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Wigner’s Semicircle Law

Definition (Wigner matrix)

Let (Wi ,j)1≤i<j<∞ and (Wi ,i )1≤i<∞ be independent families of i.i.d.
real-valued random variables such that EW1,2 = 0, Var(W1,2) = 1, and
Var(W1,1) <∞. We call the random real symmetric n × n matrix Wn

defined by

Wn(i , j) =

{
Wi ,j/

√
n if i < j

Wi ,i/
√

n if i = j

a Wigner matrix.

Theorem (Wigner, 1955)

The empirical spectral distributions (ESDs) µ(Wn) converge weakly
almost surely to the standard semicircle distribution SC(0, 1), where

SC(m, σ2)(dx) =
1

2πσ2
(4σ2 − (x −m)2)

1/2
+ dx .
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Wigner’s Semicircle Law
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Non-commutative Probability

Consider first the case of a usual measurable space (Ω,F). For a given
probability measure P on (Ω,F), we may form the (commutative)
∗-algebra L∞−(Ω,F ,P) of measurable complex-valued functions having
finite moments of all orders, i.e.,

L∞−(Ω,F ,P) =
∞⋂
p=1

Lp(Ω,F ,P).

The expectation E : L∞−(Ω,F ,P)→ C recovers the probability measure
P; thus, the passage from the probability space (Ω,F ,P) = ((Ω,F),P) to
the pair (L∞−(Ω,F ,P),E) involves no loss of information.
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Non-commutative Probability

Definition (Non-commutative probability space)

A non-commutative probability space is a pair (A, ϕ) consisting of a unital
algebra A over C equipped with a unital linear functional ϕ : A → C.

Examples

(L∞−(Ω,F ,P),E)

(Mn(C), 1
n tr)

(Mn(L∞−(Ω,F ,P)),E 1
n tr)

(C[G ], τG )
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Notions of Independence

For a collection of random variables S ⊂ A, we write
◦
S for the subset

(possibly empty) of centered random variables in S.

Definition (Classical independence)

Subalgebras (Ai )i∈I are classically independent if the Ai commute and ϕ
is multiplicative across the Ai in the following sense: for all k ≥ 1 and
distinct indices i(1), . . . , i(k) ∈ I ,

ϕ

( k∏
j=1

ai(j)

)
=

k∏
j=1

ϕ(ai(j)), ∀ai(j) ∈ Ai(j), (1)

or, equivalently,

ϕ

( k∏
j=1

ai(j)

)
= 0, ∀ai(j) ∈

◦
Ai(j). (2)

Benson Au (UC Berkeley) Random Matrices from Traffic Probability May 9th, 2016 6 / 27



Notions of Independence

Voiculescu: “What is free probability theory? It is not a euphemism for the
advocacy of an unconstrained attitude in the practice of probability. It can
rather be described by the exact formula

free probability = non-commutative probability theory+free independence.”

Definition (Free independence)

Subalgebras (Ai )i∈I are freely independent if for all k ≥ 1 and
consecutively distinct indices i(1) 6= i(2) 6= · · · 6= i(k) ∈ I ,

ϕ

( k∏
j=1

ai(j)

)
= 0, ∀ai(j) ∈

◦
Ai(j). (3)
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Non-commutative Central Limit Theorems (CLTs)

Theorem (de Moivre, 1733; Voiculescu, 1985)

Let (an) be a sequence of identically distributed self-adjoint random
variables in a ∗-probability space (A, ϕ). Assume that the an are centered
with unit variance, i.e., ϕ(an) = 0 with ϕ(a2

n) = 1, and write
sn = 1√

n

∑n
j=1 aj . We consider two cases.

(i) If the an are classically independent, then (sn) converges in
distribution to a standard normal random variable, i.e.,

lim
n→∞

ϕ(smn ) =

∫
R

tm · 1√
2π

e−t
2/2 dt, ∀m ∈ N.

(ii) If the an are freely independent, then (sn) converges in distribution to
a standard semicircular random variable, i.e.,

lim
n→∞

ϕ(smn ) =

∫ 2

−2
tm · 1

2π

√
4− t2 dt, ∀m ∈ N.
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Limit Laws for Random Matrices from Free Probability

Theorem (Voiculescu, 1991; Dykema, 1993)

With the appropriate moment assumptions, independent Wigner matrices
are asymptotically freely independent.

Corollary

The ESDs µ(Wn) converge in expectation to the standard semicircle
distribution SC(0, 1).
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Random Markov Matrices

Definition (Markov matrix)

Let Wn be a Wigner matrix, and let Dn be the diagonal matrix of row
sums of Wn, i.e.,

Dn(i , i) =
n∑

j=1

Wn(i , j) =
n∑

j=1

Wi ,j/
√

n.

We call the random real symmetric n × n matrix Mn defined by

Mn = Wn −Dn

a Markov matrix.

Theorem (Bryc, Dembo, and Jiang, 2006)

The ESDs µ(Mn) converge weakly almost surely to the free convolution
N (0, 1) � SC(0, 1).
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Mn =
1√
n



−
n∑

j 6=1

W1,j W1,2 W1,3 · · · W1,n

W2,1 −
n∑

j 6=2

W2,j W2,3 · · · W2,n

W3,1 W3,2
. . .

...
...

...

Wk,1 Wk,2 · · · −
n∑

j 6=k

Wk,j · · · Wk,n

...
...

. . .
...

Wn,1 Wn,2 · · · −
n∑

j 6=n

Wn,j
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Generalized Notions of Independence

Do there exist other notions of independence in the non-commutative
probabilistic setting?

Theorem (Speicher, 1997)

No.
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∗-graph polynomials

We write x = (xi )i∈I for a set of indeterminates. We implicitly assume an
associated set of indeterminates x∗ = (x∗i )i∈I such that

(x, x∗) = (xi , x
∗
i )i∈I

gives a set of pairwise distinct indeterminates satisfying the natural
∗-relation.

Definition (∗-graph monomial)

A ∗-graph monomial in the indeterminates x is a finite, connected,
bi-rooted ∗-graph in x. We denote the set of ∗-graph monomials in x by
G〈x, x∗〉.
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∗-graph polynomials

Example

x1 x∗1x∗3x2

x∗2

x1

ou
tin
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∗-graph polynomials

Definition (∗-graph polynomials)

We write CG〈x, x∗〉 for the complex vector space of finite linear
combinations in G〈x, x〉, the elements of which we call the ∗-graph
polynomials.
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∗-graph polynomials

Example

× =
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∗-graph polynomials

Example

× =
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∗-graph polynomials

Example

x1

x∗2 x3

( )∗
=

x∗1

x2 x∗3
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∗-graph polynomials

Example

x1

x∗2 x3

( )∗
=

x2x∗3

x∗1
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Traffic Probability

Definition (Traffic space)

A traffic space is a tracial ∗-probability space (A, ϕ) such that A is an
algebra over the symmetric operad of ∗-graph polynomials.
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Traffic Probability

Definition (Traffic space)

A traffic space is a tracial ∗-probability space (A, ϕ) such that A is an
algebra over the symmetric operad of ∗-graph polynomials. with the
additional structure to evaluate ∗-graph polynomials in the random
variables a ∈ A.
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Traffic Probability

Definition (Traffic space)

A traffic space is a tracial ∗-probability space (A, ϕ) such that A is an
algebra over the symmetric operad of ∗-graph polynomials. with the
additional structure to evaluate ∗-graph polynomials in the random
variables a ∈ A.

Example

Let A = (Ai )i∈I be a family of random n × n matrices. For a ∗-graph
monomial t = (T , vin, vout) = (V ,E , f , g , γ, ε, vin, vout) in x = (xi )i∈I , we
define t(A) to be the random n × n matrix with entries

t(A)(i , j) =
∑

φ:V→[n]
φ(vin)=i , φ(vout)=j

∏
e∈E

A
ε(e)
γ(e)(φ(f (e)), φ(g(e)))
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Traffic Probability

Example

x1 x∗2

(
A1,A2

)
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Traffic Probability

Example

x1 x∗2

(
A1,A2

)
= A1A∗2
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Traffic Probability

Example

x1

x2

(
A1,A2

)
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Traffic Probability

Example

x1

x2

(
A1,A2

)
= A1 ◦ A2
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Traffic Probability

Example

(A) = row(A)x
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CLTs Revisited

Theorem (de Moivre, 1733; Voiculescu, 1985)

Let (an) be a sequence of identically distributed self-adjoint random
variables in a ∗-probability space (A, ϕ). Assume that the an are centered
with unit variance, i.e., ϕ(an) = 0 with ϕ(a2

n) = 1, and write
sn = 1√

n

∑n
j=1 aj . We consider two cases.

(i) If the an are classically independent, then (sn) converges in
distribution to a standard normal random variable, i.e.,

lim
n→∞

ϕ(smn ) =

∫
R

tm · 1√
2π

e−t
2/2 dt, ∀m ∈ N.

(ii) If the an are freely independent, then (sn) converges in distribution to
a standard semicircular random variable, i.e.,

lim
n→∞

ϕ(smn ) =

∫ 2

−2
tm · 1

2π

√
4− t2 dt, ∀m ∈ N.
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CLTs Revisited

Theorem (Male, 2012)

(iii) Assume that A has the additional structure of a traffic space
(A, ϕ, τ). We split the variance of an as

1 = ϕ(a2
n) = τ

[
T1(an)

]
= τ0

[
T1(an)

]
+ τ0

[
T2(an)

]
= α + (1− α),

where

x

x x

x
T1 = T2 =and .

If the an are traffic independent, then (sn) converges in distribution
to the free convolution µα = SC(0, α) �N (0, 1− α), i.e.,

lim
n→∞

ϕ(smn ) =

∫
R

tm µα(dt), ∀m ∈ N.
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Limit Laws for Random Matrices from Traffic Probability

Definition ((p, q)-Markov matrices)

Let Wn be a Wigner matrix and Dn = row(Wn) the diagonal matrix of
row sums of Wn. For p, q ∈ R, we call the real symmetric n × n matrix
Mn,p,q defined by

Mn,p,q = pWn + qDn

a (p, q)-Markov matrix.

Theorem (Au, 2016)

Let (W
(`)
n : 1 ≤ ` <∞) be a sequence of independent finite moments

Wigner matrices. Then the families ((M
(`)
n,p,q)p,q∈R : 1 ≤ ` <∞) are

asymptotically traffic independent with stable universal limiting traffic
distribution.
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Limit Laws for Random Matrices from Traffic Probability

Corollary

The ESDs µ(Mn,p,q) converge in expectation to the free convolution
SC(0, p2) �N (0, q2).
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Limit Laws for Random Matrices from Traffic Probability

Corollary

The ESDs µ(Mn,p,q) converge in expectation to the free convolution
SC(0, p2) �N (0, q2).
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Limit Laws for Random Matrices from Traffic Probability

Corollary

The ESDs µ(Mn,p,q) converge in expectation to the free convolution
SC(0, p2) �N (0, q2).
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Limit Laws for Random Matrices from Traffic Probability

Corollary

The ESDs µ(Mn,p,q) converge in expectation to the free convolution
SC(0, p2) �N (0, q2).
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Limit Laws for Random Matrices from Traffic Probability

Corollary

The ESDs µ(Mn,p,q) converge in expectation to the free convolution
SC(0, p2) �N (0, q2).
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Limit Laws for Random Matrices from Traffic Probability

Corollary

The ESDs µ(Mn,p,q) converge in expectation to the free convolution
SC(0, p2) �N (0, q2).

-4 -2 0 2 4

0

50

100

150

200

250
p = 0, q = 1

Benson Au (UC Berkeley) Random Matrices from Traffic Probability May 9th, 2016 26 / 27



Limit Laws for Random Matrices from Traffic Probability

Theorem (Au, 2016)

Let Wn be a Wigner matrix, and let (Xn) and (Yn) be sequences of
real-valued random variables converging almost surely to X and Y
respectively. Then the ESDs µ(Mn,Xn,Yn) converge weakly almost surely to
the random free convolution SC(0,X 2) �N (0,Y 2).

Thank you!
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