Recurrence of Tandem Queues under Random Perturbations

Florian Sobieczky

13. März 2011

Contents

Queues

Queues in Series

Quarter-plane Random Walk

Perturbations of the Tandem-Queue

Recurrence of perturbed Tandem Queues

Recurrence of perturbed Tandem Queues

Literature

- 1. Interarrival Times T_j between merchandise-deliveries
- 2. Serving Times S_j between sales $(j \in \mathbb{N})$
- 3. The M/M/1 Queue: $T_j \sim \text{Exp}(\lambda), S_j \sim \text{Exp}(\mu)$, i.i.d.

- 1. Interarrival Times T_j between merchandise-deliveries
- 2. Serving Times S_j between sales $(j \in \mathbb{N})$
- 3. The M/M/1 Queue: $T_j \sim \text{Exp}(\lambda)$, $S_j \sim \text{Exp}(\mu)$, i.i.d.

Figure 1: M/M/1-queue applied to simple inventory-model

- 1. Interarrival Times T_j between merchandise-deliveries
- 2. Serving Times S_j between sales $(j \in \mathbb{N})$
- 3. The M/M/1 Queue: $T_j \sim \text{Exp}(\lambda), S_j \sim \text{Exp}(\mu)$, i.i.d.

Figure 1: M/M/1-queue applied to simple inventory-model

 T_j Period between delivery, S_j period between customer's interest

- 1. Interarrival Times T_j between merchandise-deliveries
- 2. Serving Times S_j between sales $(j \in \mathbb{N})$
- 3. The M/M/1 Queue: $T_j \sim \text{Exp}(\lambda)$, $S_j \sim \text{Exp}(\mu)$, i.i.d.

Figure 1: M/M/1-queue applied to simple inventory-model

 T_j Period between delivery, S_j period between customer's interest

Recurrence of Tandem Queues under Random Perturbations $\bigsqcup_{\text{Queues in Series}}$

Tandem-Queues

Figure 1: M/M/1-queue applied to simple inventory-model

Recurrence of Tandem Queues under Random Perturbations L_{Queues} in Series

Tandem-Queues

Figure 1: M/M/1-queue applied to simple inventory-model

Buying-rate λ Inventory-Size N_t Inquiry-Rate μ

Tandem-Queues

Figure 1: M/M/1-queue applied to simple inventory-model

Buying-rate λ Inventory-Size N_t Inquiry-Rate μ

- · Criterion for positive Recurrence: $\lambda < \mu$
- · In Equilibrium $\pi_k := \mathbb{P}[N_t = k] = (1 \rho)\rho^k$, where $\rho = \frac{\lambda}{\mu}$
- · Expected asymptotic size of inventory: (by ergodicity) $\lim_{t \to \infty} \mathbb{E}[N_t] = \mathbb{E}_{\pi}[N_t] = \frac{\rho}{1-\rho} = \frac{\lambda}{\mu-\lambda}$

Tandem-Queues

Figure 1: M/M/1-queue applied to simple inventory-model

Buying-rate λ Inventory-Size N_t Inquiry-Rate μ

- · Criterion for positive Recurrence: $\lambda < \mu$
- · In Equilibrium $\pi_k := \mathbb{P}[N_t = k] = (1 \rho)\rho^k$, where $\rho = \frac{\lambda}{\mu}$
- Expected asymptotic size of inventory: (by ergodicity) $\lim_{t\to\infty} \mathbb{E}[N_t] = \mathbb{E}_{\pi}[N_t] = \frac{\rho}{1-\rho} = \frac{\lambda}{\mu-\lambda}$

Quarter-plane Random Walk

 Tandem M/M/1 Queueing network: ((λ₁, μ₁), (λ₂, μ₂)): Stock-Sizes M_t, Shop-Inventory N_t
 2 Interarrival Times T¹_j, T²_j, (j ∈ N) T¹_j ~ Exp(λ₁), T²_j ~ Exp(λ₂), i.i.d.
 2 Serving Times S¹_j, S²_j, (j ∈ N) between sales, S¹_i ~ Exp(μ₁), S²_i ~ Exp(μ₂), i.i.d.

Quarter-plane Random Walk

1. **Tandem** M/M/1 Queueing network: $((\lambda_1, \mu_1), (\lambda_2, \mu_2))$: Stock-Sizes M_t . Shop-Inventory N_t

2. 2 Interarrival Times $T_j^1, T_j^2, (j \in \mathbb{N})$ $T_j^1 \sim \operatorname{Exp}(\lambda_1), T_j^2 \sim \operatorname{Exp}(\lambda_2), \text{ i.i.d.}$ 2 Serving Times $S_j^1, S_j^2, (j \in \mathbb{N})$ between sales, $S_j^1 \sim \operatorname{Exp}(\mu_1), S_j^2 \sim \operatorname{Exp}(\mu_2), \text{ i.i.d.}$

3. Invariant measure $\pi = \pi^1 \otimes \pi^2$ (from Burke's Theorem) 'Every item leaving Stock enters Shop' $\Leftrightarrow \mu_1 > \lambda_1 = \lambda_2 =: \lambda$

Figure 4: A series of two M/M/1-queues applied to inventory-model with stock. The product form of the invariant distribution of this simple queueing network follows from Burke's theorem: P.Burke: 'The output of a Queueing System', Operations Research, Vol. 4, No. 6 (1956), p. 609-704

Quarter-plane Random Walk

1. **Tandem** M/M/1 Queueing network: $((\lambda_1, \mu_1), (\lambda_2, \mu_2))$: Stock-Sizes M_t . Shop-Inventory N_t

2. 2 Interarrival Times $T_j^1, T_j^2, (j \in \mathbb{N})$ $T_j^1 \sim \operatorname{Exp}(\lambda_1), T_j^2 \sim \operatorname{Exp}(\lambda_2), \text{ i.i.d.}$ 2 Serving Times $S_j^1, S_j^2, (j \in \mathbb{N})$ between sales, $S_j^1 \sim \operatorname{Exp}(\mu_1), S_j^2 \sim \operatorname{Exp}(\mu_2), \text{ i.i.d.}$

3. Invariant measure $\pi = \pi^1 \otimes \pi^2$ (from Burke's Theorem) 'Every item leaving Stock enters Shop' $\Leftrightarrow \mu_1 > \lambda_1 = \lambda_2 =: \lambda$

Figure 4: A series of two M/M/1-queues applied to inventory-model with stock. The product form of the invariant distribution of this simple queueing network follows from Burke's theorem: P.Burke: 'The output of a Queueing System', Operations Research, Vol. 4, No. 6 (1956), p. 609-704

Burke's Theorem I

• Stability : \Leftrightarrow both queues (stock and shop) remain finite

Figure 5: a.) In Equilibrium: $\pi_{k,l} := \mathbb{P}[M_t = k, N_t = l] = (1 - \rho_2)\rho_2^k(1 - \rho_2)\rho_2^l$ where $\rho_1 = \frac{\lambda}{\alpha}, \rho_2 = \frac{\lambda}{\mu}$. (Product Measure) b.) (Imbedded random walk on quarter plane \mathbb{Z}^2)

Buying rate $\lambda = \lambda_1 = \lambda_2$; Transport rate $\alpha = \mu_1$; Inquiry rate $\mu = \mu_2$

• **Theorem:** Stability $\Leftrightarrow \lambda \leq \alpha$ and $\lambda \leq \mu$

Proof: Imbedded Markov chain is space-homogeneous Random Walk on \mathbb{Z}_{+}^{2} . Recurrence is guaranteed by Theorem 1.2.1(ii) in: G. Fayolle, R. Iasnogorodski, V. Malyshev: 'Random Walks in the Quarter Plane', Springer 1999 Positive recurrence follows from geometric decay of π_{1} and π_{2}

Burke's Theorem II

• Stability : \Leftrightarrow both queues (stock and shop) remain finite

Figure 6: a.) In Equilibrium: $\pi_{k,l} := \mathbb{P}[M_t = k, N_t = l] = (1 - \rho_2)\rho_2^k (1 - \rho_2)\rho_2^k$ where $\rho_1 = \frac{\lambda}{\alpha}, \rho_2 = \frac{\lambda}{\mu}$. (Product Measure) b.) (Imbedded random walk on quarter plane \mathbb{Z}^2)

Buying rate $\lambda = \lambda_1 = \lambda_2$; Transport rate $\alpha = \mu_1$; Inquiry rate $\mu = \mu_2$

• **Theorem:** Stability $\Leftrightarrow \lambda \leq \alpha$ and $\lambda \leq \mu$

Proof: Imbedded Markov chain is space-homogeneous Random Walk on \mathbb{Z}_{+}^2 . Recurrence is guaranteed by Theorem 1.2.1(ii) in: G. Fayolle, R. Iasnogorodski, V. Malyshev: 'Random Walks in the Quarter Plane', Springer 1999 Positive recurrence follows from geometric decay of π_1 and π_2

Random Weights

• Transition rates λ_k and μ_k dependent on queue-size $N_t = k$ $\mathbb{P}[N_{n+1} = k+1 \mid N_n = k] = \frac{\lambda_k}{\lambda_k + \mu_k}; \quad \mathbb{P}[N_{n+1} = k-1 \mid N_n = k] = \frac{\mu_k}{\lambda_k + \mu_k}$

Random Weights

• Transition rates λ_k and μ_k dependent on queue-size $N_t = k$ $\mathbb{P}[N_{n+1} = k+1 \mid N_n = k] = \frac{\lambda_k}{\lambda_k + \mu_k}; \quad \mathbb{P}[N_{n+1} = k-1 \mid N_n = k] = \frac{\mu_k}{\lambda_k + \mu_k}$

Rates μ_k state-dependent: criterion positive recurrence

$$\lambda$$
 and $\sum_{n=0}^{\infty} \lambda^n / \prod_{k=1}^n \mu_k < \infty$

Random Weights

• Transition rates λ_k and μ_k dependent on queue-size $N_t = k$ $\mathbb{P}[N_{n+1} = k+1 \mid N_n = k] = \frac{\lambda_k}{\lambda_k + \mu_k}; \quad \mathbb{P}[N_{n+1} = k-1 \mid N_n = k] = \frac{\mu_k}{\lambda_k + \mu_k}$

Rates μ_k state-dependent: criterion positive recurrence

$$\lambda$$
 and $\sum_{n=0}^{\infty} \lambda^n / \prod_{k=1}^n \mu_k < \infty$

Rates $\mu_k(\omega)$ state-dependent, random:

criterion almost sure positive recurrence

$$\lambda$$
 and $\sum_{n=0}^{\infty} \lambda^n \mathbb{E}[\prod_{k=1}^n \mu_k^{-1}] < \infty$

Random Weights

• Transition rates λ_k and μ_k dependent on queue-size $N_t = k$ $\mathbb{P}[N_{n+1} = k+1 \mid N_n = k] = \frac{\lambda_k}{\lambda_k + \mu_k}; \quad \mathbb{P}[N_{n+1} = k-1 \mid N_n = k] = \frac{\mu_k}{\lambda_k + \mu_k}$

Rates μ_k state-dependent:

criterion positive recurrence

$$\lambda$$
 and $\sum_{n=0}^{\infty} \lambda^n / \prod_{k=1}^n \mu_k < \infty$

Rates $\mu_k(\omega)$ state-dependent, random:

criterion almost sure positive recurrence

$$\lambda$$
 and $\sum_{n=0}^{\infty} \lambda^n \mathbb{E}[\prod_{k=1}^n \mu_k^{-1}] < \infty$

Example: Random vertikal conductances

 $\mu_k \sim \text{Binom, i.i.d:}$ $\mathbb{P}[\mu_k = \lambda + \epsilon] = p = 1 - \mathbb{P}[\mu_k = \lambda - \epsilon]$

The Process is positive recurrent iff $p > \frac{1}{2} \left(1 + \frac{\epsilon}{\lambda}\right)$.

Other 'Perturbed' Tandem-Queues

A continuous-time random walk (such as a queueing-system) consists of three steps: Let j = 0

- 1. Wait exp.-distrib. Time with rate $\lambda + \mu$
- 2. Jump to neighbours with Probabilities $\frac{\lambda}{\lambda+\mu}, \frac{\mu}{\lambda+\mu}$
- 3. Increase *j* by one and goto 1.

Other 'Perturbed' Tandem-Queues

A continuous-time random walk (such as a queueing-system) consists of three steps: Let j = 0

- 1. Wait exp.-distrib. Time with rate $\lambda + \mu$
- 2. Jump to neighbours with Probabilities $\frac{\lambda}{\lambda+\mu}, \frac{\mu}{\lambda+\mu}$
- 3. Increase j by one and goto 1.

Idea: Replace step 2. with different Jump-Rules

Other 'Perturbed' Tandem-Queues

A continuous-time random walk (such as a queueing-system) consists of three steps: Let j = 0

- 1. Wait exp.-distrib. Time with rate $\lambda + \mu$
- 2. Jump to neighbours with Probabilities $\frac{\lambda}{\lambda+\mu}, \frac{\mu}{\lambda+\mu}$
- 3. Increase *j* by one and goto 1.

Idea: Replace step 2. with different Jump-Rules

Simulating time-inhomogeneous RW's

Figure 7: Imbedded Markov Chain is Random Walk on quarter Plane \mathbb{Z}_+^2 with state-dependent transition-probabilities.

Rates μ_k state-dependent: criterion positive recurrence No perturbation of α, λ implies:

Burke's theorem still applicable.

Simulating time-inhomogeneous RW's

Figure 7: Imbedded Markov Chain is Random Walk on quarter Plane \mathbb{Z}_+^2 with state-dependent transition-probabilities.

Rates μ_k state-dependent: criterion positive recurrence No perturbation of α, λ implies:

Burke's theorem still applicable.

Simulating time-inhomogeneous RW's: Results

Two different modifications of step 2.: Perturbed chain is projection of chain on covering graph onto 'original' graph (integer-line); Projections must be Markov-Processes!

2'. First pick layer (where to end up) with probability 1/2, then use probabilities depending on layer where currently situated:

$$\lambda^2 + \lambda \alpha \leq \mu \mu' + \alpha (\mu + \mu')/2$$

implies positive recurrence.

Simulating time-inhomogeneous RW's: Results

Two different modifications of step 2.: Perturbed chain is projection of chain on covering graph onto 'original' graph (integer-line); Projections must be Markov-Processes!

2'. First pick layer (where to end up) with probability 1/2, then use probabilities depending on layer where currently situated:

$$\lambda^2 + \lambda \alpha \leq \mu \mu' + \alpha (\mu + \mu')/2$$

implies positive recurrence.

2". Pick any of the directions in the graph with probability proportional to its designated rate:

$$\lambda \leq (\mu + \mu')/2$$

implies positive recurrence.

Simulating time-inhomogeneous RW's: Results

Two different modifications of step 2.: Perturbed chain is projection of chain on covering graph onto 'original' graph (integer-line); Projections must be Markov-Processes!

2'. First pick layer (where to end up) with probability 1/2, then use probabilities depending on layer where currently situated:

$$\lambda^2 + \lambda \alpha \leq \mu \mu' + \alpha (\mu + \mu')/2$$

implies positive recurrence.

2". Pick any of the directions in the graph with probability proportional to its designated rate:

$$\lambda \leq (\mu + \mu')/2$$

implies positive recurrence.

Recurrence of Tandem Queues under Random Perturbations
CRECurrence of perturbed Tandem Queues

Simulation Results and Open Questions

Recurrence of Tandem Queues under Random Perturbations
CRECurrence of perturbed Tandem Queues

Simulation Results and Open Questions

Literatur

- ▶ P. J. Burke: The Output of a Queueing System, 1956
- ► G Fayolle, V. A. Malyshev, M. V. Men'shikov: Topics in the Constructive Theory of Countable Markov Chains, 1995
- F. Sobieczky, G. Rappitsch, E. Stadlober: Tandem Queues for Inventory Management under Random Perturbations, 2010

Abbildung: Thank you for your interest!