherwise.

Graph Gn = (Xn,W ).



Questions

Gn gives (random) modularity functional Qn.

1. What is the behavior of Qn as n→∞?

2. What do optimal modularity clusterings

U∗n ∈ arg max
|Un|≤K

Qn(Un)

look like?

Consistency: Subject to certain technical assumptions, U∗n → U∗
where U∗ is a partition of D characterized as the solution to a
(deterministic) continuum optimization problem.
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Consistency of Clustering Methods

I K-Means (Pollard 1981)

I Spectral Clustering (von Luxburg, Belkin, & Bosquet 2008)

I Modularity (Bickel & Chen 2009, Zhao, Levina, & Zhu 2012)

I Cheeger Cut (Garćıa-Trillos, Slepčev, von Brecht, Laurent, &
Bresson 2014)
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Key Identity

Let Un = {Un,k}Kk=1 be a partition of Xn, and let un,k = 1Un,k
.

Then

1− 1/K − Qn(Un) =
1

S2

K∑
k=1

(∑
i

dαi
[
un,k(Xi )− 1/K

])2

+ εn
n2

4m

K∑
k=1

GTVn(un,k),

where

GTVn(u) :=
1

εn

1

n2

∑
i ,j

ηεn(Xi − Xj)|u(Xi )− u(Xj)|.



Key Identity

Let Un = {Un,k}Kk=1 be a partition of Xn, and let un,k = 1Un,k
.

Then

1− 1/K − Qn(Un) =
1

S2

K∑
k=1

(∑
i

dαi
[
un,k(Xi )− 1/K

])2

+ εn
n2

4m

K∑
k=1

GTVn(un,k),

where

GTVn(u) :=
1

εn

1

n2

∑
i ,j

ηεn(Xi − Xj)|u(Xi )− u(Xj)|.



Continuum Partitioning

Domain D ⊂ Rd , fixed K ≥ 1, and partition U = {Uk}Kk=1 of D.

I U is balanced with respect to µ if µ(Uk) = 1/K for k = 1, . . . ,K .

I The perimeter of Uk in D, with respect to a weight ρ2, is

Per(Uk ; ρ2) =

∫
∂Uk

ρ2(x) dHd−1(x).

More generally,

Per(Uk ; ρ2) = TV (1Uk
; ρ2) := sup

Φ∈C 1
c (D;Rd )

|Φ(x)|≤ρ2(x)

∫
D

1Uk
(x)div Φ(x) dx .

Remark: When f smooth, TV (f ; ρ2) =
∫
D
|∇f |ρ2(x) dx .
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Continuum Partitioning

U∗ = arg min
|U|=K

µ(Uk )=1/K

K∑
k=1

Per(Uk ; ρ2).

(a) K = 4 (b) K = 9. (c) K = 25.

Figure: Local minimizers on D = (0, 1)2, with ρ(x) = 1, dµ = dx ,
produced using The Surface Evolver.
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“Pointwise” Convergence

What is the behavior of Qn as n→∞?

Theorem (Asymptotics)
Let U be a finite perimeter partition. Suppose {εn} satisfies∑∞

n=1 exp(−nε(d+1)/2
n ) <∞ when α = 0, 1 and

∑∞
n=1 exp(−nεdn) <∞

otherwise. Then, as n→∞,

1− 1/K − Qn(Un)

εn

a.s.−−→

Cη,ρ
∑K

k=1 Per(Uk ; ρ2) if
∑K

k=1

(
µ(Uk)− 1/K

)2

= 0,

∞ otherwise,

where

dµ(x) =
ρ1+α(x) dx∫
D
ρ1+α(x) dx

and Cη,ρ =

∫
Rn η(x)|x1| dx
2
∫
D
ρ2(x) dx

.
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Sketch of Proof: Convergence of Graph Total Variation

Recall

GTVn(u) =
1

εn

1

n2

∑
i,j

ηεn(Xi − Xj)|u(Xi )− u(Xj)|.

Proposition
Fix u = 1U , and let {εn}n∈N be a sequence converging to zero such that

∞∑
n=1

exp(−nε(d+1)/2
n ) < +∞.

Then
GTVn(u)

a.s.−−→ σηTV (u; ρ2).

Ingredients:

I Nonlocal TV (Ponce ‘04)

I Exponential bounds for U-statistics (Giné, Lata la, & Zinn ‘00)
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Convergence of Partitions

Given partition Un = {Un,k}Kk=1 of Xn, we associate the measures
γn,k ∈ P(D × {0, 1}), for k = 1, . . . ,K , by

γn,k =
1

n

n∑
i=1

δ(Xi ,1Un,k
(Xi )) = (Id × 1Un,k

)]νn.

Given partition U = {Uk}Kk=1 of D, we similarly define

γk = (Id × 1Uk
)]ν.

We say that Un
w−→ U if there exists a sequence {πn}n∈N of

permutations of {1, . . . ,K} such that

γn,πnk
w−→ γk , for k = 1, . . . ,K .
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Convergence of Optimal Partitions

Theorem (Convergence of Optimal Partitions)
Suppose {εn}n∈N satisfies suitable conditions. For n ≥ 1, let
U∗n ∈ arg max|U|≤K Qn(U) be an optimal partition.
If U∗ is the unique solution (up to relabeling of its constituent sets) to
the problem

minimize
|U|=K

µ(Uk )=1/K

K∑
k=1

Per(Uk ; ρ2) (P)

with dµ(x) = ρ1+α(x) dx/
∫
D
ρ1+α(x) dx , then U∗n

a.s.−−→ U∗.

If there is
more than one solution to (P), then almost surely i) {U∗n }n∈N has at least
one cluster point, and ii) every cluster point is a solution to (P).
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Remarks on Theorem

I Weak convergence of measures via Wasserstein metric.

I Useful tool: transport maps relating empirical measures νn to ν,
with bound on ∞-transport cost (Garćıa-Trillos, Slepčev).

I Because modularity clusterings are optimizers of discrete energies,
we use Γ-convergence to prove that their limit is the optimizer of a
continuum energy.

I Balance constraint in the continuum problem presents a technical
difficulty.

I We modified the notion of Γ-convergence for random functionals to
allow the use of our pointwise convergence result.
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Existence of Transport Maps

Let D ⊂ Rd be open, connected with Lipschitz boundary. Assume
ν = ρ(x) dx with ρ continuous and bounded above/below by
positive constants.

Proposition (Garćıa-Trillos, Slepčev ‘14)
There is a constant C > 0 such that, with probability one, there exists a
sequence of transportation maps {Tn}n∈N, Tn]ν = νn with

lim sup
n→∞

n1/2‖Id − Tn‖∞
(2 log log n)1/2

≤ C (d = 1),

lim sup
n→∞

n1/d‖Id − Tn‖∞
(log n)3/4

≤ C (d = 2),

lim sup
n→∞

n1/d‖Id − Tn‖∞
(log n)1/d

≤ C (d ≥ 3).



Assumption on εn

Assume {εn}n∈N is such that εn > 0 and εn → 0. For α = 0, 1, assume
that

lim
n→∞

√
2 log log n√

n

1

εn
= 0, if d = 1

lim
n→∞

(log n)3/4

n1/2

1

εn
= 0 if d = 2

lim
n→∞

(log n)1/d

n1/d

1

εn
= 0 if d ≥ 3.

For α 6= 0, 1, assume that

∞∑
n=1

n exp(−nεd+1
n ) <∞.



The role of α

(a) Level sets (b) α = −1 (c) α = 0 (d) α = 1

dµ(x) ∝ ρ(x)1+α, ρ(x) ∝ min(2 exp(−4||x − x0||2), 1/2).



Thanks for coming!
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