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Notation.

S is a finite set of states

X = (Xt )t≥0 is a first-order homogeneous Markov chain with:
initial distribution µ

probability transition matrix p = (pi,j)i,j∈S

stationary distribution π when irreducible

Object of interest.
The (n-th step) occupancy distribution of a set T ⊂ S:

Tn
def
= # (visits to T in first n-transitions)

=
n∑

t=1

[[Xt ∈ T ]], where [[A]] is the indicator of A
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Applications of occupancy distributions.

Pattern. 12GGUACG345★5’4’3’CUAUUGGACC2’1’ 

RNA  Secondary Structure. 

Figure. (i) What’s the probability the pattern occurs somewhere in a random
RNA of length-100? (ii) Given that the pattern does not occur, what’s the
probability that GGUACG occurs 7-times?
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Embedding Technique.
[GERBER-LI’81, BIGGINS-CANNINGS’87, BENDER-KOCHMAN’93]
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Figure. Markov chain that keeps tracks of the joint presence/absence of the
pattern 1a#b1 in an i.i.d. {a,b}-text [LLADSER-BETTERTON-KNIGHT’08]

M. E. Lladser () Doeblin & Occupancy Distributions March 11, 2011 4 / 21



Embedding of non-Markovian sequences. [LLADSER’08]

Consider the {0,1}-valued stochastic sequence

Xn+1
d
=



Ber(p+) , if 1
n

n∑
i=1

Xi > g;

Ber(q) , if 1
n

n∑
i=1

Xi = g;

Ber(p−) , if 1
n

n∑
i=1

Xi < g;

with g =
1

1 + r/l
and gcd(r , l) = 1

Theorem.
If L is a regular pattern and Q the set of states of any deterministic finite
automaton that recognizes L then, there is homogeneous Markov chain with
state space Z×Q which keeps tracks of all the prefixes of the infinite
sequence X that belong to L. Furthermore, the projection of the chain into Z
is also a Markov chain, with transition probabilities:

0

q p+p-

(1-p-) (1-q) (1-p+)
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Pros & Cons in Literature.

Tn = # (visits to T in first n-transitions) =
n∑

t=1

[[Xt ∈ T ]]

Method Formulation Assumption Weakness

Exact via recursions
or operators

[DURRETT’99,
FLAJOLET-SEDGEWICK’09]

E(xTn ) = µ · pn
x · 1 ∅

Complexity
O(n2|S|2)

Normal Approx.

[BENDER-KOCHMAN’93,
RÉGNIER-SZPANKOWSKI’98,

NICODÈME-SALVY-FLAJOLET’02]

∞∑
n=0

yn · E(xTn )

= µ · (I− y · px )
−1 · 1

Irreducibility,
aperiodicity

O
(

1√
n

)
-rate

of convergence

Poisson Approx.

[ALDOUS’88,
BARBOUR-HOLST-JANSON’92]

Tn
d
≈ Poisson(n · π(T )) Stationarity Ignores clumps

of visits to T

Compound Poisson Approx.

[ERHARDSSON’99,
ROQUAIN-SCHBATH’07]

Tn
d
≈ CPoisson(nλ1, nλ2, . . .);

λi = [xk ] ν · (I− qx )
−1 · r

Stationarity
Needs atom s s.t.
Pπ(τT <τs )� 1
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Motivations.

Challenge.

To approximate the distribution of Tn when n is perhaps too large for exact
calculations and too small to rely on the Normal approximation, ...

Figure. Normal approximation for a stationary chain considered in
[ERHARDSSON’99] with S = {1, . . . ,8}, T = {8} and n = 1000
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Motivations.

Challenge.

To approximate the distribution of Tn when n is perhaps too large for exact
calculations and too small to rely on the Normal approximation, and without
assuming that X is stationary

Figure. Second-order automaton associated with automaton G on top
[NICODÈME-SALVY-FLAJOLET’02, LLADSER’07]
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Addressing the challenge.

All the complexity associated with approximating the distribution of

Tn =
n∑

t=1

[[Xt ∈ T ]]

is due to the dependence between Xt and Xt−1, for 1 ≤ t ≤ n. Overlooking
this dependence is naive, however, the extent of dependence could be
reduced if one could guess at random times where the chain is located.
To achieve this, we assume the following

Standing hypothesis.

There is λ > 0 and stochastic matrices E and M s.t. p = λ · E + (1− λ) ·M,
where all rows of E are identical to certain probability vector e

p satisfies Doeblin’s condition [Doeblin’40]: pm(i , j) ≥ λ · e(j), with
m = 1

One can simulate from π exactly without computing it beforehand, using
the multi-gamma coupling [Murdoch-Green’98, Møller’99,
Corcoran-Tweedie’01]
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Approximating the distribution of Tn, with n = 7.

Standing hypothesis.

(∃λ > 0) : p = λ · E + (1− λ) ·M, where all rows of E are identical to e

X0  X1  X2  X3  X4  X5  X6 
M M M M e M M 

Independent random variables (!) 

Xn 

# (visits to T) # (visits to T) 

µ 
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Approximating the distribution of Tn, with n = 7.

Standing hypothesis.

(∃λ > 0) : p = λ · E + (1− λ) ·M, where all rows of E are identical to e

µ 
X0  X1  X2  X3  X4  X5  X6  Xn 

M M e M e e M 

In which case the largest transfer matrix 
exponent to consider is 2  rather  than  n 

I1 I2 I3 IK 

A perhaps more likely scenario (!) 
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Approximating the distribution of Tn, with n = 7.

Standing hypothesis.

(∃λ > 0) : p = λ · E + (1− λ) ·M, where all rows of E are identical to e

µ 
X0  X1  X2  X3  X4  X5  X6  Xn 

M M e M e e M 

I1 I2 I3 IK 

Heuristic.
The largest transfer-matrix power to consider is

Ln = max
i=1,...,K

Ii ,

which concentrates around − ln(λn)
ln(1−λ) [Feller’68, Arratia-Goldstein-Gordon’90,

Flajolet-Sedgewick’09]. Accurate approximations to the distribution of Tn
should follow by considering chains of duration m =Θ

(
ln(n)

)
instead of n
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Approximating the distribution of Tn, with n = 7.

µ 
X0  X1  X2  X3  X4  X5  X6  Xn 

M M e M e e M 

I1 I2 I3 IK 

Theorem [Chestnut-Lladser’10].

If Wn,m is the random number of visits to T when Ln ≤ m then

‖Tn −Wn,m‖ ≤ P[Ln > m] ∼ O(n1−c), when m =
c · ln(λn)

ln(1/(1− λ))

Rate of convergence.

c = 3/2 matches the rate of convergence of the Normal approximation (!)
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Approximating the distribution of Tn, with n = 7.

µ 
X0  X1  X2  X3  X4  X5  X6  Xn 

M M e M e e M 

I1 I2 I3 IK 

Theorem [Chestnut-Lladser’10].

If Wn,m is the random number of visits to T when Ln ≤ m then

‖Tn −Wn,m‖ ≤ P[Ln > m] ∼ O(n1−c), when m =
c · ln(λn)

ln(1/(1− λ))

Numerical Implementation.

The combinatorial class of coin flips with M-runs of length ≤ m is described
by the regular expression:

(ε+ µ{M, . . . ,Mm})× (e{M, . . . ,Mm})∗,

implying that
∑

k≥0 E(xWk,m )yk is rational and computable from (µ ·M l
x · 1)y l

and (ex ·M l
x · 1)y l+1, with l = 0, . . . ,m

M. E. Lladser () Doeblin & Occupancy Distributions March 11, 2011 14 / 21



Small numerical example.

Normal Poisson Compound Poisson Our
n δ approximation approximation approximation approximation
10 1 1.7E-2 1.4E-2 3.2E-3 3.8E-4
10 0.5 1.7E-2 7.0E-3 1.2E-3 1.5E-4
10 0.25 1.3E-2 3.6E-3 4.9E-4 6.9E-5
10 0.1 5.3E-3 1.4E-3 1.7E-4 2.7E-5
10 0.01 5.3E-4 1.4E-4 1.5E-5 2.6E-6
10 0.001 5.3E-5 1.4E-5 1.5E-6 2.6E-7

100 1 0.23 6.9E-2 9.7E-3 2.3E-4
100 0.5 0.22 5.2E-2 3.5E-3 1.6E-4
100 0.25 0.14 3.2E-2 1.3E-3 7.5E-5
100 0.1 2.0E-2 1.5E-2 3.1E-4 3.1E-5
100 0.01 5.2E-3 1.6E-3 1.6E-5 3.3E-6
100 0.001 5.3E-4 1.6E-4 1.5E-6 3.3E-7

1000 1 6.9E-2 7.0E-2 9.4E-3 2.1E-5
1000 0.5 9.0E-2 7.3E-2 4.9E-3 1.4E-5
1000 0.25 0.14 7.8E-2 2.7E-3 8.2E-6
1000 0.1 0.23 6.8E-2 9.6E-4 1.1E-5
1000 0.01 2.0E-2 1.5E-2 2.7E-5 1.8E-6
1000 0.001 5.2E-3 1.5E-3 1.7E-6 2.0E-7

Table. Errors in total variation distance for stationary chains considered in
[ERHARDSSON’99], where S = {1, . . . ,8} and T = {8}. The parameter δ
controls transitions into T , which are rare for δ small
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Looking back ...

Standing hypothesis.

(∃λ > 0) : p = λ · E + (1− λ) ·M, where all rows of E are identical to e

To aim at the best approximation, choose:

max
{
λ : ∃E ∃M : p = λ · E + (1− λ) ·M

}
=
∑

j

min
i

p(i , j).

i.e. the optimal λ is Doeblin’s ergodicity coefficient [DOEBLIN’37]
associated with p:

α(p)
def
=
∑

j

min
i

p(i , j)

Several other ergodicity coefficients have been introduced in the literature
[MARKOV’906, DOBRUSHIN’56, HAJNAL’58, SENETA’73+’93] e.g. the
Markov-Dobrushin ergodicity coefficient is:

β(p)
def
= 1−max

i,j
‖p(i , ·)− p(j , ·)‖tvd (≥ α(p))
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Ok! ... what if α(p) = 0?

In the aperiodic and irreducible setting:

lim
k→∞

pk = Π =⇒ lim
k→∞

α(pk ) = 1

It is well-known that the Markov-Dobrushing coefficient is
sub-multiplicative [Dobrushin’56, Paz’70, Iosifescu’72, Griffeath’75]:

(∀p,q ∈ P) :
(
1− β(pq)

)
≤
(
1− β(p)

)
·
(
1− β(q)

)
Exploiting that

p = α(p) · E1 +
(
1− α(p)) ·M1

q = α(q) · E2 +
(
1− α(q)) ·M2

we obtain:

Theorem [Chestnut-Lladser’10?].

(∀p,q ∈ P) :
(
1− α(pq)

)
≤
(
1− α(p)

)
·
(
1− α(q)

)
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An unexpected consequence for non-homogeneous chains.

Doeblin’s characterization of weak-ergodicity (1937).

For a sequence of stochastic matrices (pk )k≥0 the following are equivalent:

(∀m ≥ 0)(∀i , j , s ∈ S) : lim
n→∞

∣∣∣∣( n∏
k=m

pk
)
(i , s)−

( n∏
k=m

pk
)
(j , s)

∣∣∣∣ = 0

there exists a strictly increasing sequence of positive integers (nk )k≥0

such that:
∞∑

k=0
α
( nk+1−1∏

i=nk

pi
)

= +∞

Similar characterizations but based on the β-coefficient were provided by
Hajnal (1958), Paz (1970), and Iosifescu (1972), with increasing level of
generality. Seneta (1973) proved Doeblin’s characterization using various
relationships between α(p), β(p), and:

γ1(p)
def
= max

j
min

i
p(i , j), and γ2(p)

def
= 1−max

s
max

i,j
|p(i , s)− p(j , s)|

Using the sub-multiplicative inequality, we can now prove Doeblin’s
characterization in an elementary and self-contained way!

M. E. Lladser () Doeblin & Occupancy Distributions March 11, 2011 18 / 21



Main Reference.
[?] OCCUPANCY DISTRIBUTIONS IN MARKOV CHAINS VIA DOEBLIN’S
ERGODICITY COEFFICIENT. S. Chesnut, M. E. Lladser. Discrete Mathematics
and Theoretical Computer Science Proceedings. AM, 79-92 (2010).

... Thank you!
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A first-principles proof.

Doeblin’s characterization of weak-ergodicity.

(pk )k≥0 is weakly-ergodic iff there exists a strictly increasing sequence of

positive integers (nk )k≥0 such that:
∞∑

k=0
α
( nk+1−1∏

i=nk

pi
)

= +∞

Fix m ≥ 0 and let αn = α
(∏n

k=m pk
)
. Notice:( n∏

k=m

pk
)
(i , s)−

( n∏
k=m

pk
)
(j , s) = (1−αn) ·

(
Mn(i , s)−Mn(j , s)

)
, with α(Mn) = 0

Proof of sufficiency [Chestnut-Lladser’10].
Using the sub-multiplicative property:

(1− αn) ≤
∏

k∈Kn

1− α
( nk+1−1∏

i=nk

pi
) ≤ exp

−∑
k∈Jn

α
( nk+1−1∏

i=nk

pi
)
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A first-principles proof.

Doeblin’s characterization of weak-ergodicity.

(pk )k≥0 is weakly-ergodic iff there exists a strictly increasing sequence of

positive integers (nk )k≥0 such that:
∞∑

k=0
α
( nk+1−1∏

i=nk

pi
)

= +∞

Fix m ≥ 0 and let αn = α
(∏n

k=m pk
)
. Notice:( n∏

k=m

pk
)
(i , s)−

( n∏
k=m

pk
)
(j , s) = (1−αn) ·

(
Mn(i , s)−Mn(j , s)

)
, with α(Mn) = 0

Proof of necessity [Chestnut-Lladser’10].

It suffices to prove that (αn)n≥0 has a subsequence that converges to 1. By
contradiction, if one assumes otherwise then

(∀i , j , s ∈ S) : lim
n→∞

(
Mn(i , s)−Mn(j , s)

)
= 0

However, this is not possible because Mn has a zero in each column and Mn
is a stochastic matrix
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