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The UQ challenge in the certification context
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Application: Optimal concentration inequality

McDiarmid inequality



Reduction of optimization variables
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Explicit Solution m=2
Theorem m = 2

OUQ bound   a=1 OUQ/MD  a=1



Explicit Solution m=2
Theorem m = 2

C = {(1, 1)}
hC(s) = a− (1− s1)D1 − (1− s2)D2



Optimal Hoeffding= Optimal McDiarmid for m=2



Explicit Solution m=2
Theorem m = 2

Corollary



Explicit Solution m=3
Theorem m = 3 D1 ≥ D2 ≥ D3
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OUQ vs McD m=3 D1 = D2 = D3
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Dimension m
Theorem D1 ≥ D2 ≥ · · · ≥ Dm

a ≥Pm−2
j=1 Dj +Dm

Other cases



Reduction theorems



Reduction to products of convex linear combinations of Dirac masses

Theorem



Reduction to products of convex linear combinations of Dirac masses

Theorem



Application to McDiarmid’s inequality assumptions



Second reduction (positions of the Diracs)



Second reduction (positions of the Diracs)

Theorem If

Then



Application to McDiarmid’s inequality assumptions



Third reduction: lattice structure of the function space



Reduction of optimization variables

Theorem



Literature

Non-convex and infinite dimensional optimization problems

Can be considered as a generalization of classical Chebyshev inequalities

History of classical inequalities: Karlin, Studden (1966, Tchebycheff
systems with applications in analysis and statistics)

Connection between Chebyshev inequalities and optimization theory

• Mulholland & Rogers (1958, Representation theorems for distribution functions)
• Godwin (1973, Manipulation of voting schemes: a general result)
• Isii (1959, On a method for generalization of Tchebycheff’s inequality

1960, The extrema of probability determined by generalized moments
1962, On sharpness of Techebycheff-type inequalities)

• Olhin & Pratt (1958, A multivariate Tchebycheff inequality)
• Classical Markov-Krein theorem (Karlin, Studden, 1958)
• Dynkin (1978, Sufficient statistics &  extreme points)
• Karr (1983, Extreme points of probability measures with applications)



Literature

Our work: Further generalization to
• Independence constraints
• More general domains (Suslin spaces) 
(non metric, non compact)

• More general classes of functions (measurable) 
(non continuous, non-bounded)

• More general classes of probability measures
• More general constraints (inequalities, on measures and 
functions)

Theory of majorization

• Marshall & Olkin (1979, Inequalities: Theory of majorization and its applications)



Inequalities of
• Anderson (1955, the integral of a symmetric unimodal function over a symmetric
convex set and some probability inequalities)

• Hoeffding (1956, on the distribution of the number of successes in independent trials)
• Joe (1987, Majorization, randomness and dependence for multivariate distributions)
• Bentkus, Geuze, Van Zuijlen (2006, Optimal Hoeffding like inequalities under a 
symmetry assumption)

• Pinelis (2007, Exact inequalities for sums of asymmetric random variables with 
applications.
2008, On inequalities for sums of bounded random variables)

Our proof rely on

• Winkler (1988, Extreme points of moment sets)
• Follows from an extension of Choquet theory (Phelps 2001, lectures on Choquet’s
theorem) by Von Weizsacker & Winkler (1979, Integral representation in the set of
solutions of a generalized moment problem)

• Kendall (1962, Simplexes & Vector lattices)



Caltech Small Particle Hypervelocity Impact Range

G

Projectile velocity

Plate thickness

Plate Obliquity

Perforation area

We want to certify that



Caltech Hypervelocity Impact Surrogate Model

Projectile velocity

Plate thickness

Plate Obliquity

Deterministic surrogate model for the perforation area (in mm^2)



Caltech Hypervelocity Impact Surrogate Model



Bound on the probability of non perforation



Optimal bound on the probability of non perforation



Optimal bound on the probability of non perforation

The measure of probability can be reduced to the tensorization of
2 Dirac masses on thickness, obliquity and velocity

Application of the reduction theorem



The optimization variables can be reduced to the tensorization
of 2 Dirac masses on thickness, obliquity and velocity

Support Points at iteration 0



Numerical optimization

Support Points at iteration 150



Numerical optimization

Support Points at iteration 200



Velocity and obliquity marginals each collapse to a single Dirac mass. The plate 
thickness marginal collapses to have support on the extremes of its range.

Iteration
1000

The probability of non-perforation is maximized by a distribution supported on 
the minimal, not maximal, impact obliquity.



Velocity

Position of Dirac Masses Weight of on Dirac Masses

Converges towards non extreme value at 

Position and weight vs Iteration

Reducing the velocity range does not decrease the 
optimal bound on the probability of non perforation



Obliquity

Position of Dirac Masses Weight of on Dirac Masses

Converges towards 0 obliquity
Position and weight vs Iteration

Reducing maximum obliquity does not decrease the 
optimal bound on the probability of non perforation



Thickness

Converges towards the extremes of its range

Position of Dirac Masses Weight of on Dirac Masses

Position and weight vs Iteration

Reducing uncertainty in thickness will decrease the 
optimal bound on the probability of non perforation



Important observations

Extremizers are singular

They identify key players
i.e. vulnerabilities of the physical system

Extremizers are attractors



Initialization with 3 support points per marginal

Support Points at iteration 0



Initialization with 3 support points per marginal

Support Points at iteration 500



Initialization with 3 support points per marginal

Support Points at iteration 1000



Initialization with 3 support points per marginal

Support Points at iteration 2155



Initialization with 5 support points per marginal

Support Points at iteration 0



Initialization with 5 support points per marginal

Support Points at iteration 1000



Initialization with 5 support points per marginal

Support Points at iteration 3000



Initialization with 5 support points per marginal

Support Points at iteration 7100



One should be careful with such comparisons in presence of asymmetric information

The real question is how to construct a selective information set A.

Optimal bounds for other admissible sets



Selection of the most decisive experiment

Experiments

Ex:



Selection of the most decisive experiment



Selection of the most predictive experiment

E1 E2 E3 E4



E1 E2 E3 E4

F1 F2 F3



Plan several experiments in advance, i.e. campaigns of experiments



Let’s play Clue
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