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M/M/1-Queues

1. Interarrival Times T; between merchandise-deliveries
2. Serving Times S; between sales (7 € N)
3. The M/AM/1 Quene: Tj ~ Exp(A), S; ~ Exp(p). iid.
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Figure 1: M/M/1-quene applied to simple inventory-model

Buying-rate A Inventory-Size N, Inquiry-Rate p
Criterion for positive Recurrence: A < pu
In Equilibrium 7y := P[N; = k] = (1 — p)p*, where p = /—\/
Expected asymptotic size of |nventory (by ergodicity)
||m J[Nt] = E[N] = £ = 25

1—p 7
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Figure 1: M/M/1-quene applied to simple inventory-model

Buying-rate A Inventory-Size N, Inquiry-Rate
- Criterion for positive Recurrence: A < p

- In Equilibrium 7x = P[N; = k] = (1 — p)p*, where p = %
- Expected asymptotic size of inventory: (by ergodicity)

; A
Jim B[N = B[N = 15 = 725
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Quarter-plane Random Walk

1. Tandem M/M/1 Queueing networle: (A, ), (A, p2)):
Stock-Sizes My, Shop-loventory N,

2. 2 Interarrival Times T;,Tf, (jeN)
TE ~ Exp(Ay), T ~ Exp(ha), Lid.
2 Serving Times Sjl, SJZ, (7 € N) between sales,

S}~ Explpn), S7 ~ Explpa), iid.
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Quarter-plane

Random Walk

1. Tandem M/M/1 Queueing networle: (A, ), (A, p2)):
Stock-Sizes My, Shop-loventory N,
2. 2 Interarrival Times T;,Tf, (jEN)
T}~ Exp(A), T} ~ Exp(Ag), Lid.
2 Serving Times S}, Sf, (7 € N) between sales,
S}~ Explpn), S7 ~ Explpa), iid.

. 5 .
3. Invariant measure 7 = 7' @ 7°  (from Burke's Theorem)

‘Every item leaving Stack enters Shop’ <% f1] > A = Ag =1 A

Stock M, ShopN |

A l-l-L_}zl [

Figure 4: A series of two M/M/l-quenes applied to inventory-model with stock. The
product form of the invariant distribntion of this simple queneing network follows from
Burke's theorem: P.Burke: “The output of a Queneing System’, Operations Research, Vol.
4, No. 6 (1956), p. 600-704
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Burke's Theorem |

« Stability 1< both queues (stock and shop) remain finite

Tandem Queue-Series: M[ [+

Stock: Shop

A Ny

Figure 5: a.) In Equilibrinm: mpy = P[M; = & Ny = 1] = (1 — p2)ph(1 — pa)phy where
p=2p= ;—} (Product Measure)  b.) (Imbedded random walk on quarter plane Z2)

Buving rate A = Aj = Ay; Transport rate a = py: Inquiry rate g = po

- Theorem: Stability & A<a and A< p

Proof: Imbedded Markoy chain is space-homogeneous Random Walk on 27,
Recurrence is guaranteed by Theorem 1.2.1(ii) in: G. Fayolle, R. Tasnogorodskd,

V. Malyshev: *‘Random Walks in the Cuarter Plane', Springer 1999
Positive recurrence follows from geometric decay of o, and 7
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Burke's Theorem Il

- Stability :¢ both queues (stock and shop) remain finite

Tandem Queue-Series: M[
A
Stock Shop ]
i
A N i
M, Ny [ iy L
Figure 6: a.) In Equilibrium: 7, = F[M, =k Ny = 1] = (1 — pa)pb(1 — pu)plh where

pr= 2 pa= 2 (Product Measure)  b.) (Imbeddled randomn walk on quarter pline Z2)
Buying rate A = Ay = Ag; Transport rate a = g5 Inquiryrate g = po
- Theorem: Stabilitv & A<a and A <p

Proof: Tabedded Markoy chain is space-homogeneons Random Walk on Z2.
Recurrence is guaranteed by Theorem 1.201(i1) in: G. Fayolle, R. Insnogoradski,

V. Malyshev: ‘Random Walks in the Quarter Plane’, Springer 1999
Positive recurrence follows from geometric decay of  and
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L Perturbations of the Tandem-Queue

Random Weights

- Transition rates Ay and g dependent on quene-size Ny = k
PNapt = F+1|No = H= 32 PNy = k—1| N, = k] = o2

Dbt A b

Rates u, state-dependent: criterion positive recurrence
(e} n
A and Z)\”/H,uk < o0
n=0 k=1

Rates ik (w) state-dependent, random:
criterion almost sure positive recurrence

o0 n
A and Z)\"E[HMZI] < 0
n=0 k=1
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L Perturbations of the Tandem-Queue

Example: Random vertikal conductances

Lk ~Binom, i.i.d: Pluk=A+e=p=1—Plux = A — ¢

The Process is positive recurrent iff p > % (1 + §)
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I—Recurrence of perturbed Tandem Queues

Other ‘Perturbed’ Tandem-Queues

A continuous-time random walk (such as a queueing-system)
consists of three steps: Let j =0
Wait exp.-distrib. Time with rate A\ 4

Jump to neighbours with Probabilities
Increase j by one and goto 1.

A 2
A A
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I—Recurrence of perturbed Tandem Queues

Other ‘Perturbed’ Tandem-Queues

A continuous-time random walk (such as a queueing-system)
consists of three steps: Let j =0
1. Wait exp.-distrib. Time with rate A +

2. Jump to neighbours with Probabilities
3. Increase j by one and goto 1.

A m
A’ A

Idea: Replace step 2. with different Jump-Rules
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I—Recurrence of perturbed Tandem Queues

Simulating time-inhomogeneous RW's

- Transition rates Ay and gy, dependent on quene-size N; = k

BN = k4+1| N, = K= ggm PV = k=1 N, = k] = 5

= Nt

Figure 7: Imbedded Markov Chain is Random Walk on quarter Plane I with state-
dependent transition-probabilities,
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I—Recurrence of perturbed Tandem Queues

Simulating time-inhomogeneous RW's

- Transition rates Ay and gy, dependent on quene-size N; = k

PNojy = k+1|N, = K =331 PNy = k—1| N, = k] =

Nt

= Nt

Figure 7: Imbedded Markov Chain is Random Walk on quarter Plane I with state-
dependent transition-probabilities,

Rates u, state-dependent: criterion positive recurrence
No perturbation of a;, A implies:
Burke's theorem still applicable.
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I—Recurrence of perturbed Tandem Queues

Simulating time-inhomogeneous RW's: Results
Two different modifications of step 2.: Perturbed chain is
projection of chain on covering graph onto ‘original’ graph
(integer-line); Projections must be Markov-Processes!



Recurrence of Tandem Queues under Random Perturbations

I—Recurrence of perturbed Tandem Queues

Simulating time-inhomogeneous RW's: Results

Two different modifications of step 2.: Perturbed chain is
projection of chain on covering graph onto ‘original’ graph
(integer-line); Projections must be Markov-Processes!

2'. First pick layer (where to end up) with probability 1/2, then
use probabilities depending on layer where currently situated:

Mo+ da < oupd + oalp 4+ 1))2

implies positive recurrence.
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I—Recurrence of perturbed Tandem Queues

Simulating time-inhomogeneous RW's: Results

Two different modifications of step 2.: Perturbed chain is
projection of chain on covering graph onto ‘original’ graph
(integer-line); Projections must be Markov-Processes!

2'. First pick layer (where to end up) with probability 1/2, then
use probabilities depending on layer where currently situated:

Mo+ da < oupd + oalp 4+ 1))2

implies positive recurrence.

2". Pick any of the directions in the graph with probability
proportional to its designated rate:

A< (p+u))2

implies positive recurrence.
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I—Recurrence of perturbed Tandem Queues

Simulation Results and Open Questions
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