Doeblin's ergodicity coefficient: lower-complexity approximation of occupancy distributions

M. E. Lladser, joint work with S. Chestnut Department of Applied Mathematics University of Colorado - Boulder

Notation.

S is a finite set of states
$X=\left(X_{t}\right)_{t \geq 0}$ is a first-order homogeneous Markov chain with:

- initial distribution μ
- probability transition matrix $p=\left(p_{i, j}\right)_{i, j \in S}$
- stationary distribution π when irreducible

Object of interest.

The (n-th step) occupancy distribution of a set $T \subset S$:

$$
\begin{aligned}
& T_{n} \stackrel{\text { def }}{=} \#(v i s i t s ~ t o ~ \\
& \text { in first } n \text {-transitions) } \\
&=\sum_{t=1}^{n} \llbracket X_{t} \in T \rrbracket, \text { where } \llbracket A \rrbracket \text { is the indicator of } A
\end{aligned}
$$

Applications of occupancy distributions.

Pattern. 12GGUACG345*5'4'3'CUAUUGGACC2'1'

Figure. (i) What's the probability the pattern occurs somewhere in a random RNA of length-100? (ii) Given that the pattern does not occur, what's the probability that GGUACG occurs 7-times?

Embedding Technique.

[Gerber-Li'81, BigGins-Cannings'87, Bender-Kochman'93]

\longrightarrow Followed with probability p

Figure. Markov chain that keeps tracks of the joint presence/absence of the pattern $1 a \# b 1$ in an i.i.d. $\{a, b\}$-text [LLADSER-BETTERTON-KNIGHT'08]

Embedding of non-Markovian sequences. [LLADSER'08]

Consider the $\{0,1\}$-valued stochastic sequence

$$
x_{n+1} \stackrel{d}{=} \begin{cases}\operatorname{Ber}\left(p_{+}\right) & , \text {if } \frac{1}{n} \sum_{i=1}^{n} X_{i}>g ; \\ \operatorname{Ber}(q) & , \text { if } \frac{1}{n} \sum_{i=1}^{n} X_{i}=g ; \quad \text { with } g=\frac{1}{1+r / l} \text { and } \operatorname{gcd}(r, l)=1 \\ \operatorname{Ber}\left(p_{-}\right) & , \text {if } \frac{1}{n} \sum_{i=1}^{n} X_{i}<g ;\end{cases}
$$

Theorem.

If \mathcal{L} is a regular pattern and \mathcal{Q} the set of states of any deterministic finite automaton that recognizes \mathcal{L} then, there is homogeneous Markov chain with state space $\mathbb{Z} \times \mathcal{Q}$ which keeps tracks of all the prefixes of the infinite sequence X that belong to \mathcal{L}. Furthermore, the projection of the chain into \mathbb{Z} is also a Markov chain, with transition probabilities:

Pros \& Cons in Literature.

$$
T_{n}=\#(\text { visits to } T \text { in first } n \text {-transitions })=\sum_{t=1}^{n} \llbracket X_{t} \in T \rrbracket
$$

Method	Formulation	Assumption	Weakness
Exact via recursions or operators [Durrett'99, Flajolet-Sedgewick'09]	$\mathbb{E}\left(x^{T_{n}}\right)=\mu \cdot p_{x}^{n} \cdot \mathbf{1}$	\emptyset	Complexity $O\left(n^{2}\|S\|^{2}\right)$
Normal Approx. [Bender-Kochman'93, RÉGNier-Szpankowski'98, Nicodème-Salvy-FLAJolet'02]	$\begin{aligned} & \sum_{n=0}^{\infty} y^{n} \cdot \mathbb{E}\left(x^{T_{n}}\right) \\ &=\mu \cdot\left(\mathbb{I}-y \cdot p_{x}\right)^{-1} \cdot \mathbf{1} \end{aligned}$	Irreducibility, aperiodicity	$O\left(\frac{1}{\sqrt{n}}\right) \text {-rate }$ of convergence
Poisson Approx. [Aldous'88, Barbour-Holst-Janson'92]	$T_{n} \stackrel{d}{\sim} \operatorname{Poisson}(n \cdot \pi(T))$	Stationarity	Ignores clumps of visits to T
Compound Poisson Approx. [Erhardsson'99, Roquain-Schbath'07]	$\begin{gathered} T_{n} \stackrel{d}{\approx} \text { CPoisson }\left(n \lambda_{1}, n \lambda_{2}, \ldots\right) ; \\ \lambda_{i}=\left[x^{k}\right] \nu \cdot\left(\mathbb{I}-q_{x}\right)^{-1} \cdot r \end{gathered}$	Stationarity	Needs atom s s.t. $\mathbb{P}_{\pi}\left(\tau_{T}<\tau_{s}\right) \ll 1$

Motivations.

Challenge.

To approximate the distribution of T_{n} when n is perhaps too large for exact calculations and too small to rely on the Normal approximation, ...

Figure. Normal approximation for a stationary chain considered in [ERHARDSSON'99] with $S=\{1, \ldots, 8\}, T=\{8\}$ and $n=1000$

Motivations.

Challenge.

To approximate the distribution of T_{n} when n is perhaps too large for exact calculations and too small to rely on the Normal approximation, and without assuming that X is stationary

Figure. Second-order automaton associated with automaton G on top [Nicodème-Salvy-Flajolet'02, LLADSER'07]

Addressing the challenge.

All the complexity associated with approximating the distribution of

$$
T_{n}=\sum_{t=1}^{n} \llbracket X_{t} \in T \rrbracket
$$

is due to the dependence between $\stackrel{t=1}{X_{t}}$ and X_{t-1}, for $1 \leq t \leq n$. Overlooking this dependence is naive, however, the extent of dependence could be reduced if one could guess at random times where the chain is located.
To achieve this, we assume the following

Standing hypothesis.

There is $\lambda>0$ and stochastic matrices E and M s.t. $p=\lambda \cdot E+(1-\lambda) \cdot M$, where all rows of E are identical to certain probability vector \mathbf{e}

- p satisfies Doeblin's condition [Doeblin'40]: $p^{m}(i, j) \geq \lambda \cdot \mathbf{e}(j)$, with $m=1$
- One can simulate from π exactly without computing it beforehand, using the multi-gamma coupling [Murdoch-Green'98, Møller'99, Corcoran-Tweedie'01]

Approximating the distribution of T_{n}, with $n=7$.

Standing hypothesis. $(\exists \lambda>0): p=\lambda \cdot E+(1-\lambda) \cdot M$, where all rows of E are identical to \mathbf{e}

Approximating the distribution of T_{n}, with $n=7$.

Standing hypothesis. $(\exists \lambda>0): p=\lambda \cdot E+(1-\lambda) \cdot M$, where all rows of E are identical to \mathbf{e}

A perhaps more likely scenario (!)

In which case the largest transfer matrix exponent to consider is 2 rather than n

Approximating the distribution of T_{n}, with $n=7$.

Standing hypothesis.
$(\exists \lambda>0): p=\lambda \cdot E+(1-\lambda) \cdot M$, where all rows of E are identical to \mathbf{e}

Heuristic.
The largest transfer-matrix power to consider is

$$
L_{n}=\max _{i=1, \ldots, K} I_{i}
$$

which concentrates around $\frac{-\ln (\lambda n)}{\ln (1-\lambda)}$ [Feller'68, Arratia-Goldstein-Gordon'90, Flajolet-Sedgewick'09]. Accurate approximations to the distribution of T_{n} should follow by considering chains of duration $m=\Theta(\ln (n))$ instead of n

Approximating the distribution of T_{n}, with $n=7$.

Theorem [Chestnut-Lladser'10].
If $W_{n, m}$ is the random number of visits to T when $L_{n} \leq m$ then

$$
\left\|T_{n}-W_{n, m}\right\| \leq \mathbb{P}\left[L_{n}>m\right] \quad \sim O\left(n^{1-c}\right), \text { when } m=\frac{c \cdot \ln (\lambda n)}{\ln (1 /(1-\lambda))}
$$

Rate of convergence.
$c=3 / 2$ matches the rate of convergence of the Normal approximation (!)

Approximating the distribution of T_{n}, with $n=7$.

Theorem [Chestnut-Lladser'10].
If $W_{n, m}$ is the random number of visits to T when $L_{n} \leq m$ then

$$
\left\|T_{n}-W_{n, m}\right\| \leq \mathbb{P}\left[L_{n}>m\right] \quad \sim O\left(n^{1-c}\right), \text { when } m=\frac{c \cdot \ln (\lambda n)}{\ln (1 /(1-\lambda))}
$$

Numerical Implementation.

The combinatorial class of coin flips with M-runs of length $\leq m$ is described by the regular expression:

$$
\left(\epsilon+\mu\left\{M, \ldots, M^{m}\right\}\right) \times\left(\mathbf{e}\left\{M, \ldots, M^{m}\right\}\right)^{*},
$$

implying that $\sum_{k>0} \mathbb{E}\left(x^{W_{k, m}}\right) y^{k}$ is rational and computable from $\left(\mu \cdot M_{x}^{\prime} \cdot \mathbf{1}\right) y^{\prime}$ and $\left(\mathbf{e}_{x} \cdot M_{x}^{\prime} \cdot \mathbf{1}\right) y^{\prime+1}$, with $I=0, \ldots, m$

Small numerical example.

n	δ	Normal approximation	Poisson approximation	Compound Poisson approximation	Our approximation
10	1	$1.7 \mathrm{E}-2$	$1.4 \mathrm{E}-2$	$3.2 \mathrm{E}-3$	$3.8 \mathrm{E}-4$
10	0.5	$1.7 \mathrm{E}-2$	$7.0 \mathrm{E}-3$	$1.2 \mathrm{E}-3$	$1.5 \mathrm{E}-4$
10	0.25	$1.3 \mathrm{E}-2$	$3.6 \mathrm{E}-3$	$4.9 \mathrm{E}-4$	$6.9 \mathrm{E}-5$
10	0.1	$5.3 \mathrm{E}-3$	$1.4 \mathrm{E}-3$	$1.7 \mathrm{E}-4$	$2.7 \mathrm{E}-5$
10	0.01	$5.3 \mathrm{E}-4$	$1.4 \mathrm{E}-4$	$1.5 \mathrm{E}-5$	$2.6 \mathrm{E}-6$
10	0.001	$5.3 \mathrm{E}-5$	$1.4 \mathrm{E}-5$	$1.5 \mathrm{E}-6$	$2.6 \mathrm{E}-7$
100	1	0.23	$6.9 \mathrm{E}-2$	$9.7 \mathrm{E}-3$	$2.3 \mathrm{E}-4$
100	0.5	0.22	$5.2 \mathrm{E}-2$	$3.5 \mathrm{E}-3$	$1.6 \mathrm{E}-4$
100	0.25	0.14	$3.2 \mathrm{E}-2$	$1.3 \mathrm{E}-3$	$7.5 \mathrm{E}-5$
100	0.1	$2.0 \mathrm{E}-2$	$1.5 \mathrm{E}-2$	$3.1 \mathrm{E}-4$	$3.1 \mathrm{E}-5$
100	0.01	$5.2 \mathrm{E}-3$	$1.6 \mathrm{E}-3$	$1.6 \mathrm{E}-5$	$3.3 \mathrm{E}-6$
100	0.001	$5.3 \mathrm{E}-4$	$1.6 \mathrm{E}-4$	$1.5 \mathrm{E}-6$	$3.3 \mathrm{E}-7$
1000	1	$6.9 \mathrm{E}-2$	$7.0 \mathrm{E}-2$	$9.4 \mathrm{E}-3$	$2.1 \mathrm{E}-5$
1000	0.5	$9.0 \mathrm{E}-2$	$7.3 \mathrm{E}-2$	$4.9 \mathrm{E}-3$	$1.4 \mathrm{E}-5$
1000	0.25	0.14	$7.8 \mathrm{E}-2$	$2.7 \mathrm{E}-3$	$8.2 \mathrm{E}-6$
1000	0.1	0.23	$6.8 \mathrm{E}-2$	$9.6 \mathrm{E}-4$	$1.1 \mathrm{E}-5$
1000	0.01	$2.0 \mathrm{E}-2$	$1.5 \mathrm{E}-2$	$2.7 \mathrm{E}-5$	$1.8 \mathrm{E}-6$
1000	0.001	$5.2 \mathrm{E}-3$	$1.5 \mathrm{E}-3$	$1.7 \mathrm{E}-6$	$2.0 \mathrm{E}-7$

Table. Errors in total variation distance for stationary chains considered in [ERHARDSSON'99], where $S=\{1, \ldots, 8\}$ and $T=\{8\}$. The parameter δ controls transitions into T, which are rare for δ small

Looking back ...

Standing hypothesis.

$(\exists \lambda>0): p=\lambda \cdot E+(1-\lambda) \cdot M$, where all rows of E are identical to \mathbf{e}
To aim at the best approximation, choose:

$$
\max \{\lambda: \exists E \exists M: p=\lambda \cdot E+(1-\lambda) \cdot M\}=\sum_{j} \min _{i} p(i, j) .
$$

i.e. the optimal λ is Doeblin's ergodicity coefficient [Doeblin'37] associated with p :

$$
\alpha(p) \stackrel{\text { def }}{=} \sum_{j} \min _{i} p(i, j)
$$

Several other ergodicity coefficients have been introduced in the literature [MARKOv'906, DobruShin'56, Hajnal'58, Seneta'73+'93] e.g. the Markov-Dobrushin ergodicity coefficient is:

$$
\beta(p) \stackrel{\text { def }}{=} 1-\max _{i, j}\|p(i, \cdot)-p(j, \cdot)\|_{t v d} \quad(\geq \alpha(p))
$$

Ok! ... what if $\alpha(\boldsymbol{p})=0$?
In the aperiodic and irreducible setting:

$$
\lim _{k \rightarrow \infty} p^{k}=\Pi \quad \Longrightarrow \quad \lim _{k \rightarrow \infty} \alpha\left(p^{k}\right)=1
$$

It is well-known that the Markov-Dobrushing coefficient is sub-multiplicative [Dobrushin'56, Paz'70, Iosifescu'72, Griffeath'75]:

$$
(\forall p, q \in \mathcal{P}): \quad(1-\beta(p q)) \leq(1-\beta(p)) \cdot(1-\beta(q))
$$

Exploiting that

$$
\begin{aligned}
p & =\alpha(p) \cdot E_{1}+(1-\alpha(p)) \cdot M_{1} \\
q & =\alpha(q) \cdot E_{2}+(1-\alpha(q)) \cdot M_{2}
\end{aligned}
$$

we obtain:
Theorem [Chestnut-Lladser'10?].
$(\forall p, q \in \mathcal{P}): \quad(1-\alpha(p q)) \leq(1-\alpha(p)) \cdot(1-\alpha(q))$

An unexpected consequence for non-homogeneous chains.

Doeblin's characterization of weak-ergodicity (1937).
For a sequence of stochastic matrices $\left(p_{k}\right)_{k \geq 0}$ the following are equivalent:

- $(\forall m \geq 0)(\forall i, j, s \in S): \lim _{n \rightarrow \infty}\left|\left(\prod_{k=m}^{n} p_{k}\right)(i, s)-\left(\prod_{k=m}^{n} p_{k}\right)(j, s)\right|=0$
- there exists a strictly increasing sequence of positive integers $\left(n_{k}\right)_{k \geq 0}$ such that: $\sum_{k=0}^{\infty} \alpha\left(\prod_{i=n_{k}}^{n_{k+1}-1} p_{i}\right)=+\infty$

Similar characterizations but based on the β-coefficient were provided by Hajnal (1958), Paz (1970), and losifescu (1972), with increasing level of generality. Seneta (1973) proved Doeblin's characterization using various relationships between $\alpha(p), \beta(p)$, and:

$$
\gamma_{1}(p) \stackrel{\text { def }}{=} \max _{j} \min _{i} p(i, j), \text { and } \gamma_{2}(p) \stackrel{\text { def }}{=} 1-\max _{s} \max _{i, j}|p(i, s)-p(j, s)|
$$

Using the sub-multiplicative inequality, we can now prove Doeblin's characterization in an elementary and self-contained way!

Main Reference.

[*] Occupancy distributions in Markov chains via Doeblin’s ergodicity coefficient. S. Chesnut, M. E. Lladser. Discrete Mathematics and Theoretical Computer Science Proceedings. AM, 79-92 (2010).
... Thank you!

A first-principles proof.

Doeblin's characterization of weak-ergodicity.
$\left(p_{k}\right)_{k \geq 0}$ is weakly-ergodic iff there exists a strictly increasing sequence of positive integers $\left(n_{k}\right)_{k \geq 0}$ such that: $\sum_{k=0}^{\infty} \alpha\left(\prod_{i=n_{k}}^{n_{k+1}-1} p_{i}\right)=+\infty$

Fix $m \geq 0$ and let $\alpha_{n}=\alpha\left(\prod_{k=m}^{n} p_{k}\right)$. Notice:
$\left(\prod_{k=m}^{n} p_{k}\right)(i, s)-\left(\prod_{k=m}^{n} p_{k}\right)(j, s)=\left(1-\alpha_{n}\right) \cdot\left(M_{n}(i, s)-M_{n}(j, s)\right)$, with $\alpha\left(M_{n}\right)=0$

Proof of sufficiency [Chestnut-Lladser'10].

Using the sub-multiplicative property:

$$
\left(1-\alpha_{n}\right) \leq \prod_{k \in K_{n}}\left\{1-\alpha\left(\prod_{i=n_{k}}^{n_{k+1}-1} p_{i}\right)\right\} \leq \exp \left\{-\sum_{k \in J_{n}} \alpha\left(\prod_{i=n_{k}}^{n_{k+1}-1} p_{i}\right)\right\}
$$

A first-principles proof.

Doeblin's characterization of weak-ergodicity.

$\left(p_{k}\right)_{k \geq 0}$ is weakly-ergodic iff there exists a strictly increasing sequence of positive integers $\left(n_{k}\right)_{k \geq 0}$ such that: $\sum_{k=0}^{\infty} \alpha\left(\prod_{i=n_{k}}^{n_{k+1}-1} p_{i}\right)=+\infty$

Fix $m \geq 0$ and let $\alpha_{n}=\alpha\left(\prod_{k=m}^{n} p_{k}\right)$. Notice:
$\left(\prod_{k=m}^{n} p_{k}\right)(i, s)-\left(\prod_{k=m}^{n} p_{k}\right)(j, s)=\left(1-\alpha_{n}\right) \cdot\left(M_{n}(i, s)-M_{n}(j, s)\right)$, with $\alpha\left(M_{n}\right)=0$

Proof of necessity [Chestnut-Lladser'10].

It suffices to prove that $\left(\alpha_{n}\right)_{n \geq 0}$ has a subsequence that converges to 1 . By contradiction, if one assumes otherwise then

$$
(\forall i, j, s \in S): \lim _{n \rightarrow \infty}\left(M_{n}(i, s)-M_{n}(j, s)\right)=0
$$

However, this is not possible because M_{n} has a zero in each column and M_{n} is a stochastic matrix

