Recurrence of Tandem Queues under Random Perturbations

Florian Sobieczky

13. März 2011

Contents

Queues
Queues in Series
Quarter-plane Random Walk
Perturbations of the Tandem-Queue
Recurrence of perturbed Tandem Queues
Recurrence of perturbed Tandem Queues
Literature

M/M/1-Queues

1. Interarrival Times T_{j} between merchandise-deliveries
2. Serving Times S_{j} between sales $(j \in \mathbb{N})$
3. The M/M/1 Queue: $T_{j} \sim \operatorname{Exp}(\lambda), S_{j} \sim \operatorname{Exp}(\mu)$, i.i.d.

M/M/1-Queues

1. Interarrival Times T_{j} between merchandise-deliveries
2. Serving Times S_{j} between sales $(j \in \mathbb{N})$
3. The M/M/1 Queue: $T_{j} \sim \operatorname{Exp}(\lambda), S_{j} \sim \operatorname{Exp}(\mu)$, i.i.d.

Figure 1: $\mathrm{M} / \mathrm{M} / 1$-queue applied to simple inventory-model

M/M/1-Queues

1. Interarrival Times T_{j} between merchandise-deliveries
2. Serving Times S_{j} between sales $(j \in \mathbb{N})$
3. The M/M/1 Queue: $T_{j} \sim \operatorname{Exp}(\lambda), S_{j} \sim \operatorname{Exp}(\mu)$, i.i.d.

Figure 1: M/M/1-queue applied to simple inventory-model

M/M/1-Queues

1. Interarrival Times T_{j} between merchandise-deliveries
2. Serving Times S_{j} between sales $(j \in \mathbb{N})$
3. The M/M/1 Queue: $T_{j} \sim \operatorname{Exp}(\lambda), S_{j} \sim \operatorname{Exp}(\mu)$, i.i.d.

Figure 1: M/M/1-queue applied to simple inventory-model
T_{j} Period between delivery, S_{j} period between customer's interest

Tandem-Queues

Figure 1: M/M/1-queue applied to simple inventory-model

Tandem-Queues

Figure 1: M/M/1-queue applied to simple inventory-model
Buying-rate λ
Inventory-Size N_{t}
Inquiry-Rate μ

Tandem-Queues

Figure 1: M/M/1-queue applied to simple inventory-model

Buying-rate $\lambda \quad$ Inventory-Size $N_{t} \quad$ Inquiry-Rate μ

Criterion for positive Recurrence: $\lambda<\mu$
In Equilibrium $\pi_{k}:=\mathbb{P}\left[N_{t}=k\right]=(1-\rho) \rho^{k}$, where $\rho=\frac{\lambda}{\mu}$
Expected asymptotic size of inventory: (by ergodicity) $\lim _{t \rightarrow \infty} \mathbb{E}\left[N_{t}\right]=\mathbb{E}_{\pi}\left[N_{t}\right]=\frac{\rho}{1-\rho}=\frac{\lambda}{\mu-\lambda}$

Tandem-Queues

Figure 1: $\mathrm{M} / \mathrm{M} / 1$-queue applied to simple inventory-model
Buying-rate $\lambda \quad$ Inventory-Size $N_{t} \quad$ Inquiry-Rate μ

- Criterion for positive Recurrence: $\lambda<\mu$
- In Equilibrium $\pi_{k}:=\mathbb{P}\left[N_{t}=k\right]=(1-\rho) \rho^{k}$, where $\rho=\frac{\lambda}{\mu}$
- Expected asymptotic size of inventory: (by ergodicity) $\lim _{t \rightarrow \infty} \mathbb{E}\left[N_{t}\right]=\mathbb{E}_{\pi}\left[N_{t}\right]=\frac{\rho}{1-\rho}=\frac{\lambda}{\mu-\lambda}$

Quarter-plane Random Walk

1. Tandem $\mathrm{M} / \mathrm{M} / 1$ Queueing network: $\left(\left(\lambda_{1}, \mu_{1}\right),\left(\lambda_{2}, \mu_{2}\right)\right)$: Stock-Sizes M_{t}, Shop-Inventory N_{t}
2. 2 Interarrival Times $T_{j}^{1}, T_{j}^{2},(j \in \mathbb{N})$

$$
T_{j}^{1} \sim \operatorname{Exp}\left(\lambda_{1}\right), T_{j}^{2} \sim \operatorname{Exp}\left(\lambda_{2}\right), \text { i.i.d. }
$$

2 Serving Times $S_{j}^{1}, S_{j}^{2},(j \in \mathbb{N})$ between sales,

$$
S_{j}^{1} \sim \operatorname{Exp}\left(\mu_{1}\right), S_{j}^{2} \sim \operatorname{Exp}\left(\mu_{2}\right), \text { i.i.d. }
$$

Quarter-plane Random Walk

1. Tandem $\mathrm{M} / \mathrm{M} / 1$ Queueing network: $\left(\left(\lambda_{1}, \mu_{1}\right),\left(\lambda_{2}, \mu_{2}\right)\right)$:

$$
\text { Stock-Sizes } M_{t} \text {, Shop-Inventory } N_{t}
$$

2. 2 Interarrival Times $T_{j}^{1}, T_{j}^{2},(j \in \mathbb{N})$

$$
T_{j}^{1} \sim \operatorname{Exp}\left(\lambda_{1}\right), T_{j}^{2} \sim \operatorname{Exp}\left(\lambda_{2}\right), \text { i.i.d. }
$$

2 Serving Times $S_{j}^{1}, S_{j}^{2},(j \in \mathbb{N})$ between sales,

$$
S_{j}^{1} \sim \operatorname{Exp}\left(\mu_{1}\right), S_{j}^{2} \sim \operatorname{Exp}\left(\mu_{2}\right), \text { i.i.d. }
$$

3. Invariant measure $\pi=\pi^{1} \otimes \pi^{2} \quad$ (from Burke's Theorem)
'Every item leaving Stock enters Shop' $\Leftrightarrow \mu_{1}>\lambda_{1}=\lambda_{2}=: \lambda$

Figure 4: A series of two $\mathrm{M} / \mathrm{M} / 1$-quenes applied to inventory-model with stock. The product form of the invariant distribution of this simple queueing network follows from Burke's theorem: P.Burke: 'The output of a Queueing System', Operations Research, Vol. 4, No. 6 (1956), p. 690-704

Quarter-plane Random Walk

1. Tandem $\mathrm{M} / \mathrm{M} / 1$ Queueing network: $\left(\left(\lambda_{1}, \mu_{1}\right),\left(\lambda_{2}, \mu_{2}\right)\right)$:

$$
\text { Stock-Sizes } M_{t} \text {, Shop-Inventory } N_{t}
$$

2. 2 Interarrival Times $T_{j}^{1}, T_{j}^{2},(j \in \mathbb{N})$

$$
T_{j}^{1} \sim \operatorname{Exp}\left(\lambda_{1}\right), T_{j}^{2} \sim \operatorname{Exp}\left(\lambda_{2}\right), \text { i.i.d. }
$$

2 Serving Times $S_{j}^{1}, S_{j}^{2},(j \in \mathbb{N})$ between sales,

$$
S_{j}^{1} \sim \operatorname{Exp}\left(\mu_{1}\right), S_{j}^{2} \sim \operatorname{Exp}\left(\mu_{2}\right), \text { i.i.d. }
$$

3. Invariant measure $\pi=\pi^{1} \otimes \pi^{2} \quad$ (from Burke's Theorem)
'Every item leaving Stock enters Shop' $\Leftrightarrow \mu_{1}>\lambda_{1}=\lambda_{2}=: \lambda$

Figure 4: A series of two $\mathrm{M} / \mathrm{M} / 1$-quenes applied to inventory-model with stock. The product form of the invariant distribution of this simple queueing network follows from Burke's theorem: P.Burke: 'The output of a Queueing System', Operations Research, Vol. 4, No. 6 (1956), p. 690-704

Burke's Theorem I

- Stability : \Leftrightarrow both queues (stock and shop) remain finite

Figure 5: a.) In Equilibrium: $\pi_{k, l}:=\mathbb{P}\left[M_{t}=k, N_{t}=l\right]=\left(1-\rho_{2}\right) \rho_{2}^{k}\left(1-\rho_{2}\right) \rho_{2}^{l}$ where $\rho_{1}=\frac{\lambda}{\alpha}, \rho_{2}=\frac{\lambda}{\mu}$. (Product Measure) b.) (Imbedded random walk on quarter plane \mathbb{Z}^{2})

Buying rate $\lambda=\lambda_{1}=\lambda_{2} ;$ Transport rate $\alpha=\mu_{1}$; Inquiry rate $\mu=\mu_{2}$

- Theorem: Stability $\Leftrightarrow \lambda \leq \alpha$ and $\lambda \leq \mu$

Proof: Imbedded Markov chain is space-homogeneous Random Walk on \mathbb{Z}_{+}^{2}.
Recurrence is guaranteed by Theorem 1.2.1(ii) in: G. Fayolle, R. Iasnogorodski,
V. Malyshev: 'Random Walks in the Quarter Plane', Springer 1999

Positive recurrence follows from geometric decay of π_{1} and π_{2}

Burke's Theorem II

- Stability : \Leftrightarrow both queues (stock and shop) remain finite

Figure 6: a.) In Equilibrium: $\pi_{k, l}:=\mathbb{P}\left[M_{t}=k, N_{t}=l\right]=\left(1-\rho_{2}\right) \rho_{2}^{k}\left(1-\rho_{2}\right) \rho_{2}^{l}$ where $\rho_{1}=\frac{\lambda}{a}, \rho_{2}=\frac{\lambda}{\mu}$. (Product Measure) b.) (Imbedded random walk on quarter plane \mathbb{Z}^{2})

Buying rate $\lambda=\lambda_{1}=\lambda_{2} ;$ Transport rate $\alpha=\mu_{1}$; Inquiry rate $\mu=\mu_{2}$

- Theorem: Stability $\Leftrightarrow \lambda \leq \alpha$ and $\lambda \leq \mu$

Proof: Imbedded Markov chain is space-homogeneous Random Walk on \mathbb{Z}_{+}^{2}.
Recurrence is guaranteed by Theorem 1.2.1(ii) in: G. Fayolle, R. Iasnogorodski,
V. Malyshev: 'Random Walks in the Quarter Plane', Springer 1999

Positive recurrence follows from geometric decay of π_{1} and π_{2}

Random Weights

- Transition rates λ_{k} and μ_{k} dependent on queue-size $N_{t}=k$

$$
\mathrm{P}\left[N_{n+1}=k+1 \mid N_{n}=k\right]=\frac{\lambda_{k}}{\lambda_{k}+\mu_{k}} ; \quad \mathbb{P}\left[N_{n+1}=k-1 \mid N_{n}=k\right]=\frac{\mu_{k}}{\lambda_{k}+\mu_{k}}
$$

Random Weights

- Transition rates λ_{k} and μ_{k} dependent on queue-size $N_{t}=k$

$$
\mathrm{P}\left[N_{n+1}=k+1 \mid N_{n}=k\right]=\frac{\lambda_{k}}{\lambda_{k}+\mu_{k}} ; \quad \mathbb{P}\left[N_{n+1}=k-1 \mid N_{n}=k\right]=\frac{\mu_{k}}{\lambda_{k}+\mu_{k}}
$$

Rates μ_{k} state-dependent:

Random Weights

- Transition rates λ_{k} and μ_{k} dependent on queue-size $N_{t}=k$

$$
\mathbb{P}\left[N_{n+1}=k+1 \mid N_{n}=k\right]=\frac{\lambda_{k}}{\lambda_{k}+\mu_{k}} ; \mathbb{P}\left[N_{n+1}=k-1 \mid N_{n}=k\right]=\frac{\mu_{k}}{\lambda_{k}+\mu_{k}}
$$

Rates μ_{k} state-dependent:
criterion positive recurrence

$$
\lambda \text { and } \sum_{n=0}^{\infty} \lambda^{n} / \prod_{k=1}^{n} \mu_{k}<\infty
$$

Rates $\mu_{k}(\omega)$ state-dependent, random:

criterion almost sure positive recurrence

Random Weights

- Transition rates λ_{k} and μ_{k} dependent on queue-size $N_{t}=k$

$$
\mathbb{P}\left[N_{n+1}=k+1 \mid N_{n}=k\right]=\frac{\lambda_{k}}{\lambda_{k}+\mu_{k}} ; \mathbb{P}\left[N_{n+1}=k-1 \mid N_{n}=k\right]=\frac{\mu_{k}}{\lambda_{k}+\mu_{k}}
$$

Rates μ_{k} state-dependent:
criterion positive recurrence

$$
\lambda \text { and } \sum_{n=0}^{\infty} \lambda^{n} / \prod_{k=1}^{n} \mu_{k}<\infty
$$

Rates $\mu_{k}(\omega)$ state-dependent, random:
criterion almost sure positive recurrence

$$
\lambda \quad \text { and } \quad \sum_{n=0}^{\infty} \lambda^{n} \mathbb{E}\left[\prod_{k=1}^{n} \mu_{k}^{-1}\right]<\infty
$$

Example: Random vertikal conductances

$\mu_{k} \sim$ Binom, i.i.d:

$$
\mathbb{P}\left[\mu_{k}=\lambda+\epsilon\right]=p=1-\mathbb{P}\left[\mu_{k}=\lambda-\epsilon\right]
$$

The Process is positive recurrent iff $p>\frac{1}{2}\left(1+\frac{\epsilon}{\lambda}\right)$.

Other 'Perturbed' Tandem-Queues

A continuous-time random walk (such as a queueing-system) consists of three steps: Let $j=0$

1. Wait exp.-distrib. Time with rate $\lambda+\mu$
2. Jump to neighbours with Probabilities $\frac{\lambda}{\lambda+\mu}, \frac{\mu}{\lambda+\mu}$
3. Increase j by one and goto 1 .

Other 'Perturbed’ Tandem-Queues

A continuous-time random walk (such as a queueing-system) consists of three steps: Let $j=0$

1. Wait exp.-distrib. Time with rate $\lambda+\mu$
2. Jump to neighbours with Probabilities $\frac{\lambda}{\lambda+\mu}, \frac{\mu}{\lambda+\mu}$
3. Increase j by one and goto 1 .

Idea: Replace step 2. with different Jump-Rules

Other 'Perturbed' Tandem-Queues

A continuous-time random walk (such as a queueing-system) consists of three steps: Let $j=0$

1. Wait exp.-distrib. Time with rate $\lambda+\mu$
2. Jump to neighbours with Probabilities $\frac{\lambda}{\lambda+\mu}, \frac{\mu}{\lambda+\mu}$
3. Increase j by one and goto 1 .

Idea: Replace step 2. with different Jump-Rules

Simulating time-inhomogeneous RW's

- Transition rates λ_{k} and μ_{k} dependent on queue-size $N_{t}=k$

Figure 7: Imbedded Markov Chain is Random Walk on quarter Plane \mathbb{Z}_{+}^{2} with statedependent transition-probabilities.

Simulating time-inhomogeneous RW's

- Transition rates λ_{k} and μ_{k} dependent on queue-size $N_{t}=k$

Figure 7: Imbedded Markov Chain is Random Walk on quarter Plane \mathbb{Z}_{+}^{2} with statedependent transition-probabilities.

Rates μ_{k} state-dependent: criterion positive recurrence No perturbation of α, λ implies:

Burke's theorem still applicable.

Simulating time-inhomogeneous RW's: Results

Two different modifications of step 2.: Perturbed chain is projection of chain on covering graph onto 'original' graph (integer-line); Projections must be Markov-Processes!
2^{\prime}. First pick layer (where to end up) with probability $1 / 2$, then use probabilities depending on layer where currently situated:

implies positive recurrence.

Simulating time-inhomogeneous RW's: Results

Two different modifications of step 2.: Perturbed chain is projection of chain on covering graph onto 'original' graph (integer-line); Projections must be Markov-Processes!

2 '. First pick layer (where to end up) with probability $1 / 2$, then use probabilities depending on layer where currently situated:

$$
\lambda^{2}+\lambda \alpha \leq \mu \mu^{\prime}+\alpha\left(\mu+\mu^{\prime}\right) / 2
$$

implies positive recurrence.
$2^{\prime \prime}$. Pick any of the directions in the graph with probability
proportional to its designated rate:

Simulating time-inhomogeneous RW's: Results

Two different modifications of step 2.: Perturbed chain is projection of chain on covering graph onto 'original' graph (integer-line); Projections must be Markov-Processes!
2'. First pick layer (where to end up) with probability $1 / 2$, then use probabilities depending on layer where currently situated:

$$
\lambda^{2}+\lambda \alpha \leq \mu \mu^{\prime}+\alpha\left(\mu+\mu^{\prime}\right) / 2
$$

implies positive recurrence.
2 ". Pick any of the directions in the graph with probability proportional to its designated rate:

$$
\lambda \leq\left(\mu+\mu^{\prime}\right) / 2
$$

implies positive recurrence.

Simulation Results and Open Questions

Simulation Results and Open Questions

Literatur

- P. J. Burke: The Output of a Queueing System, 1956
- G Fayolle, V. A. Malyshev, M. V. Men'shikov: Topics in the Constructive Theory of Countable Markov Chains, 1995
- F. Sobieczky, G. Rappitsch, E. Stadlober: Tandem Queues for Inventory Management under Random Perturbations, 2010

Abbildung: Thank you for your interest!

