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Groups as metric spaces

A group G is finitely generated if there exists a set S which is finite,
symmetric (S = S

−1), and generates G as a semigroup. Such a set S is
called a finite generating set of G.

G can be viewed as a (length) metric space (G, | · |G), which is the
Cayley graph of G with respect to S.

Changing generating sets gives equivalent metrics on G and
quasi-isometric Cayley graphs.
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Random walks on groups

Let µ be a probability measure on G. We will assume that µ is symmetric
(µ(g) = µ(g−1) for all g ∈ G), and supported on a finite generating set of G.

A random walk, Xn, on G whose increments are distributed according to
such a measure is said to be simple and symmetric. In particular,
Xn = ex1x2 · · ·xn where xi is the ith increment of the random walk.
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Rate of Escape

Expected displacement of the random walk, E
µ(n) |Xn|G, as a function

of n

We say a random walk has escape exponent α if ∃c > 0 such that
1
c
n
α ≤ E

µ(n) |Xn|G ≤ cn
α for all n ≥ 1.

One can also consider a law of the iterated logarithm:
lim sup

n→∞
|Xn|G√

nα log logn
∈ (0,∞) a.s with respect to µ.

Big question: On a given group does the escape exponent of a simple
symmetric random walk depend on the choice of finite generating set?
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What is known about the rate of escape

No simple symmetric random walk on a finitely generated group has
α < 1/2 (Lee, Peres),

Abelian groups: α = 1/2 for all simple symmetric random walks
(classical),

Nilpotent groups: α = 1/2 for all simple symmetric random walks
(Hebisch, Saloff-Coste),

Non-amenable groups: α = 1 for all simple symmetric random walks
(classical).

Outside of these classes the escape exponent is known only on
particular groups and only for particular families of measures (Revelle,
Erschler).
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Semidirect Products

Let H and K be groups. The semidirect product G = H �φ K,
φ : K → Aut(H) is given by the following multiplication rule:

(h, k)(h�
, k

�) = (h(φk · h�), kk�)

For G to be finitely generated, K must be finitely generated, but H need
not be finitely generated.

Suppose the random walk, Xn = (Wn, Yn), on G has increments
xi = (wi, yi). Then

Xn = (
n�

i=1

φ
Yi−1wi, Yn).

Observe that |Yn|G = |Yn|K , but the story is more complicated for Wn.
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Subgroup distortion

A finitely generated subgroup H of G is said to be strictly exponentially
distorted if there exists a c > 0 such that

1
c
log(|h|H + 1)− c ≤ |h|G ≤ c log(|h|H + 1) + c

for all h ∈ H.

Examples: Sol; BS(1, n), n = 1.
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Strictly exponential distortion and the rate of escape

Theorem

Let G = H �φ Zd. If H is finitely generated and strictly exponentially
distorted in G, then for any simple symmetric random walk Xn = (Wn, Yn)
on G there exists C > 0 such that

E
µ(n) |Yn|G ≤ E

µ(n) |Xn|G ≤ C(E
µ(n) max

i<n

|Yn|G + E
µ(n) |Yn|G + log n)

for all n ≥ 1.

Corollary

Under the above hypotheses, G has escape exponent 1/2 for all simple
symmetric random walks.

Example: Z2 �φ Z, |tr(φ)| > 2.

Russ Thompson The rate of escape for random walks on solvable groups



Strictly exponential distortion and the rate of escape

Theorem

Let G = H �φ Zd. If H is finitely generated and strictly exponentially
distorted in G, then for any simple symmetric random walk Xn = (Wn, Yn)
on G there exists C > 0 such that

E
µ(n) |Yn|G ≤ E

µ(n) |Xn|G ≤ C(E
µ(n) max

i<n

|Yn|G + E
µ(n) |Yn|G + log n)

for all n ≥ 1.

Corollary

Under the above hypotheses, G has escape exponent 1/2 for all simple
symmetric random walks.

Example: Z2 �φ Z, |tr(φ)| > 2.

Russ Thompson The rate of escape for random walks on solvable groups



Strictly exponential distortion and the rate of escape

Theorem

Let G = H �φ Zd. If H is finitely generated and strictly exponentially
distorted in G, then for any simple symmetric random walk Xn = (Wn, Yn)
on G there exists C > 0 such that

E
µ(n) |Yn|G ≤ E

µ(n) |Xn|G ≤ C(E
µ(n) max

i<n

|Yn|G + E
µ(n) |Yn|G + log n)

for all n ≥ 1.

Corollary

Under the above hypotheses, G has escape exponent 1/2 for all simple
symmetric random walks.

Example: Z2 �φ Z, |tr(φ)| > 2.

Russ Thompson The rate of escape for random walks on solvable groups



Another version of the theorem

Theorem

Let G = H �φ Zd be finitely generated. Fix a generating set S of G. If
πH(S) generates a strictly exponentially distorted subgroup of G, then for
any symmetric random walk supported on S there exists C > 0 such that

E
µ(n) |Yn|G ≤ E

µ(n) |Xn|G ≤ C(E
µ(n) max

i<n

|Yn|G + E
µ(n) |Yn|G + log n)

for all n ≥ 1.

Example: Z[1/n]2 �φ Z, |tr(φ)| > 2.

Idea of the proofs.

Show that for all z ∈ Zd
, h ∈ H, there exists q ≥ 1 such that

|φz · h|H ≤ q
|z||h|H . Then use strictly exponential distortion to bring this

estimate into | · |G.
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