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Motivation - finance problem
Stock price model

Background

Let St denote stock price at time t.

A European call option on this stock is a contract that gives its holder
the right, but not the obligation to buy a unit of this stock at a certain
price, called strike price, and at a given time called maturity time.

Let K = strike price, T = maturity time and suppose S0 < K (
out-of-the- money).
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Motivation - finance problem
Stock price model

Question

What is the behavior of

option price = E [e−rT (ST − K )+]

as time to maturity T → 0?

To estimate this quantity, we study

P(ST > K )

as T → 0.
This probability decays exponentially fast to 0. We get a large deviation
estimate of the form

lim
T→0

T log P(ST > K ) = −I (K )
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Black-Scholes model

A simple model for this stock price is the B-S model

dSt = rStdt + σStdWt ;

σ > 0 is called volatility.
Under the B-S model, the price of a call option with strike price K and
maturity time T is:

option price = E [e−rT (ST − K )+]

is easy to calculate.

However the assumption of constant volatility is unrealistic and we
instead work with a more sophisticated model.
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Stock price model

Stochastic volatility model for stock price

Let St denote stock price.

dSt = rStdt + Stσ(Yt)dW
(1)
t , (1a)

dYt =
1

δ
(m − Yt)dt +

ν√
δ

Y β
t dW

(2)
t . (1b)

where m ∈ R, r , ν > 0, W (1) and W (2) are standard Brownian motions
with 〈W (1),W (2)〉t = ρt, with |ρ| < 1 constant.

-The process (Yt) is a fast mean-reverting process with rate of mean
reversion 1/δ (δ > 0).
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Motivation - finance problem
Stock price model

Assumptions

We assume that

Assumption

1 β ∈ {0} ∪ [ 1
2 , 1);

2 in the case of β = 1/2, we require m > ν2/2 and Y0 > 0 a.s., in the
case of 1/2 < β < 1, we require m > 0 and Y0 > 0 a.s.;

3 σ(y) ∈ C (R; R+) satisfies

σ(y) ≤ C (1 + |y |σ),

for some constants C > 0 and σ with 0 ≤ σ < 1− β.
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Examples of Y process

Ornstein-Uhlenbeck process (take β = 0)

dYt =
1

δ
(m − Yt)dt +

ν√
δ

dW
(2)
t .

CIR process (take β = 1/2)

dYt =
1

δ
(m − Yt)dt +

ν√
δ

√
YtdW

(2)
t .
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Rescaling time

Let Xt = log St . Rescale time t 7→ εt.

dXε,t = ε

(
r − 1

2
σ2(Yε,t)

)
dt +

√
ε σ(Yε,t)dW

(1)
t (2a)

dYε,t =
ε

δ
(m − Yε,t)dt + ν

√
ε

δ
Y β
ε,tdW

(2)
t . (2b)

Our mean-reversion time δ is ε-dependent.

Consider 2 regimes:

δ = ε4 (ultra-fast regime)

δ = ε2 (fast regime)

As ε→ 0, we look at small time asymptotics of X process but large time
asymptotics of the Y process. Y is mean-reverting and ergodic and
approaches its invariant distribution in large time. The effect of Y gets
averaged!
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LDP
Ultra-fast mean-reversion regime
Slower mean-reversion regime

Large Deviation Principle (LDP)

Let Xε,0 = x . We prove the following large deviation estimates of the
probabilities of {Xε,t > x ′} when x ′ > x .

THEOREM

lim
ε→0

ε log P(Xε,t > x ′) = −I (x ′; x , t)

with rate functions I (x ′; x , t) as follows.
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Slower mean-reversion regime

Rate function (δ = ε4 case)

When δ = ε4,

I (x ′; x , t) =
|x − x ′|2

2σ̄2t
,

where σ̄2 is the average of the volatility function σ(y) with respect to the
invariant distribution of Y .
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LDP
Ultra-fast mean-reversion regime
Slower mean-reversion regime

Rate function (δ = ε2 case)

When δ = ε2,

I (x ′; x , t) = t sup
p∈R

{
p
(x − x ′

t

)
− H̄0(p)

}
where

H̄0(p) = lim
T→+∞

T−1 log E [e
1
2 p2

R T
0
σ2(Y p

s )ds |Y p
0 = y ].

Y p is the process with the perturbed Y process with generator Bp

Bpg(y) = Bg(y) + ρσνyβp∂y g(y), (3)

where B is the generator of the Y process.
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Problem

Two aspects to this problem:

It is a Large Deviation problem coupled with a homogenization problem.
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Bryc’s lemma
PDE
Convergence of viscosity solutions

Key Steps in Proof

Prove convergence of the following functionals

uh
ε (t, x , y) := ε log E [eε

−1h(Xε,t)|Xε,0 = x ,Yε,0 = y ], h ∈ Cb(R)

to uh
0 (t, x).

Prove exponential tightness of {Xε,t}ε>0, i.e. for any α > 0 there
exists a compact set Kα ⊂ R such that

lim
ε→0

ε log P(Xε,t /∈ Kα) ≤ −α.

Then, by Bryc’s inverse Varadhan lemma, {Xε,t}ε>0 satisfies a LDP with

I (x ′; x , t) := sup
h∈Cb(R)

{h(x ′)− uh
0 (t, x)}.

Rohini Kumar Small time asymptotics for fast mean-reverting stochastic volatility models



Introduction
Results

Outline of proof
Applications to finance

Comments on the rate functions

Bryc’s lemma
PDE
Convergence of viscosity solutions

Key Steps in Proof

Prove convergence of the following functionals

uh
ε (t, x , y) := ε log E [eε

−1h(Xε,t)|Xε,0 = x ,Yε,0 = y ], h ∈ Cb(R)

to uh
0 (t, x).

Prove exponential tightness of {Xε,t}ε>0, i.e. for any α > 0 there
exists a compact set Kα ⊂ R such that

lim
ε→0

ε log P(Xε,t /∈ Kα) ≤ −α.

Then, by Bryc’s inverse Varadhan lemma, {Xε,t}ε>0 satisfies a LDP with

I (x ′; x , t) := sup
h∈Cb(R)

{h(x ′)− uh
0 (t, x)}.

Rohini Kumar Small time asymptotics for fast mean-reverting stochastic volatility models



Introduction
Results

Outline of proof
Applications to finance

Comments on the rate functions

Bryc’s lemma
PDE
Convergence of viscosity solutions

Key Steps in Proof

Prove convergence of the following functionals

uh
ε (t, x , y) := ε log E [eε

−1h(Xε,t)|Xε,0 = x ,Yε,0 = y ], h ∈ Cb(R)

to uh
0 (t, x).

Prove exponential tightness of {Xε,t}ε>0, i.e. for any α > 0 there
exists a compact set Kα ⊂ R such that

lim
ε→0

ε log P(Xε,t /∈ Kα) ≤ −α.

Then, by Bryc’s inverse Varadhan lemma, {Xε,t}ε>0 satisfies a LDP with

I (x ′; x , t) := sup
h∈Cb(R)

{h(x ′)− uh
0 (t, x)}.

Rohini Kumar Small time asymptotics for fast mean-reverting stochastic volatility models



Introduction
Results

Outline of proof
Applications to finance

Comments on the rate functions

Bryc’s lemma
PDE
Convergence of viscosity solutions

Convergence of uε

Fix h ∈ Cb(R). How do we prove

uε(t, x , y) := ε log E [eε
−1h(Xε,t)|Xε,0 = x ,Yε,0 = y ]

converges?
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Bryc’s lemma
PDE
Convergence of viscosity solutions

Convergence of uε

Possible ways:

Compute uε and take limit.

Use PDE (viscosity solution) approach.

Operator-theoretic approach (See Feng and Kurtz [2]):

uh
ε = Sε(t)h

is a nonlinear contraction semigroup.
Method: Let Hε denote nonlinear generator of Sε(t). Prove
Hε → H. Invoke Crandall-Liggett generation theorem to get the
limit semigroup S(t) corresponding to H.

A variational representation for Sε(t)h can be obtained. Sε(t) can
be interpreted as a Nisio semigroup.
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Bryc’s lemma
PDE
Convergence of viscosity solutions

PDE

uε satisfies the following nonlinear pde:

∂tu = Hεu, in (0,T ]× R× E0; (4a)

u(0, x , y) = h(x), (x , y) ∈ R× E0. (4b)

E0 is the state space of Y .
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PDE
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Hε

Let Aε denote the generator of the markov process (Xε,·,Yε,·). Then

Hεu(t, x , y) = εe−ε
−1uAεe

ε−1u(t, x , y)

= ε
(

(r − 1

2
σ2)∂xu +

1

2
σ2∂2

xxu
)

+
1

2
|σ∂xu|2

+
ε2

δ
e−ε

−1uBeε
−1u + ρσ(y)νyβ(

ε√
δ
∂2

xy u +
1√
δ
∂xu∂y u)

(5)

where,

ε2

δ
e−ε

−1uBeε
−1u =

ε

δ
Bu + δ−1 1

2
|νyβ∂y u|2.
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Convergence of viscosity solutions

u0 for δ = ε4 case

We prove that as ε→ 0, uε → u0 where u0 satisfies the HJB equation

∂tu0 =
1

2
|σ̄∂xu0(x)|2;

u0(0, x) = h(x),

where σ̄2 is the average of σ2(·) with respect to the invariant distribution
of Y .
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PDE
Convergence of viscosity solutions

u0 for δ = ε2 case

We prove that as ε→ 0, uε → u0 where u0 satisfies the HJB equation

∂tu0 = H̄0(∂xu0)

u0(0, x) = h(x),

where
H̄0(p) = lim

T→+∞
T−1 log E [e

1
2 p2

R T
0
σ2(Y p

s )ds |Y p
0 = y ].
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PDE
Convergence of viscosity solutions

Rigorous proof of convergence of uε

We use viscosity solution techniques adapted from Feng and Kurtz [2].
Difficulties:

In what sense do the operators Hε converge? How do we identify the
limit operator?

We are averaging over a non-compact space!

-We need to carefully choose suitable perturbed test functions in our
proof.
-The perturbed test functions fε(t, x , y) and Hεfε(t, x , y) should have
compact level sets.
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Bryc’s lemma
PDE
Convergence of viscosity solutions

Rigorous proof of convergence of uε

We prove conditions for convergence of uε, solutions (in the viscosity
solution sense) of

∂tu = Hεu,

to a sub-solution of

∂tu(t, x) ≤ inf
α∈Λ

H0(x ,∇u(t, x),D2u(t, x);α), (8)

and a super-solution of

∂tu(t, x) ≥ sup
α∈Λ

H1(x ,∇u(t, x),D2u(t, x);α). (9)

The method used is a generalization of Barles-Perthame’s half-relaxed
limit arguments first introduced in single scale, compact space setting
(see Fleming and Soner [3]).

Rohini Kumar Small time asymptotics for fast mean-reverting stochastic volatility models



Introduction
Results

Outline of proof
Applications to finance

Comments on the rate functions

Option pricing
Implied Volatility

Asymptotics of option price

Consider an out-of-the-money European call option i.e.

S0 < K

or
x = log S0 < log K .

Lemma

lim
ε→0+

ε log E [e−rεt(Sε,t − K )+] = −I (log K ; x , t),

where I is the rate function for LDP of {Xε,t}ε>0.
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Asymptotics of option price

Proof.

lim
ε→0+

ε log E [e−rεt(Sε,t − K )+] = lim
ε→0+

ε log

∫ ∞
K

P(Sε,t > z)dz

= lim
ε→0+

ε log

∫ ∞
K

P(Xε,t > log z)dz

≈ lim
ε→0+

ε log

∫ ∞
K

exp

{
− I (log z ; x , t)

ε

}
dz

= − inf
z∈(K ,∞)

I (log z ; x , t)

(by Laplace principle)

= −I (log K ; x , t)

as I is a continuous, increasing function in the interval (x ,∞).
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Details of this work can be found on http://arxiv.org/abs/1009.2782.

Our paper titled “Small time asymptotics for fast mean-reverting
stochastic volatility models” has been accepted (pending minor revisions)
in Annals of Applied Probability.
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Thank You!
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Black-Scholes model

A simple model for this stock price is the B-S model

dSt = rStdt + σStdWt ;

σ > 0 is called volatility.
Price of a call option with strike price K and maturity time T under this
model can be easily calculated:

EBS
[
e−rT (ST − K )+

]
= S0Φ

(
log(S0/K ) + rT + 1

2σ
2T

σ
√

T

)
− Ke−rT Φ

(
log(S0/K ) + rT − 1

2σ
2T

σ
√

T

)

(Black-Scholes Formula)
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Implied Volatility

Implied Volatility, Σ(T ,K ), is the volatility parameter value to be
inputed in the Black-Scholes model to match a call option price.

Implied volatility for Black-Scholes model is a constant for all T and K .

However, implied volatilities of market prices are not constant and vary
with T and K . Keeping T fixed, the graph of implied volatilities of
market prices as a function of K is approximately U-shaped.

Rohini Kumar Small time asymptotics for fast mean-reverting stochastic volatility models



Introduction
Results

Outline of proof
Applications to finance

Comments on the rate functions

Option pricing
Implied Volatility

Implied volatility

Let σε denote the implied volatility corresponding to strike price K of
option price given by our stochastic volatility model. Then σε is obtained
by solving:

erεtS0Φ

(
x − log K + rεt + 1

2σ
2
ε εt

σε
√
εt

)
− K Φ

(
x − log K + rεt − 1

2σ
2
ε εt

σε
√
εt

)
= E

[
e−rεt(Sε,t − K )+

] ≈ e−
I (log K ;x,t)

ε
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Taking limε→0 ε log on both sides, we get

lim
ε→0+

σ2
ε =

(log K − x)2

2I (log K ; x , t)t
.

In the regime δ = ε4, we get limε→0+ σ2
ε = σ̄2.

In the regime δ = ε2, we need to first compute the quantity H̄0 defined as
the limit of a log moment. This can be computed for the Heston model
i.e. when σ(y) =

√
y and β = 1/2.
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A LDP and applications to option pricing and implied volatility for the
Heston Model are in Feng, Forde and Fouque [1].

12 J. FENG, M. FORDE AND J.-P. FOUQUE

Fig. 2.1. Here we have plotted Λ, Λ∗, and the implied volatility in the small-ǫ limit as a function
of the log-moneyness x = log(K/S0). The parameters are t = 1, ergodic mean θ = .04, convexity
ν/κ = 1.74 (κ = 1.15, ν = .2), and skew ρ = −.4 (dashed blue), ρ = 0 (solid black), ρ = +.4 (dotted
red).

converges to zero (we refer to [10] for details).
In this case, the invariant distribution is a Gamma with mean θ and consequently

σ̄2 = θ. Therefore, the left-hand side of (2.16) converges to E[(σ̄W 1
t )+] = σ̄

√
t/
√

2π =√
θt/
√

2π. By direct inspection of the right-hand side of (2.16) and the relation (2.15)
between d1,2 and σǫ(0), one deduces that σǫ(0) must converge to θ as ǫ→ 0+.

In Figure 2.1 we show plots of the functions Λ and Λ∗, and of the implied volatility
smile/skew obtained in the limit ǫ→ 0+.

Here x = log(K/S0). Take σ(y) =
√

y and the parameters are
t = 1, β = 1/2,m = .04, ν = 1.74 and ρ = −.4 (dashed blue), ρ = 0
(solid black), ρ = +.4 (dotted red).
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Rate functions (δ = ε4)

I (x ′; x , t) =
|x ′ − x |2

2σ̄2t

is the rate function for {Zε,t}ε>0 where Zε,· satisfies Zε,0 = x and

Zε,t = x + ε

∫ t

0

(
r − 1

2
σ̄2

)
ds +

√
ε

∫ t

0

σ̄dWs

(Zε,t = log SBS
ε,t )

i.e. in this regime, the mean-reversion of Y is so fast that σ(Y (·)) gets
averaged to σ̄ and the stock price behaves effectively like the
Black-scholes model with constant volatility σ̄.
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Rate functions (δ = ε4)

I (x ′; x , t) =
|x ′ − x |2

2σ̄2t

is the rate function for {Zε,t}ε>0 where Zε,· satisfies Zε,0 = x and

Zε,t = x + ε

∫ t

0

(
r − 1

2
σ̄2

)
ds +

√
ε

∫ t

0

σ̄dWs

(Zε,t = log SBS
ε,t )
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averaged to σ̄ and the stock price behaves effectively like the
Black-scholes model with constant volatility σ̄.

Rohini Kumar Small time asymptotics for fast mean-reverting stochastic volatility models



Introduction
Results

Outline of proof
Applications to finance

Comments on the rate functions

Rate functions (δ = ε2)

I (x ′; x , t) = t sup
p∈R

{
p
(x − x ′

t

)
− H̄0(p)

}
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H̄0

H̄0(p) = lim
T→+∞

T−1 log E [e
1
2 p2

R T
0
σ2(Y p

s )ds |Y p
0 = y ];

Process Y p is multiplicative ergodic (a strong enough ergodic property
that the above limit exists and is independent of Y p

0 = y), see
Kontoyiannis and Meyn [4] for definition of multiplicative ergodicity.
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H̄0(p) = lim
T→+∞

T−1 log E [e
1
2 p2

R T
0
σ2(Y p

s )ds |Y p
0 = y ]}

= sup
µ∈P(R+)

( |p|2
2

∫
R+

σ2dµ− J(µ; p)
)
.

Where J(·; p) is the rate function for the LDP of the occupation
measures {µT (·)}T≥0:

µT (A) =
1

T

∫ T

0

1{Y p
s ∈A}ds average amount of time Y p spends in set A.

(See Stroock [5].)
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Y p is a mean-reverting and ergodic process. As ε→ 0, the distribution of
Y p
ε,t approaches its invariant distribution. J(·; p) measures the cost of

deviation of Y p
ε,t from its invariant distribution.
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Rate functions (δ = ε2)

I (x ′; x , t) = t sup
p∈R

inf
µ∈P(R+)

{
p
(x − x ′

t

)
− |p|

2

2

∫
R+

σ2dµ+ J(µ; p)

}

The deviation {Xε,t > x ′} is caused by a perturbation of Yε,· to Y p
ε,· and

then Y p
ε,· deviates from its invariant distribution.
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t
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2
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σ2dµ+ J(µ; p)

}
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