Consistency of Modularity Clustering on Random
Geometric Graphs

Erik Davis

The University of Arizona

May 10, 2016



Outline

Introduction to Modularity Clustering



Graph Clustering

G=(X,W)




Graph Clustering

= partition = coloring

clustering

G = (X, W)




Graph Clustering

= partition = coloring

clustering

G=(X,W)

=32 W
1J

> Wiid(ci, ¢j) where m

1
2m £~
o

1



Modularity (Newman & Girvan '04)
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Modularity Clustering:

U* = argmax Q(U),
U<k

More generally (a-modularity):
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Random Geometric Graphs

Fix open D C RY with Lipschitz boundary, v = p(x) dx probability
measure on D. Take {Xi}iey i.i.d., and X, = {X;}_;.

To assign weights, we pick a kernel 77 : RY — R, length scale e,.

Xi—X; o .
{iﬂm(ﬁnj)—: ey (Xi = X5), iF 0 #

Wi = .
0, otherwise.

Graph G, = (X,, W).
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Questions

Gn gives (random) modularity functional Q.
1. What is the behavior of Q, as n — o0?
2. What do optimal modularity clusterings

Uy € argmax Qn(Un)
[Un|<K
look like?

Consistency: Subject to certain technical assumptions, Uy — U*
where U* is a partition of D characterized as the solution to a
(deterministic) continuum optimization problem.



Consistency of Clustering Methods

v

K-Means (Pollard 1981)
Spectral Clustering (von Luxburg, Belkin, & Bosquet 2008)
Modularity (Bickel & Chen 2009, Zhao, Levina, & Zhu 2012)

Cheeger Cut (Garcia-Trillos, Slep&ev, von Brecht, Laurent, &
Bresson 2014)

v

v
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Pointwise Convergence
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Let U, = {Unk}K_, be a partition of X, and let v, = 1y, ,.
Then

K
1—1/K — Qu(Un) %Z(Zda unk(X)—l/KD
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where

GTV,( —6 ZnenX X)u(X;) = u(Xj)|-
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Continuum Partitioning

Domain D C RY, fixed K > 1, and partition U = {Uk}szl of D.
> U is balanced with respect to p if pu(Ux) =1/K for k =1,..., K.
> The perimeter of Uy in D, with respect to a weight p2, is

Per(Uy; p?) = / p?(x) dHI7(x).
OUk
More generally,
Per(Uk; p°) = TV(1y,; p°) == sup / Ly, (x)div &(x) dx.
ocC(D;RY) /D
[#(x)|<p?(x)

Remark: When f smooth, TV(f; p?) = [, |Vf|p?(x) dx.



Continuum Partitioning
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Continuum Partitioning

K
U* = argmin ZPer(Uk;p2).
=K k=1
wU)=1/K

(a)K=4 (b) K =09. (c) K = 25.

Figure: Local minimizers on D = (0,1)?, with p(x) = 1, du = dx,
produced using The Surface Evolver.
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What is the behavior of Q, as n — o0?
Theorem (Asymptotics)

Let U be a finite perimeter partition. Suppose {€,} satisfies
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“Pointwise” Convergence

What is the behavior of Q, as n — o0?
Theorem (Asymptotics)

Let U be a finite perimeter partition. Suppose {€,} satisfies
- exp(—net?™/?) < 0o when a = 0,1 and S exp(—nel) < 0o
otherwise. Then, as n — o,

1 1/K = QuUn) as., {Cw Sony Per(Uii p?) if o0, (u(Uk) - 1/K)2 =0,

€n o otherwise,
where
1+a
P (X) dX f]Rn 77(X)|X1‘ dX
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Sketch of Proof: Convergence of Graph Total Variation

Recall

GTVq( Znenx X)) u(Xi) = u(X))].

Proposition
Fix u =1y, and let {e,}nen be a sequence converging to zero such that

Z exp(—neld*/2) < fo0.
n=1

Then
GTV,(u) 225 0, TV (u; p?).

Ingredients:
> Nonlocal TV (Ponce '04)
> Exponential bounds for U-statistics (Giné, Latata, & Zinn ‘00)
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Convergence of Partitions

Given partition U, = {U, x }X_, of X, we associate the measures
Ynk € P(D x {0,1}), for k =1,..., K, by

n

1
Tk == 00x,14,,(x)) = (10 X Ly, Jewn.
i=1

Given partition U = {Ux}K_; of D, we similarly define
Yk = (/d X ]luk)ﬁlj.

We say that U, — U if there exists a sequence {7, }neny of
permutations of {1,..., K} such that

Yn,mwak L v, fork=1,...,K.



Convergence of Optimal Partitions

Theorem (Convergence of Optimal Partitions)

Suppose {€ep}nen satisfies suitable conditions. For n > 1, let
Uy € argmaxy <k Qn(U) be an optimal partition.
IfU* is the unique solution (up to relabeling of its constituent sets) to
the problem
K
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Convergence of Optimal Partitions

Theorem (Convergence of Optimal Partitions)

Suppose {€ep}nen satisfies suitable conditions. For n > 1, let
Uy € argmaxy <k Qn(U) be an optimal partition.
IfU* is the unique solution (up to relabeling of its constituent sets) to

the problem
K
m‘lzg;:m;(ze er(Ux; p°) (P)
n(U)=1/K =1

with du(x) = p*t*(x) dx/ [, pT*(x) dx, then Uy 225 U*. If there is
more than one solution to (P), then almost surely i) {U}},en has at least
one cluster point, and ii) every cluster point is a solution to (P).



Example

n = 16000
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Remarks on Theorem

» Weak convergence of measures via Wasserstein metric.

» Useful tool: transport maps relating empirical measures v, to v,
with bound on oco-transport cost (Garcia-Trillos, SlepZev).

> Because modularity clusterings are optimizers of discrete energies,
we use [-convergence to prove that their limit is the optimizer of a
continuum energy.

» Balance constraint in the continuum problem presents a technical
difficulty.

» We modified the notion of I'-convergence for random functionals to
allow the use of our pointwise convergence result.



Existence of Transport Maps

Let D C RY be open, connected with Lipschitz boundary. Assume
v = p(x) dx with p continuous and bounded above/below by
positive constants.

Proposition (Garcia-Trillos, Slepev ‘14)

There is a constant C > 0 such that, with probability one, there exists a
sequence of transportation maps { Tp}nen, TV = Vn with

n'/2)1d — Tl
li _— = < C (d=1
piviy (2loglog n)t/2 — ( )
n'/?1d — Thllso
li — = — <C (d=2
IITlSolip (Iog n)3/4 > ( )7
1/d —
IimsupM <C (d>3).

n—s00 (log n)t/d



Assumption on ¢,

Assume {€,}nen is such that €, > 0 and ¢, — 0. For &« = 0,1, assume

that
v2loglogn 1 e g
lim ——————— =0, ifd=1
n—o0 Vn €n
_ (logn)¥*1 e
1/d
jim (08M)7CL if d > 3.

n— o0 nl/d €n

For a # 0,1, assume that

Z nexp(— d“
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(a) Level sets (b) a=—-1 (c)a=0 (d)a=1

dpu(x) o p(x), p(x) o min(2exp(—4||x — xol[*), 1/2).



Thanks for coming!
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