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A stochastic McKean-Vlasov equation

Kotelenez (1995); Kurtz and Xiong (1999)

Consider the stochastic partial differential equation

〈Vε(t), ϕ〉 = 〈Vε(0), ϕ〉+

∫ t

0
〈Vε(s), Lεϕ(·, Vε(s))〉ds

+

∫
U×[0,t]

〈Vε(s),∇ϕ(·)TJε(·, u, Vε(s))〉W (du× ds)

where Vε is measure-valued, 〈µ, ϕ〉 =
∫

Rd ϕ(x)µ(dx), W is space-time
Gaussian white noise on U × [0,∞) with variance measure ν(dy)× ds,

Lεϕ(x, µ) =
1

2

∑
ij

Dε,ij(x, µ)∂i∂jϕ(x) + F (x, µ) · ∇ϕ(x)

Dε(x, µ) =

∫
U

Jε(x, u, µ)J T
ε (x, u, µ)ν(du).

Note that 〈Vε(t), 1〉 ≡ 〈Vε(0), 1〉; just assume 〈Vε, 1〉 ≡ 1.
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Exchangeability and de Finetti’s theorem

X1, X2, . . . is exchangeable if

P{X1 ∈ Γ1, . . . , Xm ∈ Γm} = P{Xs1 ∈ Γ1, . . . , Xsm
∈ Γm}

(s1, . . . , sm) any permutation of (1, . . . ,m).

Theorem 1 (de Finetti) Let X1, X2, . . . be exchangeable. Then there
exists a random probability measure Ξ such that for every bounded,
measurable g,

lim
n→∞

g(X1) + · · ·+ g(Xn)

n
=

∫
g(x)Ξ(dx)

almost surely, and

E[
m∏
k=1

gk(Xk)|Ξ] =
m∏
k=1

∫
gkdΞ
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Convergence of exchangeable systems

Kotelenez and Kurtz (2010)

Lemma 2 For n = 1, 2, . . ., let {ξn1 , . . . , ξnNn
} be exchangeable (allowing

Nn =∞.) Let Ξn be the empirical measure (defined as a limit if Nn =
∞), Ξn = 1

Nn

∑Nn

i=1 δξn
i
. Assume

• Nn →∞

• For each m = 1, 2, . . ., (ξn1 , . . . , ξ
n
m)⇒ (ξ1, . . . , ξm) in Sm.

Then

{ξi} is exchangeable and setting ξni = s0 ∈ S for i > Nn, {Ξn, ξn1 , ξ
n
2 . . .} ⇒

{Ξ, ξ1, ξ2, . . .} in P(S)×S∞, where Ξ is the deFinetti measure for {ξi}.

If for each m, {ξn1 , . . . , ξnm} → {ξ1, . . . , ξm} in probability in Sm, then
Ξn → Ξ in probability in P(S).



•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 5

Lemma 3 Let Xn = (Xn
1 , . . . , X

n
Nn

) be exchangeable families of DE[0,∞)-
valued random variables such that Nn ⇒∞ and Xn ⇒ X in DE[0,∞)∞.
Define

Ξn = 1
Nn

∑Nn

i=1 δXn
i
∈ P(DE[0,∞))

Ξ = limm→∞
1
m

∑m
i= δXi

Vn(t) = 1
Nn

∑Nn

i=1 δXn
i (t) ∈ P(E)

V (t) = limm→∞
1
m

∑m
i=1 δXi(t)

Then

a) For t1, . . . , tl /∈ {t : E[Ξ{x : x(t) 6= x(t−)}] > 0}
(Ξn, Vn(t1), . . . , Vn(tl))⇒ (Ξ, V (t1), . . . , V (tl)).

b) If Xn ⇒ X in DE∞[0,∞), then Vn ⇒ V in DP(E)[0,∞). If Xn →
X in probability in DE∞[0,∞), then Vn → V in DP(E)[0,∞) in
probability.
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Properties of cadlag processes

a) The set DΞ = {t : E[Ξ{x : x(t) 6= x(t−)}] > 0} is at most countable.

b) If for i 6= j, with probability one, Xi and Xj have no simultaneous
discontinuities, then DΞ = ∅ and convergence of Xn to X in DE[0,∞)∞

implies convergence in DE∞[0,∞).
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From particle approximation to particle representa-
tion

Let XN
ε = {XN

ε,i} satisfy

XN
ε,i(t) = XN

ε,i(0) +

∫
U×[0,t]

Jε(XN
ε,i(s), u, V

N
ε (s))〉W (du× ds)

+

∫ t

0
F (XN

ε,i(s), V
N
ε (s))ds

where V N
ε (t) = 1

N

∑N
i=1 δXN

ε,i(t) and {XN
ε,i(0), 1 ≤ i ≤ N)} is exchange-

able.

Assume
(x, µ) ∈ Rd × P(Rd)→ F (x, µ) ∈ Rd

and
(x, µ) ∈ Rd × P(Rd)→ Jε(x, ·, µ) ∈ L2(ν)

are bounded and continuous. Then there exists an exchangeable (weak)
solution. (Construct an Euler approximation and pass to the limit.)
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Convergence to infinite system

Letting N → ∞ and applying Lemma 3, there exists an exchangeable
solution to the infinite system

Xε,i(t) = Xε,i(0) +

∫
U×[0,t]

Jε(Xε,i(s), u, Vε(s))〉W (du× ds)

+

∫ t

0
F (Xε,i(s), Vε(s))ds

where Vε(t) is the de Finetti measure of {Xε,i(t)}.
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Uniqueness for infinite system

Kurtz and Protter (1996); Kurtz and Xiong (1999)

Theorem 4 Let

ρ(µ1, µ2) = sup
{f :|f(x)−f(y)|≤|x−y|}

|
∫

Rd

fdµ1 −
∫

Rd

fdµ2|

and assume

|F (x1, µ1)− F (x2, µ2)|+ ‖Jε(x1, ·µ1)− Jε(x2, ·, µ2)‖L2(ν)

≤ C(|x1 − x2|+ ρ(µ1, µ2)).

Then the solution of the infinite system is unique.
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The corresponding SPDE

ϕ(Xε,i(t)) = ϕ(Xε,i(0)) +

∫ t

0
Lεϕ(Xε,i(s), Vε(s))ds

+

∫
U×[0,t]

∇ϕ(Xε,i(s))
TJε(Xε,i(s), u, Vε(s))W (du× ds)

By the exchangeablity, averaging over i gives

〈Vε(t), ϕ〉 = 〈Vε(0), ϕ〉+

∫ t

0
〈Vε(s), Lεϕ(·, Vε(s))〉ds

+

∫
U×[0,t]

〈Vε(s),∇ϕ(·)TJε(·, u, Vε(s))〉W (du× ds)
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Uniqueness via Markov mapping

Define γ : (Rd)∞ → P(Rd) by

γ(x) = lim
n→∞

1

n

n∑
i=1

δxi

if the limit exists in P(Rd) and γ(x) = µ0 otherwise.

Then Vε(t) = γ(Xε(t)) and a Markov mapping theorem implies that
every solution of the SPDE can be obtained in this way.
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Vanishing spatial noise correlations

Let d ≥ 2, U = Rd, ν be Lebesgue measure, and

Jε(x, u, µ) = ε−d/2J (x, ε−1(x− u), µ),

so that the stochastic intergral becomes∫
Rd×[0,t]

Jε(Xε,i(s), u, Vε(s))〉W (du× ds)

=

∫
Rd×[0,t]

ε−d/2J (Xε,i(s), ε
−1(Xε,i(s)− u), Vε(s))〉W (du× ds)

=

∫
Rd×[0,t]

J (Xε,i(s), z, Vε(s))〉W ε
i (dz × ds),

where for each i, W ε
i is a Gaussian white noise defined by∫

Rd×[0,∞)
ϕ(z, s)W ε

i (dz×ds) =

∫
Rd×[0,t]

ε−d/2ϕ(ε−1(Xε,i(s)−u), s)〉W (du×ds)

(NOTE: The W ε
i are not independent but are exchangeable.)
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Convergence

If
∫

Rd |J (x, z, µ)|2dz <∞ and x1 6= x2, then∫
Rd

ε−d/2J (x1, ε
−1(x1 − u), µ)ε−d/2J (x2, ε

−1(x2 − u), µ)Tdu

=

∫
Rd

J (x1, ε
−1x1 − u), µ)J (x2, ε

−1x2 − u), µ)Tdu

→ 0

Assume that the convergence is uniform on |x1 − x2| ≥ δ > 0, for each
δ > 0, and on compact subsets of P(Rd).

Assume the nondegeneracy condition

inf
x,µ

inf
z

∫
Rd(z · J (x, z, µ))2du

|z|2
> 0.
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The zero correlation limit

Theorem 5 Assume Xε(0) = X(0), and an additional regularity con-
dition for d = 2. As ε→ 0, Xε converges in distribution to the solution
of

Xi(t) = Xi(0)+

∫
Rd×[0,t]

J (Xi(s), u, V (s))〉Wi(du×ds)+
∫ t

0
F (Xi(s), V (s))ds

where the Wi are independent and V (t) is the de Finetti measure for
{Xi}.

V is the unique solution of

〈V (t), ϕ〉 = 〈V (0), ϕ〉+

∫ t

0
〈V (s), Lϕ(·, V (s))〉ds

where Lϕ(x, µ) = 1
2

∑
ijDij(x, µ)∂i∂jϕ(x) + F (x, µ) · ∇ϕ(x)

D(x, µ) =

∫
U

J (x, u, µ)J (x, u, µ)Tdu.
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Sketch of proof

Xε,i(t) = Xi(0) +

∫
U×[0,t]

ε−d/2J (Xε,i(s),
Xε,i − u

ε
, Vε(s))〉W (du× ds)

+

∫ t

0

F (Xε,i(s), Vε(s))ds

= Xi(0) +

∫
Rd×[0,t]

J (Xε,i(s), u, Vε(s))〉W ε
i (du× ds) +

∫ t

0

F (Xε,i(s), Vε(s))ds

where

Mϕ,ε
i (t) =

∫
Rd×[0,t]

ϕ(u)W ε
i (du×ds) =

∫
Rd×[0,t]

ε−d/2ϕ(
Xε,i(s)− u

ε
)W (du×ds)

Relative compactness follows from boundedness of J and F and

[Mϕ,ε
i ,Mψ,ε

j ]t =

∫
Rd×[0,t]

ε−d/2ϕ(
Xε,i(s)− u

ε
)ε−d/2ψ(

Xε,j(s)− u
ε

)du→ 0

for t < τij = inf{t : Xi(t) = Xj(t)}. If τij =∞ a.s., then the limits Wi

and Wj are independent.
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A stochastic Allen-Cahn equation

Bertini, Brassesco, and Buttà (2009)

dm = (
1

2
mxx − (m2 − 1)m)dt+ cẆ , m(t, b) = m+,m(t, a) = m−

Find a signed measure-valued process M which will have a density with
respect to Lebesgue measure so we can write M(t, dx) = M(t, x)dx.

Let {Xi} be independent reflecting Browian motions on the interval
[a, b] with uniform initial distribution, and let Ai satisfy

Ai(t) = Ai(0) +

∫ t

0

G(M(s,Xi(s))Ai(s)ds+

∫
R×[0,t]

ρε(Xi(s)− u)W (du× ds)

+

∫ t

0

m+ − Ai(s−)

|m+ − Ai(s−)|
dΛ+

i (s) +

∫ t

0

m− − Ai(s−)

|m− − Ai(s−)|
dΛ−i (s),

where

〈M(t), ϕ〉 = lim
n→∞

1

n

n∑
i=1

ϕ(Xi(t))Ai(t).
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Assumptions

• {Ai(0)} is an exchangeable sequence.

• W is space-time Gaussian white noise governed by Lebesgue mea-
sure so

∫
R×[0,t] ρε(Xi(s)− u)W (du× ds) is a Brownian motion with

variance t
∫

R ρε(u)2du.

• Λ+
i and Λ−i are right continuous, nondecreasing processes, Λ+

i in-
creases only when Xi = b and Λ−i increases only when Xi = a, and
if Xi(s) = b, Λ+

i (s) − Λ+
i (s−) = |m+ − Ai(s−)| and if Xi(s) = b,

Λ−i (s)− Λ−i (s−) = |m− − Ai(s−)|.

• Note that if Xi(s) = b, then Ai(s) = m+ and if Xi(s) = a, Ai(s) =
m−.

• We require the solution {(Xi, Ai)} to be exchangeable.
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Derivation of SPDE

M is the signed measure given by

〈ϕ,M(t)〉 = lim
n→∞

1

n

n∑
i=1

ϕ(Xi(t))Ai(t)

and M is the density of M .

Note that the limit will exist by the exchangeability requirement and
M is absolutely continuous with respect to Lebesgue measure by the
uniformity of the {Xi(t)}.

Let Xi be given by the Skorohod equation

Xi(t) = Xi(0) + σBi(t) + λai (t)− λbi(t),

where the Bi are independent standard Browian motions independent
of W and {Xi(0)}, the Xi(0) are independent and uniformly distributed
over [a, b], and λai and λbi are the local times at a and b.
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For ϕ ∈ C2
c (a, b),

ϕ(Xi(t))Ai(t) = ϕ(Xi(0))Ai(0) +

∫ t

0

ϕ(Xi(s))dAi(s)

+

∫ t

0

ϕ′(Xi(s))Ai(s)dBi(s) +

∫ t

0

1

2
ϕ′′(Xi(s))Ai(s)ds

= ϕ(Xi(0))Ai(0) +

∫ t

0

ϕ(Xi(s))G(M(s,Xi(s)))Ai(s)ds

+

∫
R×[0,t]

ϕ(Xi(s))ρε(Xi(s)− u)W (du× ds)

+

∫ t

0

ϕ′(Xi(s))Ai(s)dBi(s) +

∫ t

0

1

2
ϕ′′(Xi(s))Ai(s)ds

Averaging both sides of this identity,

〈ϕ,M(t)〉 = 〈ϕ,M(0)〉+

∫ t

0

〈ϕG(M(s, ·)),M(s)〉ds

+

∫
R×[0,t]

∫
R
ϕ(x)ρε(x− u)dxW (du× ds) +

∫ t

0

〈1
2
ϕ′′,M(s)〉ds

subject to the boundary conditions M(t, b) = m+ and M(t, a) = m−.
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What happens when ε goes to zero?

Let ε be the diameter of the support of ρε.∫
R×[0,t]

∫
R
ϕ(x)ρε(x− u)dxW (du× ds)

converges to

c

∫
R×[0,t]

∫
R
ϕ(u)W (du× ds)

if
∫

R ρε(x)dx→ c.

W ε
i (t) =

∫
R×[0,t]

ρε(Xi(s)− u)W (du× ds)

converge to independent Brownian motions with parameter σ2 if∫
R
ρ2
ε(x)dx→ σ2.
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Conditionally Poisson representations

Kurtz and Rodrigues (2010)

Consider

Xi(t) = Xi(0) +

∫ t

0
σ(Xi(s))dBi(s) +

∫ t

0
c(Xi(s))ds

+

∫
Γ×[0,t]

σ̂(Xi(s), u)W (du× ds)

and

Ui(t) = Ui(0) +

∫ t

0
Ui(s)γ0(Xi(s))dBi(s)−

∫ t

0
Ui(s)d(Xi(s))ds

+

∫
Γ×[0,t]

Ui(s)γ1(Xi(s), u)W (du× ds)

Bi independent Brownian motions,

{(Xi(0), Ui(0))} a conditionally Poisson point process with mean mea-
sure V (0, dx)× du.
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Measure-valued process

V (t) = lim
r→∞

1

r

∑
Ui(t)≤r

δXi(t) = lim
ε→0

ε
∑
i

e−εUi(t)δXi(t)

= lim
ε→∞

ε2
∑
i

Ui(t)e
−εUi(t)δXi(t) =

1

2
ε3

∑
i

e−εUi(t)U 2
i (t)δXi(t)

Define

L1ϕ =
1

2
aϕ′′ + cϕ′, L2ϕ = dϕ− (γ0σ +

∫
Γ
γ1σ̂dµ)ϕ′

β(x) = γ0(x)2 +

∫
Γ
γ2

1(x, u)µ(du)
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Applying Itô’s formula

e−εUi(t)ϕ(Xi(t))

= e−εUi(0)ϕ(Xi(0))− ε
∫ t

0
Ui(s)e

−εUi(s)ϕ(Xi(s))γ0(Xi(s))dBi(s)

+

∫ t

0
e−εUi(s)σ(Xi(s))ϕ

′(Xi(s))dBi(s)

−ε
∫

Γ×[0,t]
Ui(s)e

−εUi(s)ϕ(Xi(s))γ1(Xi(s), u)W (du× ds)

+

∫
Γ×[0,t]

e−εUi(s)σ̂(Xi(s), u)ϕ′(Xi(s))W (du× ds)

+
1

2
ε2

∫ t

0
e−εUi(s)U 2

i (s)ϕ(Xi(s))β(Xi(s))ds

+

∫ t

0
e−εUi(s)L1ϕ(Xi(s))ds+ ε

∫ t

0
Ui(s)e

−εUi(s)L2ϕ(Xi(s))ds
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Corresponding SPDE

〈V (t), ϕ〉 = 〈V (0), ϕ〉 −
∫

Γ×[0,t]
〈V (t), (γ1(·, u)ϕ+ σ̂(·, u)ϕ′)〉W (du× ds)

+

∫ t

0
〈V (t), Lϕ〉ds

Lϕ =
1

2
aϕ′′ + (c− γ0σ −

∫
Γ
γ1σ̂dµ)ϕ′ + (d+ β)ϕ

For the Zakai equation, take

σ̂ = γ0 = 0, d = −β
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Markov mapping theorem

Theorem 6 A ⊂ C(E)×C(E) a pre-generator with bp-separable graph.

D(A) closed under multiplication and separating.

γ : E → E0, Borel measurable.

α a transition function from E0 into E satisfying

α(y, γ−1(y)) = 1

Let µ0 ∈ P(E0), ν0 =
∫
α(y, ·)µ0(dy), and define

C = {(
∫
E

f(z)α(·, dz),
∫
E

Af(z)α(·, dz)) : f ∈ D(A)} .

If Ỹ is a solution of the MGP for (C, µ0), then there exists a solution
Z of the MGP for (A, ν0) such that Y = γ ◦ Z and Ỹ have the same
distribution on ME0

[0,∞).
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Abstract
Particle representations and limit theorems for stochastic partial differential equations

Solutions of the a large class of stochastic partial differential equations can be represented in terms of the de
Finetti measure of an infinite exchangeable system of stochastic ordinary differential equations. These repre-
sentations provide a tool for proving uniqueness, obtaining convergence results, and describing properties of
solutions of the SPDEs. The basic tools for working with the representations will be described. Applications
include the convergence of an SPDE as the spatial correlation length of the noise vanishes, uniqueness for a
class of SPDEs, and consistency of approximation methods for the classical filtering equations.


