Particle representations and limit theorems for stochastic partial differential equations

(or, if the only tool you have is a hammer...)

- A stochastic McKean-Vlasov equation
- Exchangeability and de Finetti's theorem
- Convergence of exchangeable systems
- From particle approximation to particle representation
- Uniqueness via Markov mapping
- Vanishing spatial noise correlations
- A stochastic Allen-Cahn equation
- Conditionally Poisson representations
- References
- Abstract

A stochastic McKean-Vlasov equation

Kotelenez (1995); Kurtz and Xiong (1999)

Consider the stochastic partial differential equation

$$
\begin{aligned}
\left\langle V_{\varepsilon}(t), \varphi\right\rangle= & \left\langle V_{\varepsilon}(0), \varphi\right\rangle+\int_{0}^{t}\left\langle V_{\varepsilon}(s), L_{\varepsilon} \varphi\left(\cdot, V_{\varepsilon}(s)\right)\right\rangle d s \\
& +\int_{U \times[0, t]}\left\langle V_{\varepsilon}(s), \nabla \varphi(\cdot)^{T} \mathcal{J}_{\varepsilon}\left(\cdot, u, V_{\varepsilon}(s)\right)\right\rangle W(d u \times d s)
\end{aligned}
$$

where V_{ε} is measure-valued, $\langle\mu, \varphi\rangle=\int_{\mathbb{R}^{d}} \varphi(x) \mu(d x), W$ is space-time Gaussian white noise on $U \times[0, \infty)$ with variance measure $\nu(d y) \times d s$,

$$
\begin{gathered}
L_{\varepsilon} \varphi(x, \mu)=\frac{1}{2} \sum_{i j} D_{\varepsilon, i j}(x, \mu) \partial_{i} \partial_{j} \varphi(x)+F(x, \mu) \cdot \nabla \varphi(x) \\
D_{\varepsilon}(x, \mu)=\int_{U} \mathcal{J}_{\varepsilon}(x, u, \mu) \mathcal{J}_{\varepsilon}^{T}(x, u, \mu) \nu(d u)
\end{gathered}
$$

Note that $\left\langle V_{\varepsilon}(t), 1\right\rangle \equiv\left\langle V_{\varepsilon}(0), 1\right\rangle ;$ just assume $\left\langle V_{\varepsilon}, 1\right\rangle \equiv 1$.

Exchangeability and de Finetti's theorem

X_{1}, X_{2}, \ldots is exchangeable if

$$
P\left\{X_{1} \in \Gamma_{1}, \ldots, X_{m} \in \Gamma_{m}\right\}=P\left\{X_{s_{1}} \in \Gamma_{1}, \ldots, X_{s_{m}} \in \Gamma_{m}\right\}
$$

$\left(s_{1}, \ldots, s_{m}\right)$ any permutation of $(1, \ldots, m)$.

Theorem 1 (de Finetti) Let X_{1}, X_{2}, \ldots be exchangeable. Then there exists a random probability measure Ξ such that for every bounded, measurable g,

$$
\lim _{n \rightarrow \infty} \frac{g\left(X_{1}\right)+\cdots+g\left(X_{n}\right)}{n}=\int g(x) \Xi(d x)
$$

almost surely, and

$$
E\left[\prod_{k=1}^{m} g_{k}\left(X_{k}\right) \mid \Xi\right]=\prod_{k=1}^{m} \int g_{k} d \Xi
$$

Convergence of exchangeable systems

Kotelenez and Kurtz (2010)

Lemma 2 For $n=1,2, \ldots$, let $\left\{\xi_{1}^{n}, \ldots, \xi_{N_{n}}^{n}\right\}$ be exchangeable (allowing $N_{n}=\infty$.) Let Ξ^{n} be the empirical measure (defined as a limit if $N_{n}=$ $\infty), \Xi^{n}=\frac{1}{N_{n}} \sum_{i=1}^{N_{n}} \delta_{\xi_{i}^{n}}$. Assume

- $N_{n} \rightarrow \infty$
- For each $m=1,2, \ldots,\left(\xi_{1}^{n}, \ldots, \xi_{m}^{n}\right) \Rightarrow\left(\xi_{1}, \ldots, \xi_{m}\right)$ in S^{m}.

Then
$\left\{\xi_{i}\right\}$ is exchangeable and setting $\xi_{i}^{n}=s_{0} \in S$ for $i>N_{n},\left\{\Xi^{n}, \xi_{1}^{n}, \xi_{2}^{n} \ldots\right\} \Rightarrow$ $\left\{\Xi, \xi_{1}, \xi_{2}, \ldots\right\}$ in $\mathcal{P}(S) \times S^{\infty}$, where Ξ is the deFinetti measure for $\left\{\xi_{i}\right\}$.

If for each $m,\left\{\xi_{1}^{n}, \ldots, \xi_{m}^{n}\right\} \rightarrow\left\{\xi_{1}, \ldots, \xi_{m}\right\}$ in probability in S^{m}, then $\Xi^{n} \rightarrow \Xi$ in probability in $\mathcal{P}(S)$.

Lemma 3 Let $X^{n}=\left(X_{1}^{n}, \ldots, X_{N_{n}}^{n}\right)$ be exchangeable families of $D_{E}[0, \infty)$ valued random variables such that $N_{n} \Rightarrow \infty$ and $X^{n} \Rightarrow X$ in $D_{E}[0, \infty)^{\infty}$. Define

$$
\begin{aligned}
& \Xi_{n}=\frac{1}{N_{n}} \sum_{i=1}^{N_{n}} \delta_{X_{i}^{n}} \in \mathcal{P}\left(D_{E}[0, \infty)\right) \\
& \Xi=\lim _{m \rightarrow \infty} \frac{1}{m} \sum_{i=}^{m} \delta_{X_{i}} \\
& V_{n}(t)=\frac{1}{N_{n}} \sum_{i=1}^{N_{n}} \delta_{X_{i}^{n}(t)} \in \mathcal{P}(E) \\
& V(t)=\lim _{m \rightarrow \infty} \frac{1}{m} \sum_{i=1}^{m} \delta_{X_{i}(t)}
\end{aligned}
$$

Then
a) For $t_{1}, \ldots, t_{l} \notin\{t: E[\Xi\{x: x(t) \neq x(t-)\}]>0\}$

$$
\left(\Xi_{n}, V_{n}\left(t_{1}\right), \ldots, V_{n}\left(t_{l}\right)\right) \Rightarrow\left(\Xi, V\left(t_{1}\right), \ldots, V\left(t_{l}\right)\right)
$$

b) If $X^{n} \Rightarrow X$ in $D_{E^{\infty}}[0, \infty)$, then $V_{n} \Rightarrow V$ in $D_{\mathcal{P}(E)}[0, \infty)$. If $X^{n} \rightarrow$ X in probability in $D_{E^{\infty}}[0, \infty)$, then $V_{n} \rightarrow V$ in $D_{\mathcal{P}(E)}[0, \infty)$ in probability.

Properties of cadlag processes

a) The set $D_{\Xi}=\{t: E[\Xi\{x: x(t) \neq x(t-)\}]>0\}$ is at most countable.
b) If for $i \neq j$, with probability one, X_{i} and X_{j} have no simultaneous discontinuities, then $D_{\Xi}=\emptyset$ and convergence of X^{n} to X in $D_{E}[0, \infty)^{\infty}$ implies convergence in $D_{E^{\infty}}[0, \infty)$.

From particle approximation to particle representation

Let $X_{\varepsilon}^{N}=\left\{X_{\varepsilon, i}^{N}\right\}$ satisfy

$$
\begin{array}{r}
\left.X_{\varepsilon, i}^{N}(t)=X_{\varepsilon, i}^{N}(0)+\int_{U \times[0, t]} \mathcal{J}_{\varepsilon}\left(X_{\varepsilon, i}^{N}(s), u, V_{\varepsilon}^{N}(s)\right)\right\rangle W(d u \times d s) \\
+\int_{0}^{t} F\left(X_{\varepsilon, i}^{N}(s), V_{\varepsilon}^{N}(s)\right) d s
\end{array}
$$

where $V_{\varepsilon}^{N}(t)=\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{\varepsilon, i}^{N}}(t)$ and $\left.\left\{X_{\varepsilon, i}^{N}(0), 1 \leq i \leq N\right)\right\}$ is exchangeable.

Assume

$$
(x, \mu) \in \mathbb{R}^{d} \times \mathcal{P}\left(\mathbb{R}^{d}\right) \rightarrow F(x, \mu) \in \mathbb{R}^{d}
$$

and

$$
(x, \mu) \in \mathbb{R}^{d} \times \mathcal{P}\left(\mathbb{R}^{d}\right) \rightarrow \mathcal{J}_{\varepsilon}(x, \cdot, \mu) \in L^{2}(\nu)
$$

are bounded and continuous. Then there exists an exchangeable (weak) solution. (Construct an Euler approximation and pass to the limit.)

Convergence to infinite system

Letting $N \rightarrow \infty$ and applying Lemma 3, there exists an exchangeable solution to the infinite system

$$
\begin{array}{r}
\left.X_{\varepsilon, i}(t)=X_{\varepsilon, i}(0)+\int_{U \times[0, t]} \mathcal{J}_{\varepsilon}\left(X_{\varepsilon, i}(s), u, V_{\varepsilon}(s)\right)\right\rangle W(d u \times d s) \\
+\int_{0}^{t} F\left(X_{\varepsilon, i}(s), V_{\varepsilon}(s)\right) d s
\end{array}
$$

where $V_{\varepsilon}(t)$ is the de Finetti measure of $\left\{X_{\varepsilon, i}(t)\right\}$.

Uniqueness for infinite system

Kurtz and Protter (1996); Kurtz and Xiong (1999)

Theorem 4 Let

$$
\rho\left(\mu_{1}, \mu_{2}\right)=\sup _{\{f:|f(x)-f(y)| \leq|x-y|\}}\left|\int_{\mathbb{R}^{d}} f d \mu_{1}-\int_{\mathbb{R}^{d}} f d \mu_{2}\right|
$$

and assume

$$
\begin{array}{r}
\left|F\left(x_{1}, \mu_{1}\right)-F\left(x_{2}, \mu_{2}\right)\right|+\left\|\mathcal{J}_{\varepsilon}\left(x_{1}, \cdot \mu_{1}\right)-\mathcal{J}_{\varepsilon}\left(x_{2}, \cdot, \mu_{2}\right)\right\|_{L^{2}(\nu)} \\
\leq C\left(\left|x_{1}-x_{2}\right|+\rho\left(\mu_{1}, \mu_{2}\right)\right) .
\end{array}
$$

Then the solution of the infinite system is unique.

The corresponding SPDE

$$
\begin{aligned}
\varphi\left(X_{\varepsilon, i}(t)\right)=\varphi & \left(X_{\varepsilon, i}(0)\right)+\int_{0}^{t} L_{\varepsilon} \varphi\left(X_{\varepsilon, i}(s), V_{\varepsilon}(s)\right) d s \\
& +\int_{U \times[0, t]} \nabla \varphi\left(X_{\varepsilon, i}(s)\right)^{T} \mathcal{J}_{\varepsilon}\left(X_{\varepsilon, i}(s), u, V_{\varepsilon}(s)\right) W(d u \times d s)
\end{aligned}
$$

By the exchangeablity, averaging over i gives

$$
\begin{aligned}
\left\langle V_{\varepsilon}(t), \varphi\right\rangle= & \left\langle V_{\varepsilon}(0), \varphi\right\rangle+\int_{0}^{t}\left\langle V_{\varepsilon}(s), L_{\varepsilon} \varphi\left(\cdot, V_{\varepsilon}(s)\right)\right\rangle d s \\
& +\int_{U \times[0, t]}\left\langle V_{\varepsilon}(s), \nabla \varphi(\cdot)^{T} \mathcal{J}_{\varepsilon}\left(\cdot, u, V_{\varepsilon}(s)\right)\right\rangle W(d u \times d s)
\end{aligned}
$$

Uniqueness via Markov mapping

Define $\gamma:\left(\mathbb{R}^{d}\right)^{\infty} \rightarrow \mathcal{P}\left(\mathbb{R}^{d}\right)$ by

$$
\gamma(x)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \delta_{x_{i}}
$$

if the limit exists in $\mathcal{P}\left(\mathbb{R}^{d}\right)$ and $\gamma(x)=\mu_{0}$ otherwise.
Then $V_{\varepsilon}(t)=\gamma\left(X_{\varepsilon}(t)\right)$ and a Markov mapping theorem implies that every solution of the SPDE can be obtained in this way.

Vanishing spatial noise correlations

Let $d \geq 2, U=\mathbb{R}^{d}, \nu$ be Lebesgue measure, and

$$
\mathcal{J}_{\varepsilon}(x, u, \mu)=\varepsilon^{-d / 2} \mathcal{J}\left(x, \varepsilon^{-1}(x-u), \mu\right)
$$

so that the stochastic intergral becomes

$$
\begin{aligned}
\int_{\mathbb{R}^{d} \times} \times[0, t] & \left.\mathcal{J}_{\varepsilon}\left(X_{\varepsilon, i}(s), u, V_{\varepsilon}(s)\right)\right\rangle W(d u \times d s) \\
& \left.=\int_{\mathbb{R}^{d} \times[0, t]} \varepsilon^{-d / 2} \mathcal{J}\left(X_{\varepsilon, i}(s), \varepsilon^{-1}\left(X_{\varepsilon, i}(s)-u\right), V_{\varepsilon}(s)\right)\right\rangle W(d u \times d s) \\
& \left.=\int_{\mathbb{R}^{d} \times[0, t]} \mathcal{J}\left(X_{\varepsilon, i}(s), z, V_{\varepsilon}(s)\right)\right\rangle W_{i}^{\varepsilon}(d z \times d s),
\end{aligned}
$$

where for each i, W_{i}^{ε} is a Gaussian white noise defined by
$\left.\int_{\mathbb{R}^{d} \times[0, \infty)} \varphi(z, s) W_{i}^{\varepsilon}(d z \times d s)=\int_{\mathbb{R}^{d} \times[0, t]} \varepsilon^{-d / 2} \varphi\left(\varepsilon^{-1}\left(X_{\varepsilon, i}(s)-u\right), s\right)\right\rangle W(d u \times d s)$
(NOTE: The W_{i}^{ε} are not independent but are exchangeable.)

Convergence

If $\int_{\mathbb{R}^{d}}|\mathcal{J}(x, z, \mu)|^{2} d z<\infty$ and $x_{1} \neq x_{2}$, then

$$
\begin{aligned}
\int_{\mathbb{R}^{d}} & \varepsilon^{-d / 2} \mathcal{J}\left(x_{1}, \varepsilon^{-1}\left(x_{1}-u\right), \mu\right) \varepsilon^{-d / 2} \mathcal{J}\left(x_{2}, \varepsilon^{-1}\left(x_{2}-u\right), \mu\right)^{T} d u \\
& \left.\left.=\int_{\mathbb{R}^{d}} \mathcal{J}\left(x_{1}, \varepsilon^{-1} x_{1}-u\right), \mu\right) \mathcal{J}\left(x_{2}, \varepsilon^{-1} x_{2}-u\right), \mu\right)^{T} d u \\
& \rightarrow 0
\end{aligned}
$$

Assume that the convergence is uniform on $\left|x_{1}-x_{2}\right| \geq \delta>0$, for each $\delta>0$, and on compact subsets of $\mathcal{P}\left(\mathbb{R}^{d}\right)$.

Assume the nondegeneracy condition

$$
\inf _{x, \mu} \inf _{z} \frac{\int_{\mathbb{R}^{d}}(z \cdot \mathcal{J}(x, z, \mu))^{2} d u}{|z|^{2}}>0 .
$$

The zero correlation limit

Theorem 5 Assume $X_{\varepsilon}(0)=X(0)$, and an additional regularity condition for $d=2$. As $\varepsilon \rightarrow 0, X_{\varepsilon}$ converges in distribution to the solution of
$\left.X_{i}(t)=X_{i}(0)+\int_{\mathbb{R}^{d} \times[0, t]} \mathcal{J}\left(X_{i}(s), u, V(s)\right)\right\rangle W_{i}(d u \times d s)+\int_{0}^{t} F\left(X_{i}(s), V(s)\right) d s$
where the W_{i} are independent and $V(t)$ is the de Finetti measure for $\left\{X_{i}\right\}$.
V is the unique solution of

$$
\langle V(t), \varphi\rangle=\langle V(0), \varphi\rangle+\int_{0}^{t}\langle V(s), L \varphi(\cdot, V(s))\rangle d s
$$

where $L \varphi(x, \mu)=\frac{1}{2} \sum_{i j} D_{i j}(x, \mu) \partial_{i} \partial_{j} \varphi(x)+F(x, \mu) \cdot \nabla \varphi(x)$

$$
D(x, \mu)=\int_{U} \mathcal{J}(x, u, \mu) \mathcal{J}(x, u, \mu)^{T} d u
$$

Sketch of proof

$$
\begin{aligned}
& X_{\varepsilon, i}(t)= X_{i}(0)+ \\
&\left.\int_{U \times[0, t]} \varepsilon^{-d / 2} \mathcal{J}\left(X_{\varepsilon, i}(s), \frac{X_{\varepsilon, i}-u}{\varepsilon}, V_{\varepsilon}(s)\right)\right\rangle W(d u \times d s) \\
&+\int_{0}^{t} F\left(X_{\varepsilon, i}(s), V_{\varepsilon}(s)\right) d s \\
&=X_{i}(0)+\left.\int_{\mathbb{R}^{d} \times[0, t]} \mathcal{J}\left(X_{\varepsilon, i}(s), u, V_{\varepsilon}(s)\right)\right\rangle W_{i}^{\varepsilon}(d u \times d s)+\int_{0}^{t} F\left(X_{\varepsilon, i}(s), V_{\varepsilon}(s)\right) d s
\end{aligned}
$$

where

$$
M_{i}^{\varphi, \varepsilon}(t)=\int_{\mathbb{R}^{d} \times[0, t]} \varphi(u) W_{i}^{\varepsilon}(d u \times d s)=\int_{\mathbb{R}^{d} \times[0, t]} \varepsilon^{-d / 2} \varphi\left(\frac{X_{\varepsilon, i}(s)-u}{\varepsilon}\right) W(d u \times d s)
$$

Relative compactness follows from boundedness of \mathcal{J} and F and $\left[M_{i}^{\varphi, \varepsilon}, M_{j}^{\psi, \varepsilon}\right]_{t}=\int_{\mathbb{R}^{d} \times[0, t]} \varepsilon^{-d / 2} \varphi\left(\frac{X_{\varepsilon, i}(s)-u}{\varepsilon}\right) \varepsilon^{-d / 2} \psi\left(\frac{X_{\varepsilon, j}(s)-u}{\varepsilon}\right) d u \rightarrow 0$ for $t<\tau_{i j}=\inf \left\{t: X_{i}(t)=X_{j}(t)\right\}$. If $\tau_{i j}=\infty$ a.s., then the limits W_{i} and W_{j} are independent.

A stochastic Allen-Cahn equation

Bertini, Brassesco, and Buttà (2009)

$$
d m=\left(\frac{1}{2} m_{x x}-\left(m^{2}-1\right) m\right) d t+c \dot{W}, \quad m(t, b)=m_{+}, m(t, a)=m_{-}
$$

Find a signed measure-valued process M which will have a density with respect to Lebesgue measure so we can write $M(t, d x)=\bar{M}(t, x) d x$.
Let $\left\{X_{i}\right\}$ be independent reflecting Browian motions on the interval $[a, b]$ with uniform initial distribution, and let A_{i} satisfy

$$
\begin{array}{rl}
A_{i}(t)=A_{i}(0)+\int_{0}^{t} & G\left(\bar{M}\left(s, X_{i}(s)\right) A_{i}(s) d s+\int_{\mathbb{R} \times[0, t]} \rho_{\epsilon}\left(X_{i}(s)-u\right) W(d u \times d s)\right. \\
& +\int_{0}^{t} \frac{m_{+}-A_{i}(s-)}{\left|m_{+}-A_{i}(s-)\right|} d \Lambda_{i}^{+}(s)+\int_{0}^{t} \frac{m_{-}-A_{i}(s-)}{\left|m_{-}-A_{i}(s-)\right|} d \Lambda_{i}^{-}(s)
\end{array}
$$

where

$$
\langle M(t), \varphi\rangle=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \varphi\left(X_{i}(t)\right) A_{i}(t) .
$$

Assumptions

- $\left\{A_{i}(0)\right\}$ is an exchangeable sequence.
- W is space-time Gaussian white noise governed by Lebesgue measure so $\int_{\mathbb{R} \times[0, t]} \rho_{\epsilon}\left(X_{i}(s)-u\right) W(d u \times d s)$ is a Brownian motion with variance $t \int_{\mathbb{R}} \rho_{\epsilon}(u)^{2} d u$.
- Λ_{i}^{+}and Λ_{i}^{-}are right continuous, nondecreasing processes, Λ_{i}^{+}increases only when $X_{i}=b$ and Λ_{i}^{-}increases only when $X_{i}=a$, and if $X_{i}(s)=b, \Lambda_{i}^{+}(s)-\Lambda_{i}^{+}(s-)=\left|m_{+}-A_{i}(s-)\right|$ and if $X_{i}(s)=b$, $\Lambda_{i}^{-}(s)-\Lambda_{i}^{-}(s-)=\left|m_{-}-A_{i}(s-)\right|$.
- Note that if $X_{i}(s)=b$, then $A_{i}(s)=m_{+}$and if $X_{i}(s)=a, A_{i}(s)=$ m_{-}.
- We require the solution $\left\{\left(X_{i}, A_{i}\right)\right\}$ to be exchangeable.

Derivation of SPDE

M is the signed measure given by

$$
\langle\varphi, M(t)\rangle=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \varphi\left(X_{i}(t)\right) A_{i}(t)
$$

and \bar{M} is the density of M.
Note that the limit will exist by the exchangeability requirement and M is absolutely continuous with respect to Lebesgue measure by the uniformity of the $\left\{X_{i}(t)\right\}$.

Let X_{i} be given by the Skorohod equation

$$
X_{i}(t)=X_{i}(0)+\sigma B_{i}(t)+\lambda_{i}^{a}(t)-\lambda_{i}^{b}(t),
$$

where the B_{i} are independent standard Browian motions independent of W and $\left\{X_{i}(0)\right\}$, the $X_{i}(0)$ are independent and uniformly distributed over $[a, b]$, and λ_{i}^{a} and λ_{i}^{b} are the local times at a and b.

For $\varphi \in C_{c}^{2}(a, b)$,

$$
\begin{aligned}
\varphi\left(X_{i}(t)\right) A_{i}(t)= & \varphi\left(X_{i}(0)\right) A_{i}(0)+\int_{0}^{t} \varphi\left(X_{i}(s)\right) d A_{i}(s) \\
& \quad+\int_{0}^{t} \varphi^{\prime}\left(X_{i}(s)\right) A_{i}(s) d B_{i}(s)+\int_{0}^{t} \frac{1}{2} \varphi^{\prime \prime}\left(X_{i}(s)\right) A_{i}(s) d s \\
= & \varphi\left(X_{i}(0)\right) A_{i}(0)+\int_{0}^{t} \varphi\left(X_{i}(s)\right) G\left(\bar{M}\left(s, X_{i}(s)\right)\right) A_{i}(s) d s \\
& +\int_{\mathbb{R} \times[0, t]} \varphi\left(X_{i}(s)\right) \rho_{\epsilon}\left(X_{i}(s)-u\right) W(d u \times d s) \\
& +\int_{0}^{t} \varphi^{\prime}\left(X_{i}(s)\right) A_{i}(s) d B_{i}(s)+\int_{0}^{t} \frac{1}{2} \varphi^{\prime \prime}\left(X_{i}(s)\right) A_{i}(s) d s
\end{aligned}
$$

Averaging both sides of this identity,

$$
\begin{aligned}
\langle\varphi, M(t)\rangle= & \langle\varphi, M(0)\rangle+\int_{0}^{t}\langle\varphi G(\bar{M}(s, \cdot)), M(s)\rangle d s \\
& +\int_{\mathbb{R} \times[0, t]} \int_{\mathbb{R}} \varphi(x) \rho_{\epsilon}(x-u) d x W(d u \times d s)+\int_{0}^{t}\left\langle\frac{1}{2} \varphi^{\prime \prime}, M(s)\right\rangle d s
\end{aligned}
$$

subject to the boundary conditions $\bar{M}(t, b)=m_{+}$and $\bar{M}(t, a)=m_{-}$.

What happens when ϵ goes to zero?

Let ϵ be the diameter of the support of ρ_{ϵ}.

$$
\int_{\mathbb{R} \times[0, t]} \int_{\mathbb{R}} \varphi(x) \rho_{\epsilon}(x-u) d x W(d u \times d s)
$$

converges to

$$
c \int_{\mathbb{R} \times[0, t]} \int_{\mathbb{R}} \varphi(u) W(d u \times d s)
$$

if $\int_{\mathbb{R}} \rho_{\epsilon}(x) d x \rightarrow c$.

$$
W_{i}^{\epsilon}(t)=\int_{\mathbb{R} \times[0, t]} \rho_{\epsilon}\left(X_{i}(s)-u\right) W(d u \times d s)
$$

converge to independent Brownian motions with parameter σ^{2} if

$$
\int_{\mathbb{R}} \rho_{\epsilon}^{2}(x) d x \rightarrow \sigma^{2}
$$

Conditionally Poisson representations

Kurtz and Rodrigues (2010)

Consider

$$
\begin{aligned}
X_{i}(t)= & X_{i}(0)+\int_{0}^{t} \sigma\left(X_{i}(s)\right) d B_{i}(s)+\int_{0}^{t} c\left(X_{i}(s)\right) d s \\
& +\int_{\Gamma \times[0, t]} \widehat{\sigma}\left(X_{i}(s), u\right) W(d u \times d s)
\end{aligned}
$$

and

$$
\begin{aligned}
U_{i}(t)= & U_{i}(0)+\int_{0}^{t} U_{i}(s) \gamma_{0}\left(X_{i}(s)\right) d B_{i}(s)-\int_{0}^{t} U_{i}(s) d\left(X_{i}(s)\right) d s \\
& +\int_{\Gamma \times[0, t]} U_{i}(s) \gamma_{1}\left(X_{i}(s), u\right) W(d u \times d s)
\end{aligned}
$$

B_{i} independent Brownian motions,
$\left\{\left(X_{i}(0), U_{i}(0)\right)\right\}$ a conditionally Poisson point process with mean measure $V(0, d x) \times d u$.

Measure-valued process

$$
\begin{aligned}
V(t) & =\lim _{r \rightarrow \infty} \frac{1}{r} \sum_{U_{i}(t) \leq r} \delta_{X_{i}(t)}=\lim _{\epsilon \rightarrow 0} \epsilon \sum_{i} e^{-\epsilon U_{i}(t)} \delta_{X_{i}(t)} \\
& =\lim _{\epsilon \rightarrow \infty} \epsilon^{2} \sum_{i} U_{i}(t) e^{-\epsilon U_{i}(t)} \delta_{X_{i}(t)}=\frac{1}{2} \epsilon^{3} \sum_{i} e^{-\epsilon U_{i}(t)} U_{i}^{2}(t) \delta_{X_{i}(t)}
\end{aligned}
$$

Define

$$
\begin{gathered}
L_{1} \varphi=\frac{1}{2} a \varphi^{\prime \prime}+c \varphi^{\prime}, \quad L_{2} \varphi=d \varphi-\left(\gamma_{0} \sigma+\int_{\Gamma} \gamma_{1} \widehat{\sigma} d \mu\right) \varphi^{\prime} \\
\beta(x)=\gamma_{0}(x)^{2}+\int_{\Gamma} \gamma_{1}^{2}(x, u) \mu(d u)
\end{gathered}
$$

Applying Itô's formula

$$
\begin{aligned}
& e^{-\epsilon U_{i}(t)} \varphi\left(X_{i}(t)\right) \\
&= e^{-\epsilon U_{i}(0)} \varphi\left(X_{i}(0)\right)-\epsilon \int_{0}^{t} U_{i}(s) e^{-\epsilon U_{i}(s)} \varphi\left(X_{i}(s)\right) \gamma_{0}\left(X_{i}(s)\right) d B_{i}(s) \\
&+\int_{0}^{t} e^{-\epsilon U_{i}(s)} \sigma\left(X_{i}(s)\right) \varphi^{\prime}\left(X_{i}(s)\right) d B_{i}(s) \\
&-\epsilon \int_{\Gamma \times[0, t]} U_{i}(s) e^{-\epsilon U_{i}(s)} \varphi\left(X_{i}(s)\right) \gamma_{1}\left(X_{i}(s), u\right) W(d u \times d s) \\
&+\int_{\Gamma \times[0, t]} e^{-\epsilon U_{i}(s)} \widehat{\sigma}\left(X_{i}(s), u\right) \varphi^{\prime}\left(X_{i}(s)\right) W(d u \times d s) \\
&+\frac{1}{2} \epsilon^{2} \int_{0}^{t} e^{-\epsilon U_{i}(s)} U_{i}^{2}(s) \varphi\left(X_{i}(s)\right) \beta\left(X_{i}(s)\right) d s \\
&+\int_{0}^{t} e^{-\epsilon U_{i}(s)} L_{1} \varphi\left(X_{i}(s)\right) d s+\epsilon \int_{0}^{t} U_{i}(s) e^{-\epsilon U_{i}(s)} L_{2} \varphi\left(X_{i}(s)\right) d s
\end{aligned}
$$

Corresponding SPDE

$$
\begin{gathered}
\langle V(t), \varphi\rangle=\langle V(0), \varphi\rangle-\int_{\Gamma \times[0, t]}\left\langle V(t),\left(\gamma_{1}(\cdot, u) \varphi+\widehat{\sigma}(\cdot, u) \varphi^{\prime}\right)\right\rangle W(d u \times d s) \\
\quad+\int_{0}^{t}\langle V(t), L \varphi\rangle d s \\
L \varphi=\frac{1}{2} a \varphi^{\prime \prime}+\left(c-\gamma_{0} \sigma-\int_{\Gamma} \gamma_{1} \widehat{\sigma} d \mu\right) \varphi^{\prime}+(d+\beta) \varphi
\end{gathered}
$$

For the Zakai equation, take

$$
\widehat{\sigma}=\gamma_{0}=0, \quad d=-\beta
$$

Markov mapping theorem

Theorem $6 A \subset \bar{C}(E) \times \bar{C}(E)$ a pre-generator with bp-separable graph.
$\mathcal{D}(A)$ closed under multiplication and separating.
$\gamma: E \rightarrow E_{0}$, Borel measurable.
人 a transition function from E_{0} into E satisfying

$$
\alpha\left(y, \gamma^{-1}(y)\right)=1
$$

Let $\mu_{0} \in \mathcal{P}\left(E_{0}\right), \nu_{0}=\int \alpha(y, \cdot) \mu_{0}(d y)$, and define

$$
C=\left\{\left(\int_{E} f(z) \alpha(\cdot, d z), \int_{E} A f(z) \alpha(\cdot, d z)\right): f \in \mathcal{D}(A)\right\} .
$$

If \tilde{Y} is a solution of the MGP for $\left(C, \mu_{0}\right)$, then there exists a solution Z of the MGP for $\left(A, \nu_{0}\right)$ such that $Y=\gamma \circ Z$ and \widetilde{Y} have the same distribution on $M_{E_{0}}[0, \infty)$.

References

Lorenzo Bertini, Stella Brassesco, and Paolo Buttà. Boundary effects on the interface dynamics for the stochastic AllenCahn equation. In Vladas Sidoravičius, editor, New Trends in Mathematical Physics, pages 87-93. Springer, 2009.

Peter M. Kotelenez. A class of quasilinear stochastic partial differential equations of McKean-Vlasov type with mass conservation. Probab. Theory Related Fields, 102(2):159-188, 1995. ISSN 0178-8051.

Peter M. Kotelenez and Thomas G. Kurtz. Macroscopic limits for stochastic partial differential equations of McKean-Vlasov type. Probab. Theory Related Fields, 146(1-2):189-222, 2010. ISSN 0178-8051. doi: 10.1007/s00440-008-0188-0. URL http://dx.doi.org/10.1007/s00440-008-0188-0.

Thomas G. Kurtz and Philip E. Protter. Weak convergence of stochastic integrals and differential equations. II. Infinite-dimensional case. In Probabilistic models for nonlinear partial differential equations (Montecatini Terme, 1995), volume 1627 of Lecture Notes in Math., pages 197-285. Springer, Berlin, 1996.

Thomas G. Kurtz and Eliane Rodrigues. Poisson representations of branching Markov and measure-valued branching processes. preprint, 2010.

Thomas G. Kurtz and Jie Xiong. Particle representations for a class of nonlinear SPDEs. Stochastic Process. Appl., 83(1):103-126, 1999. ISSN 0304-4149.

Abstract

Particle representations and limit theorems for stochastic partial differential equations
Solutions of the a large class of stochastic partial differential equations can be represented in terms of the de Finetti measure of an infinite exchangeable system of stochastic ordinary differential equations. These representations provide a tool for proving uniqueness, obtaining convergence results, and describing properties of solutions of the SPDEs. The basic tools for working with the representations will be described. Applications include the convergence of an SPDE as the spatial correlation length of the noise vanishes, uniqueness for a class of SPDEs, and consistency of approximation methods for the classical filtering equations.

