Phase transition and reconstruction for the Glauber dynamics on trees

Ricardo Restrepo (Georgia Institute of Technology)

Based in joint work with Daniel Stefankovic, Juan Vera, Eric Vigoda and Linji Yang

Spin systems

•Given an underlying graph G, a configuration is an assignment of a given set of spins to the vertices of G.

•A given configuration has a weight given by

$$\mu\left(\sigma\right) = \prod_{v \in G} \psi\left(\sigma_{v}\right) \prod_{v \sim w} \varphi\left(\sigma_{v}, \sigma_{w}\right)$$

Spin systems

Ising model
Hard-core model
Proper coloring

Glauber dynamics

- Markov Chain Monte Carlo Algorithm for sampling.
- Visit a vertex unif. at random, update the vertex according to its conditional marginal.
- •How fast it converges to stationarity?
- •Inverse gap, mixing time?

Gibbs measure Uniqueness - Extremality

•Gibbs measure: Consistent extension to an infinite graph.

- •Uniqueness?
- •Extremality? (Reconstruction).

Hard-core model

•For regular tree of branching b, let $\omega (1+\omega)^d = \lambda$,

$$\omega_u = \frac{1}{d-1} \qquad \qquad \omega_r \approx \frac{\log d}{d}$$

- •Uniqueness \rightarrow Threshold for hardness in general graphs [Sly, 2011].
- •Reconstruction \rightarrow ?
- •What happens for trees?

Glauber for hard-core on trees

[Martinelli, Sinclair, Weitz]:

- Fast mixing of glauber for free boundary, any fugacity.
- Fast mixing for any boundary, but $\omega < \frac{\omega_r}{2}$

[R., Stefankovic, Vera, Vigoda, Yang]:

Phase transition at the reconstruction threshold!

Phase Transition

• For $\omega = (1 - \delta) \ln b/b$ it is the case that

 $\Omega(n) \leq T_{\text{relax}} \leq O(n^{1+o_b(1)}).$

• For $\omega = (1 + \delta) \ln b/b$; it is the case that

$$T_{\text{relax}} \leq O(n^{1+\delta+o_b(1)})$$

And also, there exists a seq. of boundaries such that

$$T_{\text{relax}} = \Omega(n^{1+\delta/2-o_b(1)}).$$

Upper bound ?

- Algorithmic flavor...
- Block dynamics.
- Mixing in the star graph?
- Coupling argument.

Lower bound?

- What is the role of the nonextremality of the broadcasting measure?
- Existence of a 'reconstruction squeme' A.
- Conductance bound:

Relaxation Time =
$$\Omega\left(\frac{\text{effectiveness}(A)}{\text{sensitivity}(A)}\right)$$

Effectiveness - Sensitivity

- Effectiveness: Correlation between the output of A and the actual spin.
- Sensitivity: $E_{\sigma} \nabla A(\sigma_h)$

$$\nabla f(x_1, \dots, x_k) = \frac{1}{k} \sum_i |f_i(x_1, \dots, x_k) - f(x_1, \dots, x_k)|$$

Parsimonious algorithm

- If all the children are unocupied the guess is that the parent is occupied.
- If some child is occupied the guess is that the parent is unocupied.
- Sensitivity is tractable!

Thank you!