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Introduction

Model

I Diffusion on a bounded domain D ⊂ Rd

I When hits the boundary, the process is redistributed back into the domain, starting
the diffusion afresh.

Specifically, if z ∈ ∂D is hit, then the process stars from a location sampled from a
probability distribution µz , with µz (D) = 1.

I Mechanism is repeated indefinitely.

Why ?

I Fleming-Viot interacting particle model – also as a method to sample
quasi-stationary distribution for BM.
[BHM00] (more recently [BBF12] [BBP12] [GK12] [GK14])

I Then “mean-field” version, that grew into this model and raised many questions.
[GK02] [GK04][GK07] [BP07] [BP09] [LLR08] [KW11] [KW11a][PL12] [B14]

I Corresponds to analysis of a differential operator with non-local boundary conditions
– semiclassical analysis.

I Potential application: Finance ?

Main question

Long-run behavior, convergence to stationarity.

(some difficulties: not Feller, never reversible, for FV existence for infinite time horizon
was open until recently)
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Long-run behavior

Let’s denote our process by X = (Xt : t ≥ 0).

Here t represents time and Xt is the location at time t.

Run the process for a long time... what happens ?

From general principles (Doeblin condition) one can show that

I The process is ergodic: the distribution of Xt converges to a limit independent of
the distribution at time 0, the stationary distribution.

I The process is exponentially ergodic: the convergence occurs at an exponential rate.

Characterization of the exponential rate is more subtle.

3/ 16

reset



Introduction

Ergodicity

1D

Coupling

SG Bounds

Bibliography

Stationary distribution

Assumptions.

I The domain D is smooth.

I The underlying diffusion is generated by the elliptic operator L
(L = 1

2 ∆ for Brownian motion)

I The mapping D 3 z → µz is continuous (in the weak topology)

Characterization of Stationary distribution

Proposition 1 (B-Pinsky, [BP09])

1. Sequence of points X hits ∂D is a pos. recur. MC on ∂D with ! stat. dist. m.

2. X has ! stationary distribution π and

dπ(y) = C−1
∫
∂D

∫
D

G(x, y)dµz (x)dm(z)dy ,

where G is the Green’s function for L, and C a normalizing constant.
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Exponential Ergodicity

The total variation distance between two probability measures on the same measure space
is defined as

‖Q − Q′‖TV = sup
A

(
Q(A)− Q′(A)

)
.

Theorem 1 (B-Pinsky, [BP09])
Let L be the restriction of L to

{u : ∀z ∈ ∂D, lim
y→z

u(z) =

∫
u(x)dµz (x)},

and
γ1(µ) = min{Re(λ) : 0 6= λ eigenvalue for −L}.

Then

− 1

t
sup
x

ln ‖Px (Xt ∈ ·)− π‖TV →
t→∞

γ1(µ) ∈ (0,∞).

Remarks

I The operator L can be viewed as the generator of the diffusion with redistribution,
and γ is referred to as the spectral gap.

I The theorem was previously proved by Grigorescu and Kang for a specific case (BM
redistributed to a fixed point).

I The proof is analytical and relies on analysis of semigroups (difficulties: semigroup
not strongly continuous, and L not densely defined)
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1D

Assumptions

I Domain is the unit interval D = (0, 1) ⊂ R
I The underlying diffusion is Brownian Motion with generator

L =
1

2

d2

dx2
.

Dirichlet eigenvalues and exit times

I Let λD
0 (`) denote the first Dirichlet eigenvalue for −L on (− `2 , `2 ):

λ
D
0 (`) =

π2

2`2
.

I Let T (`) exit time of BM from (− `2 , `2 ), starting at 0.

I Then T (`) has exponential tail λD
0 (`):

P(T (`) > t) ∼ ce−λ
D
0 (`)t

.
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Results on γ1

Deterministic redistribution

Solving the eigenvalue problem in Theorem 1 gives the convergence rates:

Corollary 1

γ1(δa, δb) = λ
D
0 (L0(a, b)),

where

L0(a, b) =
1

2
max{a, 1− b, 1 + b − a}.

In particular,

λ
D
0 (1) = lim

a→0+
γ1(δa, δ1−a) < γ1(δa, δb) ≤ γ1(δ 2

3
, δ 1

3
) = λ

D
0 (

1

3
).

Equal redistribution measures

By Fourier techniques it was shown that

Theorem 2 (Li-Leung-Rakesh [LLR08])
If µ0 = µ1, then

γ1 = λ
D
0 (1/2).

Both results do not provide any intuition as for why they hold.
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Probabilistic approach to exponential ergodictiy: coupling

Definition 1

I A coupling for the generator L is a process (X ,Y ) such that marginal processes X
and Y are each generated by L.

I The coupling is Markovian if each of the marginals is Markov processes with respect
to the filtration generated by (X ,Y ).

The coupling time τ is defined as

τ = inf{t ≥ 0 : Xt = Yt}

Lemma 3 (Coupling inequality)

dt(x, y) := ‖Px (Xt ∈ ·)− Py (Xt ∈ ·)‖TV ≤ Px,y (τ > t).

Let dt = supx,y dt(x, y). Then from Theorem 1, we have that

1

t
ln dt → −γ1(µ).

Definition 2
A coupling is efficient if

lim
1

t
ln Px,y (τ > t) ≤ lim

1

t
ln dt(x, y).

Efficiency converts spectral problem into an absorption problem.
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Why coupling ?

1. Intuitive pathwise explanation to analytic results, at least in 1D case.

2. Sharper bounds than those previously obtained by analytical methods.

3. Also, it well known that for 1D diffusions, all successful order preserving couplings
are efficient.

In our model order cannot be always preserved.
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Coupling for BM with redistribution I

Equal Redistribution measures
Recall that when µ0 = µ1, γ1 = λD

0 ( 1
2 ).

We are looking for an explanation. It is provided through the following.

Theorem 4 (Kolb-Wubker [KW11])
Suppose that µ0 = µ1. Let ρ > 0 denote the distance of the support of µ0 from {0, 1}.
If x, y ∈ (0, 1) with |y − x| < ρ, then there exists an efficient coupling with
(X0,Y0) = (x, y) such that τ is dominated by the sum of 5 independent copies of
T (1/2).

One interesting feature of the coupling is that it is not Markovian. We do not know
whether an efficient Markovian coupling even exists.
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Proof of Theorem 4

Here is a sketch of the coupling.

Figure: Stages of coupling

Figure: Flowchart for stages

Remark
What breaks the Markovian is the redistribution of Y from 0 in 2b, which we choose to
be identical to that of X in 2a.
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Coupling for BM with redistribution II

What about µ0 6= µ1 ?

We already know the rates when µ0 = δa and µ1 = δb . They are given by:

γ1(δa, δb) = λ
D
0 (L0) where L0 = L0(a, b) = max

1

2
{a, 1− b, 1 + b − a}.

Again, what is the explanation ?

Theorem 5 (B. - Panzo - Tripp [BPT])
For x, y ∈ (0, 1) with 0 < y − x ≤ min{a, 1− b} there exists a Markovian efficient
coupling with (X0,Y0) = (x, y) such that τ is dominated by the sum of
b6 + 1/min{a, 1− b}c independent copies of T (L0).

Remarks

I We did this for random walk, which is a little messier with details.

I Coupling construction identifies L0 as a geometric “bottleneck”.

I The main difference and difficulty is that we cannot guarantee coupling when both
copies are redistributed at the same time.

I The number of copies depends on a and b, in contrast with a uniform bound (5) in
Theorem 4.

I This coupling is Markovian.

I Challenge: µ0, µ1 not deterministic.
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The bottleneck

We consider the state space as two loops:

I Left loop, (0, a]; and

I Right loop [b, 1)

There are two kinds of bottlenecks.
 

The copies start in the same loop and
are symmetric with respect to its center.
Use mirror coupling.

Effective length: a
2 or (1−b)

2 .

The distance is the length of the short
loop. Use translation coupling.

Effective length: 1+b−a
2 .

Remark

I The challenge was to show that these are the worst-case scenarios the coupling can
achieve.
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Observation: polynomial correction to rate

Setup

I a = 2
3 , b = 1

3 , x = 1
3 and y = 2

3 .

Stages of coupling

I Mirror coupling until meeting or distance is 2
3 .

I Translation coupling until either hits boundary.

"
0

"
N=16

"
y=J0=11

"
N/2=8

"
x=JN=5

"
2

"
14

I: Mirror

II: Translation

I It can be shown that dx,y (t) = Px,y (τ > t).

I But

Fτ = P meeting at end of mirror× DF of time for mirror

+ P not meeting at end of mirror× ( DF of time for mirror ∗ DF of time for translation)

=
1

2
FT (1/3) +

1

2
F∗2
T (1/3)

F∗2
T (1/3) has exponential tail with linear correction.

I Therefore dt(x, y) ∼ cte−λ
D
0 (1/3)t . 14/ 16
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Bounds on γ1

We proved the following in the generality of Theorem 1

Theorem 6 (B-Pinsky [BP07])
If −L possess a real non-zero eigenvalue, with minimal real part among all non-zero
eigenvalues, then γ1(µ) > λD

0 , the first Dirichlet eigenvalue of −L on D.

Using this, it was shown that for the 1D BM

Theorem 7 (Li-Leung-Rakesh [LLR08])

γ1(µ0, µ1) > λ
D
0 (1).

Remarks

I In the above paper it was also shown that the realness condition does not hold for
all diffusions.

I In an unpulished manuscript Li and Leung showed that γ1(µ0, µ1) ≤ λD
0 ( 1

3 ).

We asked whether the lower bound of Theorem 6 is universal.
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Another coupling result

We asked whether γ1(µ) > λD
0 .

Consider BM with drift h, that is

L =
1

2

d2

dx2
+ h

d

dx
,

on (0, 1) and redistribution
µ0 = µ1 = δ 1

2
.

Recall that the first Dirichlet eigenvalue for −L on (−`/2, `/2) is

λ
D
0 (h, `) = λ

D
0 (`) +

h2

2
.

We have the following:

Theorem 8 (Kolb-Wubker [KW11a][B14])

γ1 = λ
D
0 (1/4) ∧ λD

0 (h, 1/2).

and there exists an efficient coupling.

Remarks

I Kolb and Wubker showed that γ1 = λD
0 ( 1

4 ) for large enough h, and conjectured the
critical value.

I B. completed the picture.

I Both results are by coupling.

I This provides a counterexample, as λD
0 = λD

0 (h, 1
2 ) > γ1 for h large. 16/ 16
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Thank you.
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