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Tandem-Queues

Buying-rate λ Inventory-Size Nt Inquiry-Rate µ

· Criterion for positive Recurrence: λ < µ
· In Equilibrium πk := P[Nt = k ] = (1− ρ)ρk , where ρ = λ

µ

· Expected asymptotic size of inventory: (by ergodicity)
lim
t→∞

E[Nt ] = Eπ[Nt ] = ρ
1−ρ

= λ
µ−λ
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Rates µk state-dependent: criterion positive recurrence
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Perturbations of the Tandem-Queue

Example: Random vertikal conductances

µk ∼Binom, i.i.d: P[µk = λ+ ε] = p = 1− P[µk = λ− ε]

µ

α
λ

κ

κ

The Process is positive recurrent iff p > 1
2

(

1 + ε

λ

)

.
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Other ‘Perturbed’ Tandem-Queues

A continuous-time random walk (such as a queueing-system)
consists of three steps: Let j = 0

1. Wait exp.-distrib. Time with rate λ+ µ
2. Jump to neighbours with Probabilities λ

λ+µ
, µ

λ+µ

3. Increase j by one and goto 1.
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Simulating time-inhomogeneous RW’s

Rates µk state-dependent: criterion positive recurrence
No perturbation of α, λ implies:

Burke’s theorem still applicable.
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Simulating time-inhomogeneous RW’s: Results
Two different modifications of step 2.: Perturbed chain is
projection of chain on covering graph onto ‘original’ graph
(integer-line); Projections must be Markov-Processes!

2’. First pick layer (where to end up) with probability 1/2, then
use probabilities depending on layer where currently situated:

λ2 + λα ≤ µµ′ + α(µ + µ′)/2

implies positive recurrence.
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Abbildung: Thank you for your interest!
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