Optimal Uncertainty Quantification

Houman Owhadi

Clint Scovel, Tim Sullivan
Mike McKerns, Michael Ortiz

National Nuclear Security Administration

The UQ challenge in the certification context

$$
\begin{aligned}
G: & \chi \\
X & \longrightarrow \mathbb{R} \\
X & \longrightarrow X)
\end{aligned} \quad \mathbb{P} \in \mathcal{M}(\chi)
$$

You want to certify that

$$
\mathbb{P}[G(X) \geq a] \leq \epsilon
$$

Problem

- You don't know G.
and
- You don’t know \mathbb{P}

The UQ challenge in the certification context

$$
\begin{aligned}
G: & \chi \\
X & \longrightarrow \mathbb{R} \\
X & \longrightarrow X)
\end{aligned} \quad \mathbb{P} \in \mathcal{M}(\chi)
$$

You want to certify that

$$
\mathbb{P}[G(X) \geq a] \leq \epsilon
$$

You only know

$$
(G, \mathbb{P}) \in \mathcal{A}
$$

$$
\mathcal{A} \subset\left\{\begin{array}{l|l}
(f, \mu) & \begin{array}{l}
f: \mathcal{X} \rightarrow \mathbb{R}, \\
\mu \in \mathcal{P}(\mathcal{X})
\end{array}
\end{array}\right\}
$$

Optimal bounds on $\mathbb{P}[G(X) \geq a]$

$\mathcal{U}(\mathcal{A}):=\sup _{(f, \mu) \in \mathcal{A}} \mu[f(X) \geq a]$
$\mathcal{L}(\mathcal{A}):=\inf _{(f, \mu) \in \mathcal{A}} \mu[f(X) \geq a]$

$$
\mathcal{L}(\mathcal{A}) \leq \mathbb{P}[G(X) \geq a] \leq \mathcal{U}(\mathcal{A})
$$

$\mathcal{U}(\mathcal{A}) \leq \epsilon:$ Safe even in worst case. $\epsilon<\mathcal{L}(\mathcal{A})$: Unsafe even in best case.
$\mathcal{L}(\mathcal{A}) \leq \epsilon<\mathcal{U}(\mathcal{A})$: Cannot decide.
Unsafe due to lack of information.

Reduction of optimization variables

$$
\begin{gathered}
\{f: \mathcal{X} \rightarrow \mathbb{R}, \mu \in \mathcal{P}(\mathcal{X})\} \\
\left\{f: \mathcal{X} \rightarrow \mathbb{R}, \mu \in \mathcal{P}(\mathcal{X}) \mid \mu=\sum_{i=1}^{k} \alpha_{k} \delta_{x_{k}}\right\} \\
\{f:\{1,2, \ldots, n\} \rightarrow \mathbb{R}, \mu \in \mathcal{P}(\{1,2, \ldots, n\})\} \\
\{\{1,2, \ldots, q\}, \mu \in \mathcal{P}(\{1,2, \ldots, n\})\}
\end{gathered}
$$

Application: Optimal concentration inequality

$$
\begin{aligned}
& \mathcal{A}_{M D}:=\left\{(f, \mu) \left\lvert\, \begin{array}{c}
f: \mathcal{X}_{1} \times \cdots \times \mathcal{X}_{m} \rightarrow \mathbb{R}, \\
\mu \in \mathcal{M}\left(\mathcal{X}_{1}\right) \otimes \cdots \otimes \mathcal{M}\left(\mathcal{X}_{m}\right), \\
\mathbb{E}_{\mu}[f] \leq 0, \\
\mathrm{Osc}_{i}(f) \leq D_{i}
\end{array}\right.\right\} \\
& \operatorname{Osc}_{i}(f):=\sup _{\left(x_{1}, \ldots, x_{m}\right) \in \mathcal{X}} \sup _{x_{i}^{\prime} \in \mathcal{X}_{i}}\left(f\left(\ldots, x_{i}, \ldots\right)-f\left(\ldots, x_{i}^{\prime}, \ldots\right)\right) .
\end{aligned}
$$

$\mathcal{U}\left(\mathcal{A}_{M D}\right):=\quad \sup \quad \mu[f(X) \geq a]$ $(f, \mu) \in \mathcal{A}_{M D}$

McDiarmid inequality $\mathcal{U}\left(\mathcal{A}_{M D}\right) \leq \exp \left(-2 \frac{a^{2}}{\sum_{i=1}^{m} D_{i}^{2}}\right)$

Reduction of optimization variables

$$
\begin{aligned}
& \mathcal{A}_{\mathcal{C}}:=\left\{(C, \alpha) \left\lvert\, \begin{array}{c}
C \subset\{0,1\}^{m}, \\
\alpha \in \otimes_{i=1}^{m} \mathcal{M}(\{0,1\}), \\
\mathbb{E}_{\alpha}\left[h^{C}\right] \leq 0
\end{array}\right.\right\} \\
& h^{C}:\{0,1\}^{m} \longrightarrow \mathbb{R} \\
& t \longrightarrow a-\min _{s \in C} \sum_{i: s_{i} \neq t_{i}} D_{i} \\
& \mathcal{U}\left(\mathcal{A}_{\mathcal{C}}\right):=\sup _{(C, \alpha) \in \mathcal{A}_{\mathcal{C}}} \alpha\left[h^{C} \geq a\right\}
\end{aligned}
$$

Theorem

$$
\mathcal{U}\left(\mathcal{A}_{M D}\right)=\mathcal{U}\left(\mathcal{A}_{\mathcal{C}}\right)
$$

Explicit Solution $\mathbf{m}=2$

Theorem $\quad m=2$

$\mathcal{U}\left(\mathcal{A}_{M D}\right)=\left\{\begin{array}{lll}0 & \text { if } \quad D_{1}+D_{2} \leq a \\ \frac{\left(D_{1}+D_{2}-a\right)^{2}}{4 D_{1} D_{2}} & \text { if }\left|D_{1}-D_{2}\right| \leq a \leq D_{1}+D_{2} \\ 1-\frac{a}{\max \left(D_{1}, D_{2}\right)} & \text { if } 0 \leq a \leq\left|D_{1}-D_{2}\right| \\ \hline\end{array}\right.$

OUQ bound $\quad a=1$
OUQ bound for $\mathrm{a}=1$

OUQ/MD a=1

OUQ/MD ratio for $\mathrm{a}=1$

Explicit Solution $\mathbf{m}=2$

Theorem $\quad m=2$

$$
\mathcal{U}\left(\mathcal{A}_{M D}\right)= \begin{cases}0 & \text { if } \quad D_{1}+D_{2} \leq a \\ \frac{\left(D_{1}+D_{2}-a\right)^{2}}{4 D_{1} D_{2}} & \text { if } \quad\left|D_{1}-D_{2}\right| \leq a \leq D_{1}+D_{2} \\ 1-\frac{a}{\max \left(D_{1}, D_{2}\right)} & \text { if } \quad 0 \leq a \leq\left|D_{1}-D_{2}\right| \\ \hline\end{cases}
$$

$$
C=\{(1,1)\}
$$

$$
h^{C}(s)=a-\left(1-s_{1}\right) D_{1}-\left(1-s_{2}\right) D_{2}
$$

Optimal Hoeffding= Optimal McDiarmid for $\mathbf{m}=\mathbf{2}$

$$
\mathcal{A}_{M D}:=\left\{(f, \mu) \left\lvert\, \begin{array}{c}
f: \mathcal{X}_{1} \times \cdots \times \mathcal{X}_{m} \rightarrow \mathbb{R} \\
\mu \in \mathcal{M}\left(\mathcal{X}_{1}\right) \otimes \cdots \otimes \mathcal{M}\left(\mathcal{X}_{m}\right) \\
\mathbb{E}_{\mu}[f] \leq 0 \\
\operatorname{Osc}_{i}(f) \leq D_{i}
\end{array}\right.\right.
$$

$\mathcal{U}\left(\mathcal{A}_{\mathrm{MD}}\right)=\mathcal{U}\left(\mathcal{A}_{\mathrm{Hfd}}\right)$

$\mathcal{A}_{\mathrm{Hfd}}:=\left\{\begin{array}{l|l}(f, \mu) & \left.\begin{array}{c}f=X_{1}+\cdots+X_{m} \\ \mu \in \bigotimes_{i=1}^{m} \mathcal{M}\left(\left[b_{i}-D_{i}, b_{i}\right]\right.\end{array}\right) \\ \mathbb{E}_{\mu}[f] \leq 0\end{array}\right\}$

Explicit Solution $\mathbf{m}=2$

Theorem $\quad m=2$
$\mathcal{U}\left(\mathcal{A}_{M D}\right)=\left\{\begin{array}{lll}0 & \text { if } & D_{1}+D_{2} \leq a \\ \frac{\left(D_{1}+D_{2}-a\right)^{2}}{4 D_{1} D_{2}} & \text { if } & \left|D_{1}-D_{2}\right| \leq a \leq D_{1}+D_{2} \\ 1-\frac{a}{\max \left(D_{1}, D_{2}\right)} & \text { if } & 0 \leq a \leq\left|D_{1}-D_{2}\right| \\ \hline\end{array}\right.$

Corollary If $D_{1} \geq a+D_{2}$, then
$\mathcal{U}\left(\mathcal{A}_{M D}\right)\left(a, D_{1}, D_{2}\right)=\mathcal{U}\left(\mathcal{A}_{M D}\right)\left(a, D_{1}, 0\right)$

Explicit Solution $\mathbf{m}=\mathbf{3}$

Theorem $\quad m=3 \quad D_{1} \geq D_{2} \geq D_{3}$
$\mathcal{U}\left(\mathcal{A}_{M D}\right)=\max \left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$
$\mathcal{F}_{1} \leadsto \mathcal{U}\left(\mathcal{A}_{\mathrm{MD}}\right)=\mathcal{U}\left(\mathcal{A}_{\mathrm{Hfd}}\right)$

$\mathcal{U}\left(\mathcal{A}_{\mathrm{MD}}\right)>\mathcal{U}\left(\mathcal{A}_{\mathrm{Hfd}}\right)$

Explicit Solution $\mathbf{m}=\mathbf{3}$

Theorem $\quad m=3 \quad D_{1} \geq D_{2} \geq D_{3}$

$\mathcal{U}\left(\mathcal{A}_{M D}\right)=\max \left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$

$$
\mathcal{F}_{1}:=\left\{\begin{array}{lll}
0 & \text { if } & D_{1}+D_{2}+D_{3} \leq a \\
\frac{\left(D_{1}+D_{2}+D_{3}-a\right)^{3}}{27 D_{1} D_{2} D_{3}} & \text { if } & D_{1}+D_{2}-2 D_{3} \leq a \leq D_{1}+D_{2}+D_{3} \\
\frac{\left(D_{1}+D_{2}-a\right)^{2}}{4 D_{1} D_{2}} & \text { if } & D_{1}-D_{2} \leq a \leq D_{1}+D_{2}-2 D_{3} \\
1-\frac{a}{\max \left(D_{1}, D_{2}\right)} & \text { if } & 0 \leq a \leq D_{1}-D_{2}
\end{array}\right.
$$

$$
\begin{gathered}
\mathcal{F}_{2}:=\max _{i \in\{1,2,3\}} \phi\left(\gamma_{i}\right) \psi\left(\gamma_{i}\right) \\
(1+\gamma)^{3}-\frac{5 D_{2}-2 D_{3}}{2 D_{2}-D_{3}}(1+\gamma)^{2}+\frac{4 D_{2}-a}{2 D_{2}-D_{3}}=0,
\end{gathered}
$$

$\mathcal{F}_{2}:=\max _{i \in\{1,2,3\}} \phi\left(\gamma_{i}\right) \psi\left(\gamma_{i}\right)$
$\psi(\gamma):=\gamma^{2}\left(2 \frac{D_{2}}{D_{3}}-1\right)-2 \gamma\left(3 \frac{D_{2}}{D_{3}}-1\right)+\frac{\gamma}{1+\gamma}\left(8 \frac{D_{2}}{D_{3}}-2 \frac{a}{D_{3}}\right)$
$\phi(\gamma):= \begin{cases}1, & \text { if } \gamma \in(0,1) \text { and } \theta(\gamma) \in(0,1), \\ 0, & \text { otherwise },\end{cases}$
$\theta(\gamma):=1-\frac{a}{D_{3}\left(1-\gamma^{2}\right)}+\frac{D_{2}}{D_{3}} \frac{1-\gamma}{1+\gamma}$.
$\gamma_{1}, \gamma_{2}, \gamma_{3}$ are the roots of the cubic polynomial

$$
(1+\gamma)^{3}-\frac{5 D_{2}-2 D_{3}}{2 D_{2}-D_{3}}(1+\gamma)^{2}+\frac{4 D_{2}-a}{2 D_{2}-D_{3}}=0
$$

OUQ vs McD m=3
 $D_{1}=D_{2}=D_{3}$

$M D$ and $O U Q$ bounds versus D_{1} for $a=1$ and $D_{1}=D_{2}=D_{3}$

$a=1$

OUQ vs McD m=3
 $D_{1}=D_{2}=\frac{3}{2} D_{3}$

$M D$ and $O U Q$ bounds versus D_{1} for $a=1$ and $D_{1}=D_{2}=1.5^{*} D_{3}$

$a=1$

Dimension m

Theorem $D_{1} \geq D_{2} \geq \cdots \geq D_{m}$

$$
a \geq \sum_{j=1}^{m-2} D_{j}+D_{m}
$$

$$
\mathcal{U}\left(\mathcal{A}_{M D}\right)= \begin{cases}0, & \text { if } \sum_{j=1}^{m} D_{j} \leq a, \\ \frac{\left(\sum_{j=1}^{m} D_{j}-a\right)^{m}}{m^{m} \prod_{j=1}^{m} D_{j},} & \text { if } \sum_{j=1}^{m} D_{j}-m D_{m} \leq a \leq \sum_{j=1}^{m} D_{j}, \\ \frac{\left(\sum_{j=1}^{k} D_{j}-a\right)^{k}}{k^{k} \prod_{j=1}^{k} D_{j}}, & \text { if for } k \in\{1, \ldots, m-1\} \\ & \sum_{j=1}^{k} D_{j}-k D_{k} \leq a \leq \sum_{j=1}^{k+1} D_{j}-(k+1) D_{k+1} .\end{cases}
$$

Other cases
Direct computation with optimization variables in

$$
\{1, \ldots,[(m+1) / 2]\} \times[0,1]^{m}
$$

Reduction theorems

χ_{i} : Suslin spaces.

$$
\mathcal{A}=\left\{\begin{array}{l|l}
(f, \mu) & \begin{array}{c}
f: \mathcal{X}_{1} \times \cdots \times \mathcal{X}_{m} \rightarrow \mathbb{R}, \\
\mu=\mu_{1} \otimes \cdots \otimes \mu_{m}, \\
\mathcal{G}(f, \mu) \leq 0
\end{array}
\end{array}\right\}
$$

$$
\mathcal{G}(f, \mu) \leq 0 \Leftrightarrow \begin{cases}\mathbb{E}_{\mu}\left[g_{j}^{f}\left(X_{1}, \ldots, X_{m}\right)\right] \leq 0 & 1 \leq j \leq n^{\prime} \\ \mathbb{E}_{\mu^{\prime}}\left[f_{j}^{f, 1}\left(X_{1}\right)\right] \leq 0 & 1 \leq j \leq n_{1} \\ \cdots & \cdots \\ \mathbb{E}_{\mu_{m}}\left[g_{j}^{f, m}\left(X_{m}\right)\right] \leq 0 & 1 \leq j \leq n_{m}\end{cases}
$$

$$
\left.\mathcal{U}(\mathcal{A}):=\sup _{\sup _{\mu}} \mathbb{E}_{f}\right]
$$

$$
(f, \mu) \in \mathcal{A}
$$

Reduction to products of convex linear combinations of Dirac masses

$$
\mathcal{A}=\left\{\begin{array}{c|c}
(f, \mu) & \begin{array}{c}
f: \mathcal{X}_{1} \times \cdots \times \mathcal{X}_{m} \rightarrow \mathbb{R}, \\
\mu=\mu_{1} \otimes \cdots \otimes \mu_{m} \\
\mathcal{G}(f, \mu) \leq 0
\end{array}
\end{array}\right\}
$$

$$
\mathcal{G}(f, \mu) \leq 0 \Leftrightarrow\left\{\begin{array}{l}
n^{\prime} \text { generalized moment constraints on } \mu \\
n_{k} \text { generalized moment constraints on } \mu_{k}
\end{array}\right.
$$

$$
\mathcal{A}_{\Delta}=\left\{\begin{array}{l|l}
(f, \mu) \in \mathcal{A} & \begin{array}{c}
\mu_{k} \text { is a sum of at most } \\
n^{\prime}+n_{k}+1 \text { weighted } \\
\text { Dirac measures on } \chi_{k}
\end{array}
\end{array}\right\}
$$

Reduction to products of convex linear combinations of Dirac masses

For each f, let $r_{f}: \chi \rightarrow \mathbb{R}$ be integrable for each μ such that $\mathcal{G}(f, \mu)$ is well defined.

$$
\mathcal{U}(\mathcal{A}):=\sup _{(f, \mu) \in \mathcal{A}} \mathbb{E}_{\mu}\left[r_{f}\right]
$$

Theorem

$\left.\begin{array}{|l}\mathcal{A}_{\Delta}=\left\{(f, \mu) \left\lvert\, \begin{array}{c}f: \mathcal{X}_{1} \times \cdots \times \mathcal{X}_{m} \rightarrow \mathbb{R}, \\ \mu \in \Delta_{n_{1}+n^{\prime}}\left(\mathcal{X}_{1}\right) \otimes \cdots \otimes \Delta_{n_{m}+n^{\prime}}\left(\mathcal{X}_{m}\right), \\ G(f, \mu) \leq 0\end{array}\right.\right\} \\ \Delta_{k}(\mathcal{X}):=\left\{\sum_{j=0}^{k} \alpha_{j} \delta_{x^{j}} \mid x^{j} \in \mathcal{X}, \alpha_{j} \geq 0, \sum_{j=0}^{k} \alpha_{j}=1\right.\end{array}\right\}$,

Application to McDiarmid's inequality assumptions

$$
\mathcal{A}_{M D}:=\left\{(f, \mu) \left\lvert\, \begin{array}{c|c}
f: \mathcal{X}_{1} \times \cdots \times \mathcal{X}_{m} \rightarrow \mathbb{R} \\
\mu \in \mathcal{M}\left(\mathcal{X}_{1}\right) \otimes \cdots \otimes \mathcal{M}\left(\mathcal{X}_{m}\right) \\
\mathbb{E}_{\mu}[f] \leq 0 \\
\operatorname{Osc}_{i}(f) \leq D_{i}
\end{array}\right.\right\}
$$

$$
r_{f}(x):=1_{f(x) \geq a}
$$

$$
\mathcal{A}_{\Delta}:=\left\{(f, \mu) \left\lvert\, \begin{array}{c|c}
f: \mathcal{X}_{1} \times \cdots \times \mathcal{X}_{m} \rightarrow \mathbb{R} \\
\mu \in \Delta_{1}\left(\mathcal{X}_{1}\right) \otimes \cdots \otimes \Delta_{1}\left(\mathcal{X}_{m}\right) \\
\mathbb{E}_{\mu}[f] \leq 0 \\
\operatorname{Osc}_{i}(f) \leq D_{i}
\end{array}\right.\right\}
$$

Second reduction (positions of the Diracs)

$$
G(f, \mu) \leq 0 \Leftrightarrow \mathbb{E}_{\mu}\left[g_{j} \circ f\right] \leq 0 \quad 1 \leq j \leq n
$$

$$
\mathcal{U}(\mathcal{A}):=\sup _{\mathbb{E}_{\mu}[r \circ f]}^{[r}
$$

$$
(f, \mu) \in \mathcal{A}
$$

$$
\mathcal{A}=\left\{(f, \mu) \in \mathcal{G} \times \otimes_{i=1}^{m} \mathcal{M}\left(\chi_{i}\right) \mid \mathcal{G}(f, \mu) \leq 0\right\}
$$

$\mathcal{G} \subset \mathcal{F}$
\mathcal{F} : Set of real-valued measurable functions on $\chi:=\chi_{1} \times \cdots \times \chi_{m}$
$\mathcal{F}_{\mathcal{D}}$: Real functions on $\mathcal{D}:=\{0, \ldots, n\}^{m}$
$\mathcal{G}_{\mathcal{D}} \subset \mathcal{F}_{\mathcal{D}}$

$$
\mathcal{A}_{\mathcal{D}}=\left\{(h, \alpha) \in \mathcal{G}_{\mathcal{D}} \times \otimes_{i=1}^{m} \mathcal{M}(\mathcal{D}) \mid \mathcal{G}(f, \mu) \leq 0\right\}
$$

$$
\mathcal{U}\left(\mathcal{A}_{\mathcal{D}}\right):=\sup _{(h, \alpha) \in \mathcal{A}_{\mathcal{D}}} \mathbb{E}_{\alpha}[r \circ h] \mid
$$

Second reduction (positions of the Diracs)

Theorem If

$$
\mathbb{F}\left[\mathcal{G} \times \otimes_{i=1}^{m} \Delta_{n}\left(\chi_{i}\right)\right]=\mathcal{G}_{\mathcal{D}}
$$

$\mathbb{F}: \mathcal{F} \times \otimes_{i=1}^{m} \Delta_{n}\left(\mathcal{X}_{i}\right) \longrightarrow \mathcal{F}_{\mathcal{D}}$
$\left(f, \otimes_{i=1}^{m}\left(\sum_{k=0}^{n} \alpha_{k}^{i} \delta_{x_{i}^{k}}\right)\right) \longrightarrow\left(s_{1}, \ldots, s_{m}\right) \rightarrow f\left(x_{1}^{s_{1}}, \ldots, x_{m}^{s_{m}}\right)$
Then

$$
\mathcal{U}(\mathcal{A})=\mathcal{U}\left(\mathcal{A}_{\mathcal{D}}\right)
$$

Application to McDiarmid's inequality assumptions

$$
\mathcal{A}_{M D}:=\left\{(f, \mu) \left\lvert\, \begin{array}{c|c}
f: \mathcal{X}_{1} \times \cdots \times \mathcal{X}_{m} \rightarrow \mathbb{R} \\
\mu \in \mathcal{M}\left(\mathcal{X}_{1}\right) \otimes \cdots \otimes \mathcal{M}\left(\mathcal{X}_{m}\right) \\
\mathbb{E}_{\mu}[f] \leq 0 \\
\operatorname{Osc}_{i}(f) \leq D_{i}
\end{array}\right.\right\}
$$

$$
r \circ f(x):=1_{f(x) \geq a}
$$

$$
\mathcal{A}_{\mathcal{D}}:=\left\{(h, \alpha) \left\lvert\, \begin{array}{c|c}
h:\{0,1\}^{m} \rightarrow \mathbb{R} \\
& \alpha \in \mathcal{M}(\{0,1\}) \otimes \cdots \otimes \mathcal{M}(\{0,1\}) \\
\mathbb{E}_{\alpha}[h] \leq 0, \\
\operatorname{Osc}_{i}(h) \leq D_{i}
\end{array}\right.\right\}
$$

Third reduction: lattice structure of the function space
$\mathcal{A}_{\mathcal{D}}:=\left\{\begin{array}{c|c}h:\{0,1\}^{m} \rightarrow \mathbb{R}, \\ & \begin{array}{c}h \in \mathcal{M}(\{0,1\}) \otimes \cdots \otimes \mathcal{M}(\{0,1\}) \\ \mathbb{E}_{\alpha}[h] \leq 0, \\ \operatorname{Osc}_{i}(h) \leq D_{i}\end{array}\end{array}\right\}$
$\mathcal{F}_{\mathcal{D}}$ is a lattice.
$\mathcal{G}_{\mathcal{D}}$ is a sub-lattice.
$(h, \alpha) \in \mathcal{A}_{\mathcal{D}} \Rightarrow(\min (h, a), \alpha) \in \mathcal{A}_{\mathcal{D}}$
For each $C \in \mathcal{C}:=\{0,1\}^{m}$
$C_{\mathcal{D}}:=\left\{h \in \mathcal{G}_{\mathcal{D}}:\{s: h(s)=a\}=C\right\}$ is a sub-lattice

Reduction of optimization variables

$$
\begin{aligned}
& \mathcal{A}_{\mathcal{C}}:=\left\{(C, \alpha) \left\lvert\, \begin{array}{c}
C \subset\{0,1\}^{m}, \\
\alpha \in \otimes_{i=1}^{m} \mathcal{M}(\{0,1\}), \\
\mathbb{E}_{\alpha}\left[h^{C}\right] \leq 0
\end{array}\right.\right\} \\
& h^{C}:\{0,1\}^{m} \longrightarrow \mathbb{R} \\
& t \longrightarrow a-\min _{s \in C} \sum_{i: s_{i} \neq t_{i}} D_{i} \\
& \mathcal{U}\left(\mathcal{A}_{\mathcal{C}}\right):=\sup _{(C, \alpha) \in \mathcal{A}_{\mathcal{C}}} \alpha\left[h^{C} \geq a\right\}
\end{aligned}
$$

Theorem

$$
\mathcal{U}\left(\mathcal{A}_{M D}\right)=\mathcal{U}\left(\mathcal{A}_{\mathcal{C}}\right)
$$

Literature

$$
\mathcal{U}(\mathcal{A}):=\sup _{(f, \mu) \in \mathcal{A}} \mu[f(X) \geq a]
$$

Non-convex and infinite dimensional optimization problems
Can be considered as a generalization of classical Chebyshev inequalities
History of classical inequalities: Karlin, Studden (1966, Tchebycheff systems with applications in analysis and statistics)

Connection between Chebyshev inequalities and optimization theory

- Mulholland \& Rogers (1958, Representation theorems for distribution functions)
- Godwin (1973, Manipulation of voting schemes: a general result)
- Isii (1959, On a method for generalization of Tchebycheff's inequality 1960, The extrema of probability determined by generalized moments 1962, On sharpness of Techebycheff-type inequalities)
- Olhin \& Pratt (1958, A multivariate Tchebycheff inequality)
- Classical Markov-Krein theorem (Karlin, Studden, 1958)
- Dynkin (1978, Sufficient statistics \& extreme points)
- Karr (1983, Extreme points of probability measures with applications)

Literature

$$
\mathcal{U}(\mathcal{A}):=\sup _{(f, \mu) \in \mathcal{A}} \mu[f(X) \geq a]
$$

Our work: Further generalization to

- Independence constraints
- More general domains (Suslin spaces) (non metric, non compact)
- More general classes of functions (measurable) (non continuous, non-bounded)
- More general classes of probability measures
- More general constraints (inequalities, on measures and functions)

Theory of majorization

- Marshall \& Olkin (1979, Inequalities: Theory of majorization and its applications)

Inequalities of

- Anderson (1955, the integral of a symmetric unimodal function over a symmetric convex set and some probability inequalities)
- Hoeffding (1956, on the distribution of the number of successes in independent trials)
- Joe (1987, Majorization, randomness and dependence for multivariate distributions)
- Bentkus, Geuze, Van Zuijlen (2006, Optimal Hoeffding like inequalities under a symmetry assumption)
- Pinelis (2007, Exact inequalities for sums of asymmetric random variables with applications.
2008, On inequalities for sums of bounded random variables)

Our proof rely on

- Winkler (1988, Extreme points of moment sets)
- Follows from an extension of Choquet theory (Phelps 2001, lectures on Choquet's theorem) by Von Weizsacker \& Winkler (1979, Integral representation in the set of solutions of a generalized moment problem)
- Kendall (1962, Simplexes \& Vector lattices)

Caltech Small Particle Hypervelocity Impact Range

(h, θ, v)
Plate thickness
Plate Obliquity
Projectile velocity
We want to certify that

$$
\mathbb{P}[G=0] \leq \epsilon
$$

Caltech Hypervelocity Impact Surrogate Model

Plate thickness $h \in \mathcal{X}_{1}:=[1.524,2.667] \mathrm{mm}$,
Plate Obliquity $\theta \in \mathcal{X}_{2}:=\left[0, \frac{\pi}{6}\right]$,
Projectile velocity $v \in \mathcal{X}_{3}:=[2.1,2.8] \mathrm{km} \cdot \mathrm{s}^{-1}$.
Deterministic surrogate model for the perforation area (in mm^{\wedge} 2)
$H(h, \theta, v)=K\left(\frac{h}{D_{\mathrm{p}}}\right)^{p}(\cos \theta)^{u}\left(\tanh \left(\frac{v}{v_{\mathrm{bl}}}-1\right)\right)_{+}^{m}$,

$$
\begin{aligned}
H_{0} & =0.5794 \mathrm{~km} \cdot \mathrm{~s}^{-1}, & s & =1.4004,
\end{aligned} \quad n=0.4482, \quad K=10.3936 \mathrm{~mm}^{2}, ~ 子 r i .0275, \quad m=0.4682 .
$$

The ballistic limit velocity (the speed below which no perforation area occurs) is given by

$$
v_{\mathrm{bl}}:=H_{0}\left(\frac{h}{(\cos \theta)^{n}}\right)^{s}
$$

Caltech Hypervelocity Impact Surrogate Model

Bound on the probability of non perforation

$$
\mathcal{A}_{\mathrm{McD}}:=\left\{\begin{array}{c|c}
\mu=\mu_{1} \otimes \mu_{2} \otimes \mu_{3}, \\
(f, \mu) & \begin{array}{c}
\mu, 5 m^{2} \leq \mathbb{E}_{\mu}[f] \leq 7.5 m m^{2}, \\
5.5 m m^{2} \\
\operatorname{Osc}_{i}(f) \leq \mathrm{Osc}_{i}(H) \text { for } i=1,2,3 \\
f \geq 0
\end{array}
\end{array}\right.
$$

$$
\operatorname{Osc}_{i}(f):=\sup _{\left(x_{1}, \ldots, x_{m}\right) \in \mathcal{X}} \sup _{x_{i}^{\prime} \in \mathcal{X}_{i}}\left(f\left(\ldots, x_{i}, \ldots\right)-f\left(\ldots, x_{i}^{\prime}, \ldots\right)\right) .
$$

$$
\mathcal{U}\left(\mathcal{A}_{\mathrm{McD}}\right):=\sup _{(f, \mu) \in \mathcal{A}} \mu[f(X)=0]
$$

$$
\mathbb{P}[H=0] \leq \mathcal{U}\left(\mathcal{A}_{\mathrm{McD}}\right) \leq \exp \left(-\frac{2 m_{1}^{2}}{\sum_{i=1}^{3} \operatorname{Osc}_{i}(H)^{2}}\right)=66.4 \% .
$$

Optimal bound on the probability of non perforation

$$
\begin{gathered}
\mathcal{A}_{\mathrm{McD}}:=\left\{(f, \mu) \left\lvert\, \begin{array}{c}
\mu=\mu_{1} \otimes \mu_{2} \otimes \mu_{3} \\
5.5 m m^{2} \leq \mathbb{E}_{\mu}[f] \leq 7.5 m m^{2} \\
\operatorname{Osc}_{i}(f) \leq \operatorname{Osc}_{i}(H) \text { for } i=1,2,3 \\
f \geq 0
\end{array}\right.\right\} \\
\mathcal{U}\left(\mathcal{A}_{\mathrm{McD}}\right):=\sup _{(f, \mu) \in \mathcal{A}} \mu[f(X)=0]
\end{gathered}
$$

$$
\mathbb{P}[H=0] \leq \mathcal{U}\left(\mathcal{A}_{\mathrm{McD}}\right)=43.7 \%
$$

Optimal bound on the probability of non perforation

$$
\begin{gathered}
\mathcal{A}:=\left\{(f, \mu) \left\lvert\, \begin{array}{c}
\mu=\mu_{1} \otimes \mu_{2} \otimes \mu_{3} \\
m_{1} \leq \mathbb{E}_{\mu}[H] \leq m_{2} \\
f=H
\end{array}\right.\right\} \\
\mathcal{U}(\mathcal{A}):=\sup _{(f, \mu) \in \mathcal{A}} \mu[f(X)=0]
\end{gathered}
$$

Application of the reduction theorem
The measure of probability can be reduced to the tensorization of 2 Dirac masses on thickness, obliquity and velocity

$$
\mathcal{U}(\mathcal{A}) \stackrel{\mathrm{num}}{=} 37.9 \%
$$

The optimization variables can be reduced to the tensorization of 2 Dirac masses on thickness. obliauitv and velocitv

Support Points at iteration 0

Numerical optimization

Support Points at iteration 150

Numerical optimization

Support Points at iteration 200

Velocity and obliquity marginals each collapse to a single Dirac mass. The plate thickness marainal collapses to have subport on the extremes of its range.

The probability of non-perforation is maximized by a distribution supported on the minimal, not maximal, impact obliquity.

Velocity

Position of Dirac Masses

Weight of on Dirac Masses

Position and weight vs Iteration
Converges towards non extreme value at $2.289 \mathrm{~km} \cdot \mathrm{~s}^{-1}$
Reducing the velocity range does not decrease the optimal bound on the probability of non perforation

Obliquity

Position of Dirac Masses

Weight of on Dirac Masses Position and weight vs Iteration

Converges towards 0 obliquity

Reducing maximum obliquity does not decrease the optimal bound on the probability of non perforation

Thickness

Position of Dirac Masses

Weight of on Dirac Masses

Position and weight vs Iteration

Converges towards the extremes of its range
Reducing uncertainty in thickness will decrease the optimal bound on the probability of non perforation

Important observations

Extremizers are singular

They identify key players
i.e. vulnerabilities of the physical system

Extremizers are attractors

Initialization with 3 support points per marginal

Support Points at iteration 0

Initialization with 3 support points per marginal

Initialization with 3 support points per marginal

Initialization with 3 support points per marginal

Support Points at iteration 2155

Initialization with 5 support points per marginal

Support Points at iteration 0

Support Points at iteration 3000

Initialization with 5 support points per marginal

Support Points at iteration 7100

Optimal bounds for other admissible sets

Admissible scenarios, \mathcal{A}	$\mathcal{U}(\mathcal{A})$	Method
$\mathcal{A}_{\text {McD }}$ independence, oscillation and mean constraints (exact response H not given)	$\leq 66.4 \%$ $=43.7 \%$	McD. ineq. Opt. McD.
$\mathcal{A}:=\left\{(f, \mu) \mid f=H\right.$ and $\left.\mathbb{E}_{\mu}[H] \in[5.5,7.5]\right\}$	num $_{=} 37.9 \%$	OUQ
$\mathcal{A} \cap\left\{(f, \mu) \left\lvert\, \begin{array}{c}\mu \text {-median velocity } \\ =2.45 \mathrm{~km} \cdot \mathrm{~s}^{-1}\end{array}\right.\right\}$	$\stackrel{\text { num }}{=}_{=}^{=} 30.0 \%$	OUQ
$\mathcal{A} \cap\left\{(f, \mu) \mid \mu\right.$-median obliquity $\left.=\frac{\pi}{12}\right\}$	num $_{=} 36.5 \%$	OUQ
$\mathcal{A} \cap\left\{(f, \mu) \mid\right.$ obliquity $=\frac{\pi}{6} \mu$-a.s. $\}$	$\stackrel{\text { num }}{=} 28.0 \%$	OUQ

Should we compare those bounds to the true P.O.F.?

One should be careful with such comparisons in presence of asymmetric information
The real question is how to construct a selective information set A.

Selection of the most decisive experiment

$\mathcal{A}=\mathcal{A}_{\text {safe }} \cup \mathcal{A}_{\text {unsafe }}$

$$
\begin{aligned}
& \mathcal{A}_{\text {safe }}=\{(\mu, f) \in \mathcal{A}: \mu[f(X) \geq a] \leq \epsilon\} \\
& \mathcal{A}_{\text {unsafe }}=\{(\mu, f) \in \mathcal{A}: \mu[f(X) \geq a]>\epsilon\}
\end{aligned}
$$

Experiments $\quad \Phi(G, \mathbb{P})$
Ex: $\Phi_{1}(G, \mathbb{P})=\mathbb{P}[X \in A] \quad \Phi_{2}(G, \mathbb{P})=\mathbb{E}_{\mathbb{P}}[G]$
$J_{\text {safe }}(\Phi):=\left[\inf _{f, \mu \in \mathcal{A}_{\text {safe }}} \Phi(f, \mu), \sup _{f, \mu \in \mathcal{A}_{\text {safe }}} \Phi(f, \mu)\right]$

$$
J_{\text {unsafe }}(\Phi):=\left[\inf _{f, \mu \in \mathcal{A}_{\text {unsafe }}} \Phi(f, \mu), \sup _{f, \mu \in \mathcal{A}_{\text {unsafe }}} \Phi(f, \mu)\right]
$$

Selection of the most decisive experiment

$J_{\text {unsafe }}\left(\Phi_{1}\right)$

$\frac{J_{\text {safe }}\left(\Phi_{3}\right)}{J_{\text {unsafe }}\left(\Phi_{3}\right)}$

$$
J_{\mathrm{safe}}\left(\Phi_{4}\right)
$$

$$
J_{\text {unsafe }}\left(\Phi_{4}\right)
$$

Selection of the most predictive experiment

 $\mathcal{L}(\mathcal{A}) \leq \mathbb{P}[G(X) \geq a] \leq \mathcal{U}(\mathcal{A})$- If your objective is to have an "accurate" prediction of $\mathbb{P}[G(X) \leq \theta]$ in the sense that $\mathcal{U}(\mathcal{A})-\mathcal{L}(\mathcal{A})$ is small, then proceed as follows:
- Let $\mathcal{A}_{E, c}$ denote those scenarios in \mathcal{A} that are compatible with obtaining outcome c from experiment E.
- The experiment that is most predictive even in the worst case is defined by a minimax criterion: we seek

$$
E^{*} \in \underset{\text { experiments } E}{\arg \min }\left(\sup _{\text {outcomes } c}\left(\mathcal{U}\left(\mathcal{A}_{E, c}\right)-\mathcal{L}\left(\mathcal{A}_{E, c}\right)\right)\right)
$$

$\sup \mathcal{U}\left(\mathcal{A}_{E, c}\right)-\mathcal{L}\left(\mathcal{A}_{E, c}\right)$
outcomes c

- This idea of experimental selection can be extended to plan several experiments in advance, i.e. to plan campaigns of experiments.

Plan several experiments in advance, i.e. campaigns of experiments

- This is a kind of infinite-dimensional Cluedo, played on spaces of admissible scenarios, against our lack of perfect information about reality, and made tractable by the reduction theorems.

Let's play Clue

$\operatorname{mean}(H)=6.5 \pm 1.0 \&$ constraint on...

Let's play Clue

Let's play Clue

$\operatorname{mean}(H)=6.5 \pm 1.0 \& \operatorname{var}(h)=168.75 \pm 5.0 \& \operatorname{mean}(h)=82.5 \pm 0.5 \&$ constraint on..

