Doeblin's ergodicity coefficient: lower-complexity approximation of occupancy distributions

M. E. Lladser, joint work with S. Chestnut Department of Applied Mathematics University of Colorado - Boulder

Notation.

S is a finite set of states

- $X = (X_t)_{t \ge 0}$ is a first-order homogeneous Markov chain with:
 - initial distribution μ
 - probability transition matrix $p = (p_{i,j})_{i,j \in S}$
 - stationary distribution π when irreducible

Object of interest.

The (n-th step) occupancy distribution of a set $T \subset S$:

$$T_n \stackrel{\text{def}}{=} \# \text{ (visits to } T \text{ in first } n \text{-transitions)}$$
$$= \sum_{t=1}^n [\![X_t \in T]\!], \text{ where } [\![A]\!] \text{ is the indicator of } A$$

Applications of occupancy distributions.

Pattern. 12GGUACG345 + 5'4'3'CUAUUGGACC2'1'

Figure. (i) What's the probability the pattern occurs somewhere in a <u>random</u> RNA of length-100? (ii) Given that the pattern does not occur, what's the probability that *GGUACG* occurs 7-times?

M. E. Lladser ()

Embedding Technique. [GERBER-LI'81, BIGGINS-CANNINGS'87, BENDER-KOCHMAN'93]

Figure. Markov chain that keeps tracks of the joint presence/absence of the pattern 1a#b1 in an i.i.d. $\{a, b\}$ -text [LLADSER-BETTERTON-KNIGHT'08]

M. E. Lladser ()

Embedding of non-Markovian sequences. [LLADSER'08]

Consider the {0, 1}-valued stochastic sequence

$$X_{n+1} \stackrel{d}{=} \begin{cases} \text{Ber}(p_{+}) &, \text{ if } \frac{1}{n} \sum_{i=1}^{n} X_{i} > g; \\ \text{Ber}(q) &, \text{ if } \frac{1}{n} \sum_{i=1}^{n} X_{i} = g; \text{ with } g = \frac{1}{1 + r/I} \text{ and } \gcd(r, I) = 1 \\ \text{Ber}(p_{-}) &, \text{ if } \frac{1}{n} \sum_{i=1}^{n} X_{i} < g; \end{cases}$$

Theorem.

If \mathcal{L} is a **regular pattern** and \mathcal{Q} the set of states of any **deterministic finite automaton** that recognizes \mathcal{L} then, there is homogeneous Markov chain with state space $\mathbb{Z} \times \mathcal{Q}$ which keeps tracks of all the prefixes of the infinite sequence X that belong to \mathcal{L} . Furthermore, the projection of the chain into \mathbb{Z} is also a Markov chain, with transition probabilities:

Pros & Cons in Literature.

$$T_n = #$$
 (visits to T in first *n*-transitions) $= \sum_{t=1}^n [X_t \in T]$

Method	Formulation	Assumption	Weakness
Exact via recursions or operators [DURRETT'99, FLAJOLET-SEDGEWICK'09]	$\mathbb{E}(x^{T_n}) = \mu \cdot p_x^n \cdot 1$	Ø	Complexity $O(n^2 S ^2)$
Normal Approx. [Bender-Kochman'93, Régnier-Szpankowski'98, Nicodème-Salvy-Flajolet'02]	$\sum_{n=0}^{\infty} y^n \cdot \mathbb{E}(x^{T_n})$ $= \mu \cdot (\mathbb{I} - y \cdot \rho_x)^{-1} \cdot 1$	Irreducibility, aperiodicity	$O\left(\frac{1}{\sqrt{n}}\right)$ -rate of convergence
Poisson Approx. [Aldous'88, Barbour-Holst-Janson'92]	$T_n \stackrel{d}{\approx} Poisson(n \cdot \pi(T))$	Stationarity	Ignores clumps of visits to <i>T</i>
Compound Poisson Approx. [Erhardsson'99, Roquain-Schbath'07]	$T_n \stackrel{d}{\approx} CPoisson(n\lambda_1, n\lambda_2, \ldots);$ $\lambda_i = [x^k] \nu \cdot (\mathbb{I} - q_x)^{-1} \cdot r$	Stationarity	Needs atom s s.t. $\mathbb{P}_{\pi}(\tau_{\mathcal{T}} < \tau_{\mathcal{S}}) \ll 1$

Motivations.

Challenge.

To approximate the distribution of T_n when n is perhaps too large for exact calculations and too small to rely on the Normal approximation, ...

Figure. Normal approximation for a stationary chain considered in [ERHARDSSON'99] with $S = \{1, ..., 8\}$, $T = \{8\}$ and n = 1000

Motivations.

Challenge.

To approximate the distribution of T_n when *n* is perhaps too large for exact calculations and too small to rely on the Normal approximation, **and without assuming that** *X* **is stationary**

Figure. Second-order automaton associated with automaton *G* on top [NICODÈME-SALVY-FLAJOLET'02, LLADSER'07]

M. E. Lladser ()

Addressing the challenge.

All the complexity associated with approximating the distribution of

$$T_n = \sum_{t=1}^n \llbracket X_t \in T \rrbracket$$

is due to the dependence between X_t and X_{t-1} , for $1 \le t \le n$. Overlooking this dependence is naive, however, the extent of dependence could be reduced if one could **guess at random times where the chain is located**. To achieve this, we assume the following

Standing hypothesis.

There is $\lambda > 0$ and stochastic matrices *E* and *M* s.t. $p = \lambda \cdot E + (1 - \lambda) \cdot M$, where all rows of *E* are identical to certain probability vector **e**

- p satisfies **Doeblin's condition** [Doeblin'40]: $p^m(i,j) \ge \lambda \cdot \mathbf{e}(j)$, with m = 1
- One can simulate from π exactly without computing it beforehand, using the multi-gamma coupling [Murdoch-Green'98, Møller'99, Corcoran-Tweedie'01]

Standing hypothesis.

 $(\exists \lambda > 0) : p = \lambda \cdot E + (1 - \lambda) \cdot M$, where all rows of *E* are identical to **e**

Standing hypothesis.

 $(\exists \lambda > 0): p = \lambda \cdot E + (1 - \lambda) \cdot M$, where all rows of *E* are identical to **e**

A perhaps more likely scenario (!)

In which case the largest transfer matrix exponent to consider is 2 rather than n

M. E. Lladser ()

Standing hypothesis.

 $(\exists \lambda > 0) : p = \lambda \cdot E + (1 - \lambda) \cdot M$, where all rows of *E* are identical to **e**

$$\xrightarrow{i} X_{3} \xrightarrow{M} X_{4} \xrightarrow{i} X_{5} \xrightarrow{i} X_{4} \xrightarrow{i} X_{5} \xrightarrow{i} X_{5} \xrightarrow{i} X_{5} \xrightarrow{i} X_{5} \xrightarrow{M} X_{5} \xrightarrow{i} X_{5} \xrightarrow{M} X_{5} \xrightarrow{i} X_{5$$

Heuristic.

The largest transfer-matrix power to consider is

 $L_n = \max_{i=1,\ldots,K} I_i,$

which **concentrates** around $\frac{-\ln(\lambda n)}{\ln(1-\lambda)}$ [Feller'68, Arratia-Goldstein-Gordon'90, Flajolet-Sedgewick'09]. Accurate approximations to the distribution of T_n should follow by considering chains of duration $m = \Theta(\ln(n))$ instead of n

$$\xrightarrow{\mu} X_{0} \xrightarrow{M} X_{1} \xrightarrow{M} X_{2} \xrightarrow{c} X_{2} \xrightarrow{M} X_{4} \xrightarrow{c} X_{4} \xrightarrow{c} X_{4} \xrightarrow{M} X_{4} \xrightarrow{c} X_{4} \xrightarrow{c} X_{4} \xrightarrow{M} X_{4} \xrightarrow{c} X_{4$$

Theorem [Chestnut-Lladser'10].

If $W_{n,m}$ is the random number of visits to T when $L_n \leq m$ then

$$\|\mathcal{T}_n - \mathcal{W}_{n,m}\| \leq \mathbb{P}[\mathcal{L}_n > m] \sim O(n^{1-c}), ext{ when } m = rac{c \cdot \ln(\lambda n)}{\ln(1/(1-\lambda))}$$

Rate of convergence.

c = 3/2 matches the rate of convergence of the Normal approximation (!)

Theorem [Chestnut-Lladser'10].

If $W_{n,m}$ is the random number of visits to T when $L_n \leq m$ then

$$T_n - W_{n,m} \parallel \leq \mathbb{P}[L_n > m] \sim O(n^{1-c}), \text{ when } m = rac{c \cdot \ln(\lambda n)}{\ln(1/(1-\lambda))}$$

Numerical Implementation.

The combinatorial class of coin flips with *M*-runs of length $\leq m$ is described by the **regular expression**:

$$(\epsilon + \mu\{M,\ldots,M^m\}) \times (\mathbf{e}\{M,\ldots,M^m\})^*,$$

implying that $\sum_{k\geq 0} \mathbb{E}(x^{W_{k,m}})y^k$ is **rational** and **computable from** $(\mu \cdot M'_x \cdot \mathbf{1})y^l$ and $(\mathbf{e}_x \cdot M'_x \cdot \mathbf{1})y^{l+1}$, with l = 0, ..., m

Small numerical example.

		Normal	Poisson	Compound Poisson	Our
n	δ	approximation	approximation	approximation	approximation
10	1	1.7E-2	1.4E-2	3.2E-3	3.8E-4
10	0.5	1.7E-2	7.0E-3	1.2E-3	1.5E-4
10	0.25	1.3E-2	3.6E-3	4.9E-4	6.9E-5
10	0.1	5.3E-3	1.4E-3	1.7E-4	2.7E-5
10	0.01	5.3E-4	1.4E-4	1.5E-5	2.6E-6
10	0.001	5.3E-5	1.4E-5	1.5E-6	2.6E-7
100	1	0.23	6.9E-2	9.7E-3	2.3E-4
100	0.5	0.22	5.2E-2	3.5E-3	1.6E-4
100	0.25	0.14	3.2E-2	1.3E-3	7.5E-5
100	0.1	2.0E-2	1.5E-2	3.1E-4	3.1E-5
100	0.01	5.2E-3	1.6E-3	1.6E-5	3.3E-6
100	0.001	5.3E-4	1.6E-4	1.5E-6	3.3E-7
1000	1	6.9E-2	7.0E-2	9.4E-3	2.1E-5
1000	0.5	9.0E-2	7.3E-2	4.9E-3	1.4E-5
1000	0.25	0.14	7.8E-2	2.7E-3	8.2E-6
1000	0.1	0.23	6.8E-2	9.6E-4	1.1E-5
1000	0.01	2.0E-2	1.5E-2	2.7E-5	1.8E-6
1000	0.001	5.2E-3	1.5E-3	1.7E-6	2.0E-7

Table. Errors in total variation distance for stationary chains considered in [ERHARDSSON'99], where $S = \{1, ..., 8\}$ and $T = \{8\}$. The parameter δ controls transitions into T, which are rare for δ small

Looking back ...

Standing hypothesis.

 $(\exists \lambda > 0) : p = \lambda \cdot E + (1 - \lambda) \cdot M$, where all rows of *E* are identical to **e**

To aim at the best approximation, choose:

$$\max\left\{\lambda: \exists E \exists M: p = \lambda \cdot E + (1-\lambda) \cdot M\right\} = \sum_{j} \min_{i} p(i,j).$$

i.e. the optimal λ is **Doeblin's ergodicity coefficient** [DOEBLIN'37] associated with *p*:

$$\alpha(\boldsymbol{p}) \stackrel{\text{def}}{=} \sum_{j} \min_{i} \boldsymbol{p}(i, j)$$

Several other ergodicity coefficients have been introduced in the literature [MARKOV'906, DOBRUSHIN'56, HAJNAL'58, SENETA'73+'93] e.g. the **Markov-Dobrushin ergodicity coefficient** is:

$$\beta(\boldsymbol{p}) \stackrel{\text{def}}{=} 1 - \max_{i,j} \|\boldsymbol{p}(i,\cdot) - \boldsymbol{p}(j,\cdot)\|_{\scriptscriptstyle tvd} \qquad (\geq \alpha(\boldsymbol{p}))$$

Ok! ... what if $\alpha(p) = 0$?

In the aperiodic and irreducible setting:

$$\lim_{k \to \infty} p^k = \Pi \implies \lim_{k \to \infty} \alpha(p^k) = 1$$

It is well-known that the **Markov-Dobrushing coefficient is sub-multiplicative** [Dobrushin'56, Paz'70, Iosifescu'72, Griffeath'75]:

$$(orall oldsymbol{p},oldsymbol{q}\in\mathcal{P}): \quad ig(1-eta(oldsymbol{p}oldsymbol{q})ig)\leqig(1-eta(oldsymbol{p})ig)\cdotig(1-eta(oldsymbol{q})ig)$$

Exploiting that

$$p = \alpha(p) \cdot E_1 + (1 - \alpha(p)) \cdot M_1$$

$$q = \alpha(q) \cdot E_2 + (1 - \alpha(q)) \cdot M_2$$

we obtain:

Theorem [Chestnut-Lladser'10?].

$$(orall oldsymbol{p},oldsymbol{q}\in\mathcal{P}): \quad ig(oldsymbol{1}-lpha(oldsymbol{p}oldsymbol{q})ig)\leqig(oldsymbol{1}-lpha(oldsymbol{p})ig)\cdotig(oldsymbol{1}-lpha(oldsymbol{q})ig)$$

An unexpected consequence for <u>non-homogeneous</u> chains.

Doeblin's characterization of weak-ergodicity (1937).

For a sequence of stochastic matrices $(p_k)_{k\geq 0}$ the following are equivalent:

•
$$(\forall m \ge 0)(\forall i, j, s \in S) : \lim_{n \to \infty} \left| \left(\prod_{k=m}^{n} p_k \right)(i, s) - \left(\prod_{k=m}^{n} p_k \right)(j, s) \right| = 0$$

• there exists a strictly increasing sequence of positive integers $(n_k)_{k\geq 0}$ such that: $\sum_{k=0}^{\infty} \alpha \left(\prod_{i=n_k}^{n_{k+1}-1} p_i\right) = +\infty$

Similar characterizations but based on the β -coefficient were provided by Hajnal (1958), Paz (1970), and Iosifescu (1972), with increasing level of generality. Seneta (1973) proved Doeblin's characterization using various relationships between $\alpha(p)$, $\beta(p)$, and:

$$\gamma_1(p) \stackrel{def}{=} \max_j \min_i p(i,j), \text{ and } \gamma_2(p) \stackrel{def}{=} 1 - \max_s \max_{i,j} |p(i,s) - p(j,s)|$$

Using the sub-multiplicative inequality, we can now prove Doeblin's characterization in an elementary and self-contained way!

M. E. Lladser ()

Main Reference.

[*] OCCUPANCY DISTRIBUTIONS IN MARKOV CHAINS VIA DOEBLIN'S ERGODICITY COEFFICIENT. S. Chesnut, M. E. Lladser. *Discrete Mathematics and Theoretical Computer Science Proceedings.* AM, 79-92 (2010).

... Thank you!

A first-principles proof.

Doeblin's characterization of weak-ergodicity.

 $(p_k)_{k\geq 0}$ is weakly-ergodic iff there exists a strictly increasing sequence of positive integers $(n_k)_{k\geq 0}$ such that: $\sum_{k=0}^{\infty} \alpha \left(\prod_{i=n_k}^{n_{k+1}-1} p_i\right) = +\infty$

Fix
$$m \ge 0$$
 and let $\alpha_n = \alpha \left(\prod_{k=m}^n p_k \right)$. Notice:

$$\left(\prod_{k=m}^{n}p_{k}\right)(i,s)-\left(\prod_{k=m}^{n}p_{k}\right)(j,s)=(1-\alpha_{n})\cdot\left(M_{n}(i,s)-M_{n}(j,s)\right), \text{ with } \alpha(M_{n})=0$$

Proof of sufficiency [Chestnut-Lladser'10].

Using the sub-multiplicative property:

$$(1 - \alpha_n) \le \prod_{k \in K_n} \left\{ 1 - \alpha \left(\prod_{i=n_k}^{n_{k+1}-1} p_i\right) \right\} \le \exp\left\{ -\sum_{k \in J_n} \alpha \left(\prod_{i=n_k}^{n_{k+1}-1} p_i\right) \right\}$$

A first-principles proof.

Doeblin's characterization of weak-ergodicity.

 $(p_k)_{k\geq 0}$ is weakly-ergodic iff there exists a strictly increasing sequence of positive integers $(n_k)_{k\geq 0}$ such that: $\sum_{k=0}^{\infty} \alpha \left(\prod_{i=n_k}^{n_{k+1}-1} p_i\right) = +\infty$

Fix
$$m \ge 0$$
 and let $\alpha_n = \alpha \left(\prod_{k=m}^n p_k\right)$. Notice:
 $\left(\prod_{k=m}^n p_k\right)(i, s) - \left(\prod_{k=m}^n p_k\right)(j, s) = (1 - \alpha_n) \cdot \left(M_n(i, s) - M_n(j, s)\right)$, with $\alpha(M_n) = 0$

Proof of necessity [Chestnut-Lladser'10].

It suffices to prove that $(\alpha_n)_{n\geq 0}$ has a subsequence that converges to 1. By contradiction, if one assumes otherwise then

$$(\forall i, j, s \in S) : \lim_{n \to \infty} (M_n(i, s) - M_n(j, s)) = 0$$

However, this is not possible because M_n has a zero in each column and M_n is a stochastic matrix

M. E. Lladser ()